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A pBCI to Predict Attentional Error Before it Happens in Real Flight
Conditions

Frédéric Dehais1, Imad Rida1, Raphaëlle N. Roy1, John Iversen2, Tim Mullen3, and Daniel Callan4

Abstract— Accident analyses have revealed that pilots can
fail to process auditory stimuli such as alarms, a phenomenon
known as inattentional deafness. The motivation of this research
is to develop a passive brain computer interface that can
predict the occurence of this critical phenomenon during real
flight conditions. Ten volunteers, equipped with a dry-EEG
system, had to fly a challenging flight scenario while responding
to auditory alarms by button press. The behavioral results
disclosed that the pilots missed 36% of the auditory alarms.
ERP analyses confirm that this phenomenon affects auditory
processing at an early (N100) and late (P300) stages as the
consequence of a potential attentional bottleneck mechanism.
Inter-subject classification was carried out over frequency
features extracted three second epochs before the alarms’ onset
using sparse representation for classification (SRC), sparse and
dense representation (SDR) and more conventional approach
such as linear discriminant analysis (LDA), shrinkage LDA and
nearest neighbor (1-NN). In the best case, SRC and SDR gave
respectively a performance of 66.9% and 65.4% of correct mean
classification rate to predict the occurrence of inattentional
deafness, outperforming LDA (60.6%), sLDA (60%) and 1-
NN (59.6%). These results open promising perspectives for the
implementation of neuroadaptive automation with as ultimate
goal to enhance alarm stimulation delivery so that it is perceived
and acted upon.

I. INTRODUCTION

Operating aircraft is a demanding activity that involves
the management of multiple visual (e.g. monitoring the flight
parameter) and auditory tasks (e.g. radio communication) in a
dynamic and uncertain environment [1], [2], [3]. Distribution
of attention is a key issue for piloting and relies on a trade-
off between focused attention (eg. performing a check-list) to
avoid distraction, and diffused attention to detect unexpected
changes (eg. failure). These top-down and bottom-up types
of attention are respectively supported by the dorsal and
ventral neural networks that are in close interaction [4].
However, when task demand exceeds mental capacity, the
homeostasis between these two neural pathways could be
disrupted, leading to an impaired processing of unexpected
stimuli [5], [6]. Although this shielding mechanism can
prevent mental overload, missing critical information can
jeopardize flight safety [7]. For instance, accident analyses
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[8] and experiments conducted in flight simulators [9], [10],
[11] reported that auditory alarms could fail to reach aware-
ness when engaged under demanding cognitive flying tasks.
This phenomenon, known as inattentional deafness, has been
shown to take place at an early stage of auditory processing
[12] through top-down inhibitory mechanisms implemented
via the activation of cortical regions associated with an
attentional bottleneck [13]. Complementary evidence of this
phenomenon was supported by an electrophysiological ex-
periment conducted in real flight conditions which revealed
that a reduction in phase resetting in alpha and theta band
frequencies was a neural signature of inattentional deafness
to auditory alarms [14].

A relevant approach to improve flight safety is to im-
plement passive brain computer interfaces (pBCI) or neuro-
adaptive technology [15], [16], [17], [18] to continuously
monitor pilots’ attentional state and to detect the possible
occurrence of degraded states. Recently, [12] implemented
an offline pBCI to detect inattentional deafness to auditory
alarms during a simulated flight. Such an approach opens
promising perspectives for pilot-cockpit interaction, however
a step further would be to predict rather than detect episodes
of inattentional deafness [20]. As a consequence, one could
imagine the design of a smart cockpit that would implicitly
adapt itself to the pilots’ attentional state with a set of
counter-measures.

