
HAL Id: hal-03125551
https://hal.science/hal-03125551v1

Submitted on 29 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Cache Limits for Dataflow Applications and Related
Efficient Memory Management Strategies

Alemeh Ghasemi, Rodrigo Cataldo, Jean-Philippe Diguet, Kevin Martin

To cite this version:
Alemeh Ghasemi, Rodrigo Cataldo, Jean-Philippe Diguet, Kevin Martin. On Cache Limits for
Dataflow Applications and Related Efficient Memory Management Strategies. DASIP 2021: Workshop
on Design and Architectures for Signal and Image Processing, Jan 2021, Budapest -Online, Hungary.
�10.1145/3441110.3441573�. �hal-03125551�

https://hal.science/hal-03125551v1
https://hal.archives-ouvertes.fr

On Cache Limits for Dataflow Applications and Related Efficient
Memory Management Strategies

Alemeh Ghasemi
Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100

Lorient, France
alemeh.ghasemi@univ-ubs.fr

Rodrigo Cataldo
Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100

Lorient, France
rodrigo-cadore.cataldo@univ-ubs.fr

Jean-Philippe Diguet
CNRS, UMR 6285, Lab-STICC, F-56100 Lorient, France

jean-philippe.diguet@univ-ubs.fr

Kevin J. M. Martin
Univ. Bretagne-Sud, UMR 6285, Lab-STICC, F-56100

Lorient, France
kevin.martin@univ-ubs.fr

[firstname].[lastname]@univ-ubs.fr

ABSTRACT
The dataflow paradigm frees the designer to focus on the function-
ality of an application, independently from the underlying archi-
tecture executing it. While mapping the dataflow computational
part to the cores seems obvious, the memory aspects do not match
accordingly. Dataflow compilers usually do not consider the pres-
ence of caches when generating code. A generally accepted idea is
that bigger and multi-level caches improve the performance of ap-
plications. Unfortunately, state-of-the-art dataflow compilers may
prove the exception to this rule. This paper presents two efficient
memory management strategies for dataflow applications through
a study on the impact of sharing, size, and the number of levels of
caches on them. The results show that bigger is not always better,
and the foreseen future of more cores and bigger caches do not
guarantee software-free better performance for dataflow applica-
tions. We propose two strategies, that can be used concurrently,
to address the memory aspects of the dataflow model: copy-on-
write and non-temporal memory transfers. Experimental results
show that we speed up a computer stereo vision application by
2.1× and reduce the number of L1 data cache misses by 45% while
maintaining the actors’ source code and design intact.

CCS CONCEPTS
• Software and its engineering → Source code generation;
Memory management.

KEYWORDS
Dataflow programming, Cache, Compilers, Dataflow framework

1 INTRODUCTION
The last decade has witnessed the rise of multi- and many-core ar-
chitectures coming with new challenges and opportunities. On the
hardware side, multiplying the number of cores has led to higher
pressure on the memory subsystem, mitigated by a cache hierarchy.
On the software side, new demands on parallel languages and tools
appeared to help applications to fully exploit all the capabilities
provided by the hardware. Existing for 40+ years, the dataflow pro-
gramming model may eventually stand as the ideal approach to
bridge the gap between application and architecture resources. The
left side of Fig. 1 shows that a dataflow application is modeled by a

graph in which (i) vertices are processing elements, called actors,
interconnected via (ii) edges, which are FIFO buffers, and exchang-
ing (iii) data, called tokens, in an asynchronous way. This model
allows the designer to specify explicitly both temporal and spatial
parallelism of the application. An actor can start execution only if
the data is present in the input, and enough space is present in the
output. So memory access plays a key role in dataflow performance.

Dataflow models can naturally make use of parallel resources
by means of actors that run in parallel while consuming and pro-
ducing tokens. Several tokens can be produced and consumed at a
time, but a token is produced and consumed only once. This feature
favors data spatial locality. While the cache hierarchy also exploits
temporal locality, a dataflow program may benefit from the latter
for instructions, and spatial locality for data as consecutive tokens
are usually involved. Therefore, dataflow applications performance
should improve with the increasing size of caches. However, this
paper shows that such an assumption does not hold in regard to
multiple cache-based architecture designs. Although our experi-
ments are performed on static dataflow applications, any dataflow
compiler that does not consider the cache parameters may present
similar behavior.

Static dataflow models allow an optimal schedule of the applica-
tion according to the hardware features, and the target code can be
automatically generated [4]. Fig. 1 depicts the generation of two
sets of code: (1) for the actors based on the specification provided by
the designer; and (2) for the framework responsibilities (e.g., sched-
uling, FIFO handling, mapping). This paper demonstrates that even
optimally scheduled applications do not scale as desired with the
increasing number of cores, size of caches, and cache sharing factor.
As expected, the memory contention is of utmost importance, and
the CPU load-based actor mapping used in the experiments does
not lead to the best execution time. Therefore, the first contribution
of this paper is to explore the behavior of dataflow applications with
caches and provide experimental results demonstrating the extent
to which they impact the application’s overall performance. For
this, we consider several configurations, including non-available
yet platforms or non-realistic cache configurations, and use the
Sniper simulation tool [1] to foresee the scalability of the dataflow
applications considered.

A total of 22 architecture configurations demanding more than
800 hours of simulation time are presented in this work. From its

Ghasemi, et al.

FIFO
Actor
Dataflow specification

Dataflow
framework

(e.g. PREESM)

Actors
source code
 (e.g. C files)

Framework
source code
 (e.g. C Files)

1

2

Figure 1: Dataflow programming model.

analysis, the second contribution of this paper is to propose two
memory management solutions for dataflow code generation: copy-
on-write (CoW) and non-temporal memory (NTM) copying. Both
can reduce the number of cache misses and accelerate dataflow
applications while modifying only the framework code. Therefore,
no changes are required for the application design and code.

2 RELATEDWORK
This section highlights studies that target the behavior of dataflow
applications running on systems with a memory hierarchy. In [5],
researchers extended the concept of tiling to the dataflow model to
increase the data locality of applications for better performance by
splitting iterations of nested loops. However, this type of optimiza-
tion does not address the coarse-grain inter-actor (i.e., inter-tasks)
relation.

In [13], a method is proposed for GPU-based applications by
splitting both the GPU kernel into sub-kernels and input data into
tiles in size of GPU L2 cache. Their work is intended to accelerate
applications whose performance is bound to memory latency. The
method increases data locality, as the sub-kernels are scheduled in
a way to have the least cache miss rate, for GPU applications over
various settings. However, the method requires source code modifi-
cation and does not target the dataflow model. Research about the
cache effect on the performance of multiple application types is pre-
sented in [6]. Garcia et al. have evaluated the impact of Last Level
Cache (LLC) sharing in GPU-CPU co-design platform for hetero-
geneous applications. According to their study, applications with
low data interaction between GPU and CPU are sped up slightly
by sharing the LLC. Data sharing of LLC minimizes memory ac-
cess time and dynamic power, and accelerates synchronization for
fine-grained synchronization applications.

The cache behavior of multimedia workloads is evaluated by
Slingerland and Smith in [17]. They appraised data miss rate of
applications considering data cache size, associativity, and line
size parameters. The authors observed that multimedia applica-
tions benefit from longer data cache lines and have more data than
instruction miss rate in comparison to other workloads. The exper-
iment results reveal that most of the multimedia applications just
need 32 KB data cache size to have less than 1% cache miss rate,
while other types of applications (3D graphic, document processing)
do not reach the same behavior. As the results of our work will
show, sharing cache levels among more cores with larger sizes, up
to 256 MB for LLC, does not help the performances of dataflow
applications, but also results in data access latency overhead.

Stoutchinin et al. [18] present a novel framework, called Stream-
Drive, for dynamic dataflow applications. StreamDrive proposes a
new communication protocol, reserve-push-pop-release, for dataflow
model instead of the standard send-receive. This protocol allows

their solution to employ a zero-copy communication channel for
actors. It employs a blocking mechanism to access FIFOs directly in
shared memory; hence, no local copies are needed, which are com-
monly used in software dataflow model. This study is specific since
it focuses on computer vision applications running on a special
embedded multi-core platform (P2012) with dedicated hardware
computer vision engines. Meanwhile, we propose two solutions to
general-purpose architectures that do not require novel hardware
components.

3 EXPERIMENTS
3.1 Experimental Setup
This work uses Sniper [1] to simulate multi- and many-core plat-
form architectures. As the models of cores and caches are fully
detailed in Sniper, it is a suitable tool for cache behavior evaluation.
We employ the Xeon X5500 as the reference core processor. Detailed
settings and configuration of the simulated hardware platforms are
shown in Table 1a.

3.1.1 Dataflow framework and applications. We employ PREESM
as the dataflow framework [15] and focus on two applications: (1)
stereo matching, and (2) stabilization, taken from PREESM reposi-
tory [16]. Stereo matching algorithms are used in many computer
vision applications to process a pair of images, taken by two sep-
arated cameras in a small distance, and produce a disparity map
that corresponds to the 3rd dimension (the depth) of the captured
scene. Stereo matching algorithms and their implementations are
still heavily studied as they raise important research problems [7].
The large memory requirements and challenging features of this 3D
application in memory usage (cache locality) make it an appropriate
candidate for the evaluation of cache impact. (2) The principle of
video stabilization filtering is to compensate for the movements of
a video recorded with a shaky camera. The main two steps of this
process consist of tracking the movement of the image using image
processing techniques and creating a new video where the tracked
motion is compensated.

These two applications are specified through the PREESM frame-
work, which is responsible for the compilation of the dataflow
applications and code generation (C code is this case) as shown
in Fig. 1, including FIFO copies when required (for instance, for
broadcast actors [2]). Giving these responsibilities to the framework
allows to implement new memory strategies without modifying
the actors code (identified as (1) in Fig. 1). The C code can then be
compiled with any C compiler.

3.1.2 Mapping. The choice of mapping has a significant impact
on the performance and memory behavior of an application. This
work uses a workload-based mapping; in other words, we divide as
fairly as possible the work available by mapping actors into the set
of cores. This task is eased using the PREESM framework, as the
latter provides a Gantt chart of operation cycles for all cores.

3.1.3 Design Space Exploration. We run multiple versions of the
Stereo and Stabilization applications. Table 1b presents the charac-
teristics of the applications, and details their FIFO usage: PREESM
FIFOs are the input and the output FIFOs for connecting the actors.
Additionally, the table details the framework’s (i.e., PREESM) and

Cache Limits for Dataflow Applications and Efficient Memory Management Strategies

Table 1: (a) Hardware and (b) software settings.

(a) Baseline hardware settings.

Core Model Intel Xeon X5550 4/8/16/32 @ 2.66 GHz (base clock)
L1-I Cache 32KB 8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L1-D Cache 32KB 8way 1 cyc. tag lat. 4 cyc. data lat. LRU
L2 Cache 256KB 8way 3 cyc. tag lat. 8 cyc. data lat. LRU
L3 Cache (LLC) 8MB 16way 10 cyc. tag lat. 30 cyc. data lat. LRU
cyc = cycles; lat = latency; LRU = Least Recently Used.

(b) Software simulation settings.

Application # actors PREESM
FIFOs

PREESM
FIFOs size

Memory copyinga

PREESM Actors
Stabilization 34 604 0.8 MB 0.5 MB 1.3 MB
Stereo 36 811 500 MB 364 MB 13 MB
(a) sum of all copied memory using the memcpy procedure.

Table 2: Four cache architecture examples.