To meet this challenging goal, supervised dictionary learn-
ing approach has been shown to be an efficient means to
lead state-of-the-art results in many applications including
signal classification [21]. Indeed, in recent years there has
been a growing interest in the use of techniques such as
sparse representation for classification (SRC) or sparse and
dense representation (SDR) in order to build discriminative
representations by minimizing the intra-class homogeneity,
maximizing class separability and promoting sparsity for
more generalization ability [22], [23], [24]. This is done by
learning a dictionary per class and making them dissimilar
by boosting the pairwise orthogonality. When compared to
conventional dictionary learning techniques [25] which they
solely try to minimize the reconstruction error, supervised
dictionary learning has the merit to be a very efficient way
to classify EEG signals for BCI purposes [26], [27].

The objective of the present study was to develop a pBCI
to predict auditory alarm misperception in the context of
flying. Participants were asked to perform a demanding flying
scenario along with an auditory alarm detection task in real
flight conditions. In line with previous studies, we used dry-
electrode EEG that has proven to be suitable for measuring
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Fig. 1. Left: ISAE-SUPAERO DR400 aircraft. Right: EEG dry electrode Enobio system used for the experiment

brain response [14], [28] and to perform single trial classi-
fication [29], [30], [31], [32] in actual flight conditions. We
proposed to use SRC as well as SDR techniques to predict
inattentional deafness with frequency features computed over
the EEG signal in a 3-second time-window preceding the
onset of each auditory alarm. More conventional approaches
including Nearest Neighbor (1-NN), Linear Discriminant
Analysis (LDA) and shrinkage Linear Discriminant Analysis
(sLDA) were also used as a benchmark.

II. METHODS

A. Experimental protocol

Ten pilots were recruited among the students of the
ISAE-SUPAERO engineering school to participate in the
study (10 males; 25- 48 years old, with 40-230 flight hours
experience). All had normal or corrected-to-normal vision
and no history of neurological or psychiatric disorders.
The study was approved by the European Aviation Safety
Agency (EASA60049235) and all participants gave their
informed written consent.

1) Experimental environment: DR400 aircraft: The
study was conducted using the ISAE-SUPAERO (Institut
Supérieur de l’Aéronautique et de l’Espace - French
Aeronautical University in Toulouse, France) experimental
DR400 light aircraft (see Fig 1). The DR400 light aircraft
was powered by a 180HP Lycoming engine and was
equipped with classical gauges, radio navigation equipment,
and actuators such as rudder, stick, thrust and switches to
control the flight. A switch button was attached to the stick
to collect the pilots response to auditory alarms.

2) Scenario: The experiment lasted approximately one
hour in duration and involved navigation tasks, diversions,
simulated engine failure exercises, and series of touch-and-
go (landings and takeoffs) involving low altitude circuits
patterns. Along with the flying task, the participants had
to perform an auditory oddball detection task with a total
of 1000 auditory stimuli: 25% were alarm stimuli (250
normalized pure tone at 1100 Hz, 90 dB SPL) and 75%
were non-alarm stimuli (750 normalized pure tone at 1000
Hz, 90 dB SPL). The inter-trial interval was set to 3000 ms
with a 2000-ms jitter. The participants were instructed to

respond quickly by pushing a button attached to the flight
control stick after hearing the alarm stimuli. The auditory
task started during takeoff and would end before or during
landing.

3) Experimental protocol: The participants were first
trained to perform the auditory task alone for five minutes
while seated in a calm room at ISAE-SUPAERO hangar.
After completing the auditory task, they were equiped with
the 30 dry electrode Enobio EEG cap. The volunteers wer
then left-seated on the aircraft and had to wear a Clarity
Aloft headset that was used to trigger auditory stimuli
from a PC via an audio cable. The participants could still
communicate with the other crew members and the air traffic
controllers when they received auditory alarms. The safety
pilot was right seated and had the authority to stopping the
experiment and taking over the control of the aircraft for
any safety reason. The backseater was the experimenter:
his role was to set the sensor, to trigger the experimental
scenario and to supervise data collection.