Architecture Cores Cache configuration Cache size

(5) Private L2
& Private L3

8 (8 × 256KB) + (8 × 8MB) 66 MB

32 (32 × 256KB) + (32 × 8MB) 264 MB

(10) Shared L2 (2×) &
Shared L3 (8×)

8 (4 × 512KB) + (1 × 64MB) 66 MB

16 (8 × 512KB) + (2 × 64MB) 132 MB

actors’ memory copying behavior. In order to fully benefit from
parallelism provided by dataflow modeling, we run Stereo and Sta-
bilization with 4, 8, 16, and 32 threads, mapping one thread per core.
In addition, multiple cache configurations are explored to evaluate
their impact on the behavior of these applications, considering the
following parameters: cache size, number of levels, and sharing
degree. The memory controllers are attached to the LLC and are
multiplied according to the configuration.

This work evaluates 22 architecture configurations: 7 for sharing
cache up to 4 cores, 4 for up to 8 cores, 5 for up to 16 cores, and 6 for
up to 32 cores. Priority was given to sharing up to 4 cores as they
are commonly found in desktop computers and high-end mobile;
however, we also explored other available and non-available yet
platforms. They represent a diverse set of cache configurations
and, for fairness, share the same total memory hierarchy size for a
given combination of threads and cache levels. Table 1a depicts the
baseline memory per cache level. Thus, for example, a 32-core ar-
chitecture with private L2 provides 256KB of L2 cache individually
and overall L2 size of 8MB; the same architecture pairing L2 with
two cores provide 512KB of L2 cache individually and the same
overall L2 size of the previous example. Table 2 depicts the calcula-
tion for two architecture settings. Unfortunately, we are unable to
exhaust all cache architectures possibilities as, for instance, just the
32-core platform can have 22 cache hierarchy configurations given
our restrictions. Additionally, we evaluate four controller setups:
per 4, 8, 16, and 32 cores.

3.2 Experimental Results
3.2.1 Speedup with the number of threads. The experimental re-
sults indicate that despite the available parallelism, dataflow ap-
plications do not always improve as expected with the number
of threads and bigger caches. The execution time of Stereo and
Stabilization with various cache hierarchy configurations are de-
picted in Fig. 2a and 2b, respectively. Additionally, detailed memory
hierarchy results are depicted in Table 3. Due to restricted space,
we depict only results for 32 threads; yet, it should be noted that
the other configurations present a similar trend.

Stereo does not scale up to 32 threads for the analyzed cache
architectures: the highest speedup is achieved using 16 threads on
the (4) architecture setup: Private L2 & Private L3. The following
results were collected (normalized to the lowest speedup found): 4
threads speeds up from 1.20× (2) to 1.42× {(5), (6)}; 8 threads speeds
up from 1.50× (8) to 2.11× (7); 16 threads speeds up from 1.23× (16)
to 2.41× (4); 32 threads speeds up from 1.00× (22) to 1.45× (7); and
average speedup of {1.31, 1.87, 1.88, 1.27}× respectively.

Stabilization presents a performance increase from 4 to 32 threads:
the highest speedup is achieved using 32 threads on the (12) archi-
tecture setup: Shared L2 (×16). The following results were collected
(normalized to the lowest speedup found): 4 threads speeds up from
1.00× (1) to 1.27× {(3), (5), (6)}; 8 threads speeds up from 1.67× (4) to
2.32× (8); 16 threads speeds up from 1.62× {(15), (16)} to 3.39× (14);
32 threads speeds up from 1.70× (15) to 4.68× (12); and average
speedup of {1.19, 2.10, 2.13, 2.86}× respectively.

3.2.2 Trend analysis. The applications are divided into three trends.
They share the first trend: performance upward trend, transitioning
from 4 to 8 threads. Stereo speeds up from 1.31× to 1.87×, while
Stabilization speeds up from 1.19× to 2.10×, on average. Their
behavior can be interpreted by results of the number of DRAM
accesses, which are illustrated in Fig. 3. In fact, distributing the
actors over more cores decreases the average number of actors per
core. With fewer actors per core, actors have enough space to fetch
their FIFOs in L1-D. The performance of Stabilization improved in
this range by sharing its LLC {(3), (5), (6), (8)} while slowing down
in the same range with private LLCs {(1), (4)}; Stabilization can fit
all FIFOs in the cache, thus, sharing the LLC results in decreasing
the cost of copying shared FIFOs, and the latency overall. Stereo
cannot fit all FIFOs in the cache; thus, the smaller caches penalize
the performance {(2) and (8)}, while the bigger caches improve it
{(5), (6), and (7)}.

The second trend is also shared by both applications: plateau
trend from 8 to 16 threads. Stereo and Stabilization only speed up by
0.01× and 0.03×, on average. In this case, we have an even fewer
number of actors per core and more space in D-cache size. However,
we also have a penalty of less data locality due to the distribution
of more FIFOs over the cache, resulting in more cache miss rates
and DRAM accesses. Stereo is penalized when an intermediate
cache is present (7) compared to a two-level cache system (8) due to
excessive cache misses resulting from FIFO copying. Additionally,
the difference of the (16) and (4) architectures, for 16 threads, is
that the latter had a significantly higher average DRAM queuing
delay than the former. The delay is caused as (16) and (4) have 4
and 1 memory controllers available. Stabilization is not as affected

Ghasemi, et al.

0.0E+00

1.0E+10

2.0E+10

3.0E+10 4 cores 8 cores 16 cores 32 cores (a)

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

(1)
Private

L2

(2)
Shared
L2 (×2)

(3)
Shared
L2 (×4)

(4)
Private

L2
&

Private L3

(5)
Private

L2
&

Shared L3
(×2)

(6)
Private

L2
&

Shared L3
(×4)

(7)
Shared
L2 (×2)

&
Shared L3

(×4)

(8)
Shared
L2 (×8)

(9)
Private

L2
&

Shared L3
(×8)

(10)
Shared
L2 (×2)

&
Shared L3

(×8)

(11)
Shared
L2 (×4)

&
Shared L3

(×8)

(12)
Shared
L2 (x16)

(13)
Private

L2
&

Shared L3
(×16)

(14)
Shared
L2 (x2)

&
Shared L3

(×16)

(15)
Shared
L2 (×4)

&
Shared L3

(×16)

(16)
Shared
L2 (×8)

&
Shared L3

(×16)

(17)
Shared
L2 (×32)

(18)
Private

L2
&

Shared L3
(×32)

(19)
Shared
L2 (×2)

&
Shared L3

(×32)

(20)
Shared
L2 (×4)

&
Shared L3

(×32)

(21)
Shared
L2 (×8)

&
Shared L3

(×32)

(22)
Shared

L2 (×16)
&

Shared L3
(×32)

4 cores 8 cores 16 cores 32 cores (b)

Figure 2: (a) Stereo and (b) Stabilization execution time for 4 combinations of threads on 22 architecture configurations. The
star symbol identifies the highest speedup for a given combination of threads. The dotted black line separates the memory
controller setup per 4, 8, 16, and 32 cores, respectively.

Table 3: Detailed memory hierarchy settings and results for Stereo and Stabilization employing 32 threads.

Architecture (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)
Cache Size (MB) 8 8 8 264 264 264 264 8 264 264 264 8 264 264 264 264 8 264 264 264 264 264

MemCtrl (#) 8 4 2 1
Stereo

Avg DRAM delay (ns) 12 9 9 83 15 42 45 49 232 235 136 167 2748 2644 225 228 2114 104 250 491 549 506
Avg L1-D Miss Rate 11% 6% 6% 10% 6% 6% 6% 6% 6% 6% 6% 7% 6% 6% 6% 6% 6% 6% 6% 7% 7% 7%

Avg L2 Miss Rate 95% 85% 79% 94% 95% 95% 85% 70% 95% 85% 79% 66% 95% 86% 81% 78% 56% 96% 85% 79% 75% 73%
Avg L3 Miss Rate — — — 76% 75% 67% 74% — 58% 64% 67% — 56% 61% 87% 91% — 44% 49% 79% 85% 88%

Speedupa 1.4× 1.3× 1.3× 1.4× 1.4× 1.4× 1.5× 1.3× 1.4× 1.4× 1.3× 1.2× 1.4× 1.4× 1.1× 1.1× 1.1× 1.2× 1.2× 1.0× 1.0× 1.0×
Stabilization

Avg DRAM delay (ns) 4 2 2 1 1 0 0 17 1 1 1 91 3 7 18 60 235 152 172 89 173 117
Avg L1-D Miss Rate < 1%

Avg L2 Miss Rate 95% 71% 50% 95% 95% 95% 72% 30% 95% 73% 51% 15% 95% 73% 57% 37% 3% 95% 72% 54% 36% 32%
Avg L3 Miss Rate — — — 94% 69% 49% 66% — 29% 39% 55% — 15% 20% 48% 66% — 1% 1% 16% 26% 57%

Speedupa 4.2× 4.2× 4.4× 4.6× 2.4× 2.4× 2.4× 4.6× 2.4× 2.4× 2.5× 4.7× 2.4× 2.4× 1.7× 1.7× 3.2× 2.9× 2.3× 1.8× 1.8× 1.8×
MemCtrl (#) = Number of memory controllers; Avg = Average; a Normalized to the slowest speedup found.

by DRAM as is Stereo, and, following its previous trend, tends to
perform better with shared LLCs. The architecture (14) presents a
near-perfect 1.95% miss rate, which resuls in the best speedup of
this set of results.

Finally, the applications did not trend the same way from 16 to
32 threads. Stabilization has an upward trend from 16 to 32 threads,
achieving an average speedup from 2.13× to 2.86×. Conversely,
Stereo has a downward trend for the same set of threads, degrading
the speedup from 1.88× to 1.27×. On the one hand, Stabilization
can fit the entire FIFO set in the cache hierarchy; therefore, the
hierarchy can provide fast access even with 32 threads. Table 3
shows that sharing a single LLC for all cores results in better data
locality than the other settings (i.e., private or multiple LLCs). The
same trend happens with the other threads sets. On the other hand,
Stereo requires a challenging FIFO set for the cache hierarchy as
it does not fit in any of our architecture configurations. Adding
this FIFO set with more pressure on the memory hierarchy caused
by the higher core count result in Stereo not scaling to 32 threads.
Table 3 depicts prohibitive LLC miss rates for this application.

3.2.3 Cache size and performance. The results show that just in-
creasing the cache size does not imply better performance. For
instance, Table 3 shows that Stabilization is almost twice as fast in
architecture (12) than (11), while the cache size is 8 MB and 264
MB, respectively. Memory operations by actors are private, as an
actor can only be present in a single core at a time in PREESM.
Meanwhile, memory operations by PREESM (i.e., input and output
FIFOs) can be executed among cores and, thus, are shared according
to the mapping used.

Stabilization tends to perform better with shared LLCs: {(5), (8),
(14), (12)} achieved the highest speedup for 4, 8, 16, and 32 threads,
respectively. When an intermediate cache is employed (i.e., L2
in a three-level cache), its benefit is dubious; in the plurality of
cases, sharing it results in high miss rates that only decrease the
performance. Table 1b is essential to understand this phenomenon.
Multiple memory copying operations are used to share memory
space among cores and FIFOs by PREESM; for Stabilization, these
operations copy a total of 417 KB per application loop. As the
copying procedure requires reading from one memory position
and writing to another, in total, 834 KB are accessed during these

Cache Limits for Dataflow Applications and Efficient Memory Management Strategies

Table 4: 16 threads Stereo execution time, in seconds, for five
replacement policies on two cache hierarchies.