4) Data recording: EEG data were recorded at 500
Hz using the 30 dry-electrode Enobio Neuroelectrics
system positioned according to the 10-20 system. We used
Lab Streaming Layer libraries (LSL, Swartz Center for
Computational Neuroscience, UCSD, November 2018) to
synchronize the oddball task in Matlab (Ver. 2017.b) and
the response button with the Enobio acquisition software
(NIC V2.0). The data were processed using EEGLab (Ver.
15).

5) Event Related Potential (ERP) and Frequency domain
analysis with sLoreta: Similarly to [14], we computed ERP
over Cz electrode. Our motivation was to check that we
actually picked brain signals and that the N100 and P300
amplitudes were lower for misses that hits as demonstrated
by [12]. To do so, the continuous EEG data was filtered
between 0.5–30 Hz (windowed-sinc FIR filter with an order
of 250). Noisy portions of data (e.g., trials) were cleaned
using the Artifact Subspace Reconstruction (ASR) [33].
Independent component analysis (ICA) was then ran over
the filtered data and IClabel Label function was used to keep
only brain components. The epochs for auditory misses and



hits were extracted from the continuous data 0.2 s before
and 1 s after stimuli onsets. The trials used for the ERP
analyses were baseline normalized using data from 200 to
0 ms prior to the stimulus onset. We also ran descriptive
frequency domain analyses using sLoreta over three second
epochs extracted before the alarms’ onset. The objective was
to localize and identify potential neural mechanisms that
could predict alarm misperception. To do so, we used the
same pipeline described previously to the exception that the
data were epoched starting 3000 ms before and ending 0 ms
before the auditory misses and the auditory hits.

III. CLASSIFICATION

1) EEG processing pipeline for classification purpose:
The signal was first epoched starting 3000 ms before and
ending 0 ms before the auditory alarms (see figure 2). Each
epoch was then high-passed (0.5 Hz). Noisy portions of
epoched data were cleaned using ASR. The ASR filter was
calibrated using the first 30 s of EEG recording that were
not used for the classification. Frequency based features
were computed for each trial in the delta [1 4], theta [4 8]
Hz, alpha [8 12] Hz, beta [12 30] Hz and gamma [30 80]
Hz bands using a 250-order windowed sinc FIR-filter trial.
Eventually, we computed an EEG engagement ratio β+γ

α+θ
adpated from [36].

A. Sparse representation for classification

Let us consider {(xj , yj)}nj=1 where xj ∈ Rm be signal
and yj ∈ {1, · · · , c} be its class label. We consider a
class based dictionary {Di}ci=1 ∈ Rm×ni the ni training
samples associated to class i. The global dictionary D =
[D1 · · ·Dc] ∈ Rm×n represents the concatenation of the
class based dictionaries {Di}ci=1. The sparse representation
of a test sample p over the global dictionary D noted
αααT = [αααT1 · · ·αααTi · · ·αααTc ] is given by:

min
ααα

1

2
‖p−Dααα‖22 + λ ‖ααα‖1 (1)

where ‖.‖1 denotes the `1-norm corresponding to the abso-
lute sum of the vector ααα, λ is a parameter controlling the
compromise between the reconstruction error and sample-
wise sparsity and ααα represents the sparse representation over
the global dictionary D.

With the assumption that subspaces of distinct classes
are independent to each other, the formulation (1) achieves
a discriminative representation where significant nonzero
coefficients are only associated to the correct subject. Thus
the resulting sparse representation in (1) named in the
literature Sparse Representation for Classification (SRC) [39]
is suitable for classification. The classification is performed
by computing residual reconstruction error of the test sample
p using the training samples of each class i serving as a
dictionary Di and their corresponding sparse coefficients αααi
as follows:

ei = ‖p−Diαααi‖22 i = 1, · · · , c (2)

Fig. 2. Classification pipeline

The class label of the given test sample is assigned to class
i that minimizes the reconstruction error using Di and αααi.