Configuration Replacement Policies
LRU MRU NMRU NRU Random

(4) Private L2 & Private L3 8.88 10.2 9.15 9.15 9.26

(7) Shared L2 (2×) & Shared L3 (4×) 9.11 10.4 9.2 9 9.12

LRU = Least Recently Used; MRU = Most Recently Used;
NMRU = Non-MRU; NRU = Not Recently Used;

operations; therefore, they can fit in any single L3, but only in some
of the L2s (Table 1a and Table 2). The L2 must be shared at least 4×
to have 834 KB for these operations. For these reasons, Stabilization
improved its performance for shared LLCs.

Stereo uses the same memory copying mechanism as Stabiliza-
tion; however, its case requires 728MB (364× 2) accesses overall. No
cache hierarchy in our study can handle these accesses; therefore,
Stereo performance is directly affected by the number of memory
controllers, as DRAM accesses were up to 2 orders of magnitude
higher than Stabilization, as shown in Fig 3. All the highest speedups
of this application are found on the first 7 architecture designs that
provide the most memory controllers (per 4 cores). No tendency to
private or shared was shown since Stereo’s miss rate is too high to
matter. Using a memory footprint-based mapping can increase the
locality of these application FIFOs. However, the performance will
be limited by the unbalanced long chain of processing actors. Thus,
we decided to employ a workload-based mapping.

3.2.4 Number of memory controllers. Fig. 3 depicts the number
of DRAM accesses for all architectures defined in this work. As
discussed previously, Stereo is a demanding application for DRAM.
In every case there is a decrease of available memory controllers,
from (7) to (8), (11) to (12), and (16) to (17), the number of DRAM
accesses spikes upward. The same behavior can be discerned in
Table 3 for average DRAM queue delay. Stabilization suffers from
the same phenomenon; however, it speeds up regardless of the
number of memory controllers because it can fit its FIFOs in the
cache: from (16) to (17) Stabilization speeds up from 1.7× up to 3.2×
even though the number of controllers were halved. The reason
can be noticed by the average cache miss rate and the number of
caches on Table 3 – the LLC miss rate dropped from 66% to 3%, and
the system went from 3 to 2 cache levels.

3.2.5 Replacement policy. The replacement policy of caches di-
rectly affects applications that cannot fit its data in the cache; for
our study, Stereo shows this behavior. Table 4 depicts the execution
time for two architecture designs using five cache replacement poli-
cies. Even with significant miss rates present in Stereo (76% and 67%
for LLC), there is still some temporal locality in the cache: the MRU
replacement policy had the worst results for both architectures.

3.3 Findings
We summarize our most important findings in this section, pre-
sented as follows from a top- to bottom-level approach.

Bigger is not always better with dataflow; increasing cores, cache
levels, size, and the number of memory controllers does not guar-
antee a faster application execution. This finding is especially sig-
nificant for working sets that demand more than the total cache
size.

Both applications explored in this work present prohibitive data
miss rates after the private L1-D cache. Only for some architectures
and for Stabilization, the miss rate of LLC was acceptable {(17),
(18), (19)}. The miss rates of L2 and L3 in these applications defeat
the purpose of using caches; in fact, it decreases the application
performance (for instance, from (12) to (13)). Besides, these miss
rates are far from the expected cache behavior (i.e., ≤ 10%) [14].

Table 1b shows that PREESM uses memory copying mechanisms
extensively for FIFO handling. Somememory copying is expected in
a dataflow design; however, memory copying is done to the degree
that negates the cache hierarchy benefits.

Therefore, alternative approaches must be employed to prop-
erly handle existing and future cache-based systems in regard to
memory copying.

4 PROPOSED SOLUTIONS
We propose two memory management strategies for a dataflow
framework; as such, the modifications will enable the framework
to be legacy-code compatible with existing dataflow applications
(i.e., it only affects the code identified as (2) in Fig. 1). Nevertheless,
the same strategies may also be used internally by the application.
We posit the use of CoW and NTM mechanisms.

The mechanisms minimize the impact of cache trashing caused
by the CPU replacing existing cached data with data requested by
the memcpy procedure. In addition, as the CPU does not process
the memcpy data – it just copies from one place to the other – the
framework should either share the data by default (CoW) or make
it independently of the cache hierarchy (NTM instructions or RAM-
to-RAM DMA). Note that both solutions can be used concurrently;
FIFOs that are mostly read can be shared with CoW, while FIFOs
that must be private can employ NTM copying.

These FIFOs can be identified by the designer or anyone famil-
iar with the application actors. PREESM is capable of parsing the
BeanShell scripting language for information regarding the actors
memory usage [3]. Currently, the parser allows the identification
of read- or write-only FIFOs; we extended it for allowing the iden-
tification of read-mostly and private FIFOs.

4.1 Copy-on-Write (CoW) mechanism
CoW is achieved by employing the mmap system call. Dataflow is
well-suited for this scenario as the application actors are recom-
mended to use FIFOs as read-only data [2]. For example, FIFOs for
Broadcast or Roundbuffer actors require the allocation of n + 1 FI-
FOs, where n is the number of FIFOs connected to the output ports,
and the number of input ports of the actors, respectively [2]. These
allocations can be exchanged by (i) creating a single shared memory
area with shm_open, and (ii) creating multiple copies pointing to
the same area with the MAP_PRIVATE flag as described in POSIX [9].
In UNIX-based system (e.g., Linux, BSD), this mechanism is exten-
sively used for shared libraries. CoW will copy data only when one
of its users requests a write operation. Even then, the copy is made

Ghasemi, et al.

0E+00

2E+08

4E+08

6E+08

8E+08

1E+09

1E+09

1E+09

2E+09

2E+09

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4 threads 8 threads 16 threads 32 threads

(a) Stereo

0E+00

2E+06

4E+06

6E+06

8E+06

1E+07

1E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

4 threads 8 threads 16 threads 32 threads

(b) Stabilization

Figure 3: Number of DRAM accesses made by (a) Stereo and (b) Stabilization. The black lines separate the number of memory
controllers for 4, 8, 16, and 32 cores, respectively. X axis is the architecture configuration as in Fig. 2

Table 5: Core change for supporting the CoW mechanism,
assuming: (1) src_fifo is the source FIFO, (2) dst_fifo is
the destination FIFO, (3) copy_length is the copy length, (4)
shm_open_fd is a file descriptor createdwith the shm_open sys-
tem call.

Original code CoW mechanism
1. memcpy(dst_fifo,
src_fifo, copy_length);

1. void *dst_fifo = mmap(NULL,
copy_length, PROT_READ | PROT_WRITE,
MAP_PRIVATE, shm_open_fd, 0);

on a per-memory page basis (typically, 4 KiB); therefore, mostly
read structures will avoid unnecessary data copying.

The core code change to support CoW is shown on the right
side of Table 5 as a single line. Initialization and termination has
been omitted for this example. The CoW mechanism is achieved
by mapping the destination FIFO (named dst_fifo) to the same
physical address located in the file descriptor shm_open_fd. This
latter address was initialized by the shm_open procedure. Besides,
we map the region as private (MAP_PRIVATE) with read and write
permission (PROT_READ | PROT_WRITE). The combination of these
two flags will create a new copy of the physical address when a
written has been made to the memory area (in other words, a copy-
on-write). Finally, we allow the operating system to decide the
virtual address of this new FIFO by passing nil (NULL) as the first
parameter to mmap.

The CoW procedure is typically handled by the operating system
kernel. Unfortunately, the Sniper simulator has limited operating
system modeling capabilities to evaluate kernel-based strategies [1].
Thus, for our experiments, we used a combination of user- and
kernelspace interaction so that Sniper can account execution time
accurately. Specifically, the framework only activates CoW when
data is written to a read-only FIFO. This means that writes to the
data triggers the SIGSEGV signal and interrupts the causing thread1.
Then, the framework changes the offending memory page to use
CoW. In regard to the code presented in Table 5, we change the
1SIGSEGV is a synchronously-generated signal and is guaranteed to be delivered to
the causing POSIX thread [9].

capability of the memory regions to read-only (PROT_READ) and
install a signal handler to re-enable the write capability for this
mapping.

Table 6 depicts the experimental results for our applications set.
We have converted their most demanding FIFOs to use CoW: for
Stereo, two FIFOs concerning the weight variables have each 19
copies (9 MB each) that now share a single 9 MB area; for Stabiliza-
tion, three YUV video copies are mapped to the same area sizing
71, 54, and 219 KB, respectively.

We used two architecture designs for evaluation: (2) and (4). Both
of them support all core configurations used in this work, while
the former and latter have two and three cache levels, respectively.
Besides, architecture (2) and (4) have up to 8MB and 264MB cache
size available (Table 3); thus, we can evaluate the impact of CoW
on disparate scenarios. Stereo is expected to be more impacted
than Stabilization by CoW given the conversions done for this
experiment; i.e., Stereo weight FIFOs do not fit either the L1 or L2
cache and occupy 65% of the L3. Since a memcpy operation needs
a source and destination positions, they will not fit even in the
L3. However, Stabilization YUV copies can fit in the L2 cache even
when memcpy is employed.

The results show that Stereo speeds up to 1.60×, on average, and
2.1×, for 16 threads, by employing CoW. Table 6 also shows that
cache accesses and misses of Stereo have decreased significantly
because copying is made only when necessary. Therefore, valuable
cache space is kept and the application can run faster in 7 out of 8
scenarios. For 32 threads on architecture (4), the application kept
the same performance while reducing cache accesses and misses.
As CoW initially requires handling multiple FIFO memory area via
mmap calls and latter interrupting the execution to do memory copy-
ing, it presents an overhead higher than a simple call to the memcpy
procedure. Even so, this overhead was negated by the gains in the
cache system. DRAM accesses and delay have also been reduced in
all cases. However, the impact for DRAM delay on architecture (4)
is more significant given that it already had the highest delay on the
set of architectures supporting all core configurations (83 ns for 32
threads – Table 3). Finally, the architectures presented a disparity
in the number of instructions by using the same binary code. The

Cache Limits for Dataflow Applications and Efficient Memory Management Strategies

Table 6: Architecture characteristics using CoW. Besides speedup, values are reduction (-) and increase (+) in percentage of the
CoWmechanism against the original code.

(a) Stereo
Architecture (2) Shared L2 (×2) (4) Private L2 & Private L3

Threads 4 8 16 32 4 8 16 32
Speedup 1.92× 2.07× 2.10× 1.58× 1.60× 1.32× 1.19× 1.00×

Instructions -19.18% -3.09%
L1-D Accesses -59.90% -59.89% -59.95% -9.18% -9.31%
L1-D Misses -45.80% -45.79% -45.83% -47.02% -45.79% -45.82% -45.81%
L2 Accesses -45.43% -45.42% -45.77% -45.75%
L2 Misses -48.66% -48.62% -48.73% -48.80% -48.01% -48.02% -48.04%

L3 Accesses — -47.99% -48.00% -47.98% 47.99%
L3 Misses — -60.97% -60.05% -59.62% -62.92%

DRAM Accesses -53.48% -53.26% -53.40% -53.58% -69.44% -65.47% -62.92% -72.45%
DRAM Delay -1.54% -2.99% -0.73% -0.45% -69.70% -21.19% -26.30% -21.06%

(b) Stabilization
Architecture (2) Shared L2 (×2) (4) Private L2 & Private L3

Threads 4 8 16 32 4 8 16 32
Speedup 1.03× 1.02× 1.03× 1.05× 1.00× 1.00× 1.00× 1.00×