B. Sparse and dense hybrid representation

Despite of the impressive results of SRC, a number of
works put in doubt its effectiveness for classification [48]
[47]. To solve this problem, it has been proposed to separate
the class-specific information from others to allow the sparse
representation of the query signal to coincide with the correct
classification target specified by the class labels of the train-
ing data. Therefore, a query EEG signal p is decomposed
into three main components as follows:

p = a+ b+ s (3)

where a is the class-specific component, b the non-class-
specific variations and s contains random sparse noise.

Lets A a dictionary containing only class-specific com-
ponent, the sparse representation ααα of the class-specific
component of the query signal p can be computed using
SRC as follows:

a = Aααα+ ea (4)

the sparse vector ααα of (4) will directly coincide with the
class label of the query signal p as the both a and A only
contain the class-specific information.

Unfortunately, separating the class-specific component a
from a single unknown query signal p is a very challenging
problem if not impossible. To address this problem, a non-
class-specific representation z is defined by the dictionary B
containing non-class-specific information as follows:

b = Bz+ eb (5)

the component b does not contribute in the classification
and hence z in (5) is defined as dense representation. The
summation of (4), (5) and s yields the hybrid sparse-and-
dense representation (SDR) [45] of the query signal as
follows:

p = Aααα+Bz+ e (6)



where e = ea+ eb+ s is the combined representation error.
To represent a query signal p, every training sample only

uses its class-specific component to compete against the
others collaboratively with the non-class-specific component
of all training samples. As ααα represents the class-specific
information and contributes in the classification through a
sparse minimization, it is chosen sparse. In the other hand,
z stands for the non-class specific and does not contribute
in the classification, as consequence is taken dense. The
solution of the SDR, ααα, z and e is obtained by solving the
following optimization problem [45]:

min
ααα,z,e

‖ααα‖1 + β ‖z‖22 + γ ‖e‖1

s.t p = Aααα+Bz+ e

(7)

the optimization problem (7) can be solved by the Aug-
mented Lagrange Multiplier (ALM) scheme [46].

The representation of a query signal p by the class-specific
component of class i and the non-class-specific component
of all classes collaboratively is given by:

p = ALiααα+Bz+ ei (8)

where Li ∈ Rn×n is a selection operator given by


Li(k, k) = 1 if kth training ∈ class i

0 otherwise
(9)

The class-wise representation residual is defined by:

ri(p) = ‖e− ei‖2 = ‖A(I− Li)ααα‖2 (10)

where I is an identity matrix. The query signal p is classified
into the class that produces the minimum residual ri(p).

It is very difficult if not impossible to decompose a single
signal p into a class-specific component a and a non-class-
specific component b. However, given a labeled training
database D, it is possible to decompose it into a class-specific
dictionary A, a non-class-specific dictionary B and a random
sparse noise E based on machine learning from the labeled
training database. The underlying principle is that the both
dictionaries A and B must be low rank matrices. We can
first initialize A by a very low rank matrix, for example,
a matrix that contains the class means of all classes. Then
we can gradually transfer more information from D to A
so that after training, the class-specific dictionary A will
contain much more class-specific information than just class
means. This can be done by the iterative low rank matrix
decomposition of A and B from D. It utilizes the low rank
matrix recovery to transfer information from the supervised
assigned dictionary B to A. More details can be found in
[45].

C. Classification pipeline

As explained in the section II-A.2, our participants faced
25% of auditory alarms and 75% of non-alarm stimuli.
Our behavior results disclosed that our participants missed
36% of the 25% presented alarms stimuli. For classification
purpose, we then used 1400 recorded EEG signals (i.e. 3s
epoch before the auditory alarms): 700 miss alarms and 700
hit alarms. An equivalent number of misses and hits were
selected for each participant. To avoid the dependency of the
classification techniques to a specific training / testing set,
we evaluate the robustness using different training and testing
set, as a consequence we have divided our initial data into
L = 10 different training and testing set. Supervised Dic-
tionary techniques such as SRC as well as SDR were tested
over the different extracted frequency features separately or
all together. We then benchmarked their performance with
more conventional approaches including Nearest Neighbor
(1-NN), Linear Discriminant Analysis (LDA) and shrinkage
Linear Discriminant Analysis (sLDA).