Instructions < -0.01%
L1-D Accesses -0.66% -0.04%
L1-D Misses -18.26% -17.25% -16.60% -16.37% -18.05% -16.97% -16.48% -18.39%
L2 Accesses -17.53% -17.11% -16.33% -16.11% -17.75% -16.86% -16.25% -15.93%
L2 Misses -6.73% -2.39% -6.84% -5.83% -2.68% -9.14% -10.74% -11.02%

L3 Accesses — -10.12% -13.49% -13.11% -12.66%
L3 Misses — +5.79% -14.41% -13.39% -13.60%

DRAM Accesses -19.52% -3.26% -14.08% -12.96% +1.62% -1.09% -3.95% -6.98%
DRAM Delay +6.58% +2.91% +0.70% +0.14% -13.63% -1.80% -0.13% +0.12%

reason for this is the speculative nature of the cores combined with
their branch prediction unit: even a small number of branches (15)
can execute 25% more instructions by predicting them wrong [8].

Stabilization speeds up to 1.02×, on average, by employing the
same strategy. Therefore, CoW had minimal impact in this appli-
cation. This shows that CoW should be preferably used for large
memory areas, as its overhead is higher than memcpy. In addition,
the number of cache misses increased in a case for Stabilization (4
threads on architecture (4)). As copies are avoided with CoW, and
Stabilization could fit them in the L2, some of the cache’s temporal
locality is lost. DRAM access and delay do not affect this applica-
tion significantly (Section 3.2.4), thus the observed variation did
not affect the application execution time negatively. For example,
Architecture (2) with 32 threads increased the DRAM delay in 0.14%
(from 0.06 to 0.08 ns) while speeding up 1.05× the total execution
time.

For both applications, architecture (2) was more affected by CoW
than architecture (4). Such condition was expected as (2) has less
cache space and levels available than (4). Consequently, memory
copying will rely more on slower caches or, even, DRAM accesses.
When these accesses are reduced by employing CoW, it directly
impacts the application performance.

4.2 Non-Temporal Memory (NTM) Copying
NTM copying is ideal for memory locations known to be write-
mostly or rarely used (i.e., poor temporal locality). This approach
uses either (i) instructions that bypass the cache hierarchy or (ii)
userspace RAM-to-RAM DMA. For the x86 architecture, (i) is avail-
able using SSE extensions [10], and (ii) through the I/OAT DMA
engine available in some processor designs [11]. In any case, the
memcpy procedure is replaced for another procedure that uses either
technique. Another benefit of employing the NTM mechanism is
that cached data from other applications are not trashed due to the
copying required by any given application. Since these approaches
avoid the cache hierarchy, their operation is slower compared to
memcpy. Intel shows that RAM-to-RAM achieves approximately
half the speed of memcpy for large transfers (≥ 8 MiB) and many
times slower for smaller transfers on x86 [11]. Ergo, we have ex-
cluded Stabilization from this experiment as it does not transfer
large memory areas. Table 8 depicts the results obtained by using
NTM instructions.

The core code change to support NTM is shown on the right side
of Table 7 as a for-loop structure. Initialization and termination has
been omitted from this table. The procedure _mm_stream_si32 is
provided by Intel to call the appropriate assembly instruction for
NTM operations. It copies 32 bits from a value (src_fifo[i]) to a
given pointer (dst_fifo[i]). After the end of the for-loop, the data

Ghasemi, et al.

Table 7: Core change for supporting the NTM mechanism,
assuming: (1) src_fifo is the source FIFO, dst_fifo is the
destination FIFO, copy_length is the copy length.

Original code NTM mechanism
1. memcpy(dst_fifo, src_fifo,
copy_length);

1. for (i = 0; i < copy_length/4;
i++)2. _mm_stream_si32(dst_fifo[i],
*(src_fifo[i]));

Table 8: Architecture characteristics using NTM copying.

Stereo

4 th. 8 th. 16 th. 32 th.

Speedup 1.00× 1.01× 1.03× 1.03×

Instructions +23.6% +23.1% +22.9% +22.6%

Cache-misses -45.9% -53.8% -19.9% -36.0%

dTLB-misses -90.6% -55.7% -51.0% -64.4%

th = threads; TLB = Translation Lookaside Buffer.

is copied to the area pointed by dst_fifo. Thus, the result is the
same as calling memcpy but the related data will not be present in
the caches if they were no already there before _mm_stream_si32
is first called.

Sniper does not support NTM instructions and extending its
capabilities is outside of the paper scope; therefore, the evaluation
of this mechanism was conducted on a 2× Intel Xeon Silver with
32 cores, private L1 and L2 caches (64 KB and 1 MB, respectively)
and a shared L3 cache of 13.75 MB per processor. Besides, each
processor has two memory controllers. The cache design matches
the architecture (13) explored in Section 3.1.3. Experimental results
were conducted up to 10 times with hardware and software counters
(perf [12]), and their average is presented.

Stereo speeds up by 1.01× on average by employing NTM copy-
ing. As discussed previously, these operations are not faster than the
memcpy procedure, but they provide other benefits: Table 8 shows
that cache and data TLB misses are reduced by 38.9% and 65.4% on
average, respectively. These results demonstrate that the cache and
TLB have been used more effectively, leading to faster execution
time. However, the use of NTM increased the number of instructions
by 23% on average. We employed the _mm_stream_si32 procedure
for copying 32 bits at a time; newer architectures (Skylake and after)
can use the 128-bit version for reducing the number of calls. In this
case, the increase of instructions is reduced to 5%, and results are
similar to those presented here.

5 CONCLUSION
We present the behavior and performance of two dataflow applica-
tions on 22 architecture configurations comprised of various cache
levels, sizes, and number of memory controllers. Both presented
poor cache locality resulting from the generated dataflow code.
Thus, we proposed two solutions (copy-on-write and non-temporal
memory transfer) to address this phenomenon so that the dataflow
methodology can fully enjoy the benefits of the cache hierarchy.
Experimental results showed that we were able to reduce dramati-
cally the cache miss rate for Stereo application (60% less in the best

case) and speed up the applications up to 2.10× without changing
the actors’ source code.

ACKNOWLEDGMENTS
This work is supported by the Agence Nationale de la Recherche
under Grant No.: ANR-17-CE24-0018 (https://anr.fr/Projet-ANR-
17-CE24-0018)

REFERENCES
[1] T. Carlson, W. Heirman, and L. Eeckhout. 2011. Sniper: exploring the level of

abstraction for scalable and accurate parallel multi-core simulation. In SC (2011).
ACM Press, Seattle, 1–12. https://doi.org/10.1145/2063384.2063454

[2] K. Desnos. 2014.Memory Study and Dataflow Representations for Rapid Prototyping
of Signal Processing Applications on MPSoCs. Ph.D. Dissertation. UEB.

[3] Karol Desnos. 2020. Advanced Memory Footprint Reduction. https://preesm.
github.io/tutos/advancedmemory/.

[4] K. Desnos, M. Pelcat, J.-F. Nezan, and S. Aridhi. 2015. Memory Analysis and
Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs. J
Sigl Process Syst 80, 1 (2015), 19–37. https://doi.org/10.1007/s11265-014-0952-6

[5] L. Domagala, D. van Amstel, and F. Rastello. 2016. Generalized Cache Tiling for
Dataflow Programs. In SIGPLAN/SIGBED (2016) (LCTES 2016). ACM, New York,
52–61. https://doi.org/10.1145/2907950.2907960

[6] V. García, J. Gomez-Luna, T. Grass, A. Rico, E. Ayguade, and A. Pena. 2016.
Evaluating the effect of last-level cache sharing on integrated GPU-CPU systems
with heterogeneous applications. In IISWC (2016-09). IEEE, New York, 1–10.
https://doi.org/10.1109/IISWC.2016.7581277

[7] R. Hamzah and H. Ibrahim. 2015. Literature Survey on Stereo Vision Disparity
Map Algorithms. Journal of Sensors 16, 1 (Dec 2015), 1–23. https://doi.org/10.
1155/2016/8742920

[8] John L. Hennessy and David A. Patterson. 2019. A New Golden Age for Computer
Architecture. Commun. ACM 62, 2 (Jan. 2019), 48–60. https://doi.org/10.1145/
3282307

[9] IEEE. 2020. IEEE Standard for Information Technology–Portable Operating
System Interface (POSIX(R)) Base Specifications, Issue 7. IEEE Std 1003.1-2017 1,
1 (Jan 2020), 1–3951. https://doi.org/10.1109/IEEESTD.2018.8277153

[10] Intel Corporation. 2020. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Combined Volumes. Intel Corporation.

[11] Q.-T. Le, J. Stern, and S. Brenner. 2020. Fast mem-
cpy with SPDK and Intel® I/OAT DMA Engine.
https://software.intel.com/content/www/us/en/develop/articles/fast-memcpy-
using-spdk-and-ioat-dma-engine.html.

[12] Linux Kernel. 2020. perf: Linux profiling with performance counters.
https://perf.wiki.kernel.org/index.php/Main_Page.

[13] A. Maghazeh, S. Chattopadhyay, P. Eles, and Z. Peng. 2019. Cache-Aware Kernel
Tiling: An Approach for System-Level Performance Optimization of GPU-Based
Applications. In DATE (2019-03). IEEE, Florence, 570–575. https://doi.org/10.
23919/DATE.2019.8714861

[14] D. Patterson and J. Hennessy. 2013. Computer Organization and Design, Fifth
Edition: The Hardware/Software Interface (5th ed.). Morgan Kaufmann Publishers
Inc., San Francisco. 1–800 pages.

[15] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J. Nezan, and S. Aridhi. 2014. PREESM: A
Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP
Programming. In EDERC. IEEE, Milano, 36–40. https://doi.org/10.1109/EDERC.
2014.6924354

[16] preesm-apps. 2020. Repository for PREESM applications. https://github.com/
preesm/preesm-apps.

[17] N. Slingerland and A. Smith. 2001. Cache Performance for Multimedia Applica-
tions. In ICS (2001) (ICS ’01). ACM, New York, 204–217. https://doi.org/10.1145/
377792.377833

[18] A. Stoutchinin. 2019. A Dataflow Framework For Developing Flexible Embedded
Accelerators. Ph.D. Dissertation. Unibo.

https://anr.fr/Projet-ANR-17-CE24-0018
https://anr.fr/Projet-ANR-17-CE24-0018
https://doi.org/10.1145/2063384.2063454
https://preesm.github.io/tutos/advancedmemory/
https://preesm.github.io/tutos/advancedmemory/
https://doi.org/10.1007/s11265-014-0952-6
https://doi.org/10.1145/2907950.2907960
https://doi.org/10.1109/IISWC.2016.7581277
https://doi.org/10.1155/2016/8742920
https://doi.org/10.1155/2016/8742920
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://doi.org/10.1109/IEEESTD.2018.8277153
https://doi.org/10.23919/DATE.2019.8714861
https://doi.org/10.23919/DATE.2019.8714861
https://doi.org/10.1109/EDERC.2014.6924354
https://doi.org/10.1109/EDERC.2014.6924354
https://github.com/preesm/preesm-apps
https://github.com/preesm/preesm-apps
https://doi.org/10.1145/377792.377833
https://doi.org/10.1145/377792.377833

	Abstract
	1 Introduction
	2 Related Work
	3 Experiments
	3.1 Experimental Setup
	3.2 Experimental Results
	3.3 Findings

	4 Proposed solutions
	4.1 Copy-on-Write (CoW) mechanism
	4.2 Non-Temporal Memory (NTM) Copying

	5 Conclusion
	Acknowledgments
	References