IV. RESULTS

A. Electrophysiological results

At the group level (see figure 3 left), statistical analyses
disclosed lower N100 and P300 amplitude for the auditory
misses than hits over Cz electrode (p = 0.01 bootstrap
statistics with FDR for multiple comparisons). Descriptive
analyses using sLoreta, ran over 3 second epochs preceding
the alarms, disclosed that audio misses relative to hits had
lower oscillatory activity in the low alpha band in the right
inferior frontal gyrus (see figure 3 right) but also in the right
middle frontal gyrus and the right insula.

B. Classification results

Inter-subject classification accuracy using different fea-
tures as well as algorithms is depicted in Table I. It can be
seen that the best results were obtained using all aggregated
features.

V. DISCUSSION

The objective of this paper was to implement an EEG
based pBCI to predict inattentional deafness to auditory
alarms in aviation. This goal was challenging as the EEG
data were collected in a real flight conditions. The behavioral
results revealed that our participants missed 36% of auditory
alarms on average, confirming that such a phenomenon could
take place in the cockpit [10], [9], [14], [13]. ERPs analyses
over Cz electrode disclosed that this phenomenon takes
place at a perceptual (N100) and attentional (P300) level as
previously demonstrated in flight simulator [12]. Descriptive
analyses using sLoreta indicated lower alpha oscillatory
activity in brain regions generally involved in attentional
bottleneck processing including the inferior frontal gyrus,
the insula and the superior medial frontal cortex [42]. As
higher alpha oscillation are thought to reflect inhibition
mechanisms, lower alpha oscillation preceding misses may
suggest, on the contrary, greater activation of the attentional
bottleneck to prevent the processing of incoming alarms [14].



TABLE I
INTER-SUBJECT CLASSIFICATION ACCURACY.

Methods Features

Delta Theta Alpha Beta Gamma Engagement Fusion

1-NN 59.08 ± 3.29 57.29 ± 2.85 57.38 ± 4.06 58.21 ± 2.15 59.50 ± 3.01 58.04 ± 1.76 59.60 ± 2.70
LDA 60.20 ± 4.15 59.60 ± 2.79 58.71 ± 2.25 58.67 ± 3.06 58.50 ± 3.60 62.20 ± 2.50 60.60 ± 4.00
sLDA 60.75 ± 3.64 54.38 ± 3.45 53.38 ± 3.13 53.96 ± 3.20 56.25 ± 2.56 59.25 ± 3.33 60.00 ± 3.07
SDR 61.50 ± 3.50 62.60 ± 2.80 60.50 ± 1.80 60.40 ± 1.80 58.90 ± 1.60 62.50 ± 3.07 65.40 ± 2.80
SRC 65.60 ± 4.02 64.58 ± 2.25 63.83 ± 3.37 63.96 ± 3.42 64.08 ± 3.78 63.58 ± 2.94 66.90 ± 3.10

Fig. 3. Left: Grand averaged waveforms of the ERPs for Fz with standard
error. The black lines on the x axis specify the time range when the auditory
misses and hits related ERPs amplitudes were significantly different (p
= 0.01, corrected). Right: Frequency domain EEG source analysis using
sLoreta. Lower alpha oscillatory activity in the right inferior frontal gyrus
during misses than auditory hits.

Our classification results showed that the mean prediction
accuracy rate reached almost 67% in the best case with
SRC. This performance is close to the 70 % accuracy
defined as a sufficient accuracy for BCI [41]. The use of
supervised dictionary learning approach seems to outperform
more conventional techniques such as 1-NN and LDA/sLDA
(60%). These latter results are consisent of our previous
study with shrinkage LDA [20] which had 58% mean
accuracy to predict the onset of inattentional deafness in
simulated conditions. Moreover, this prior study considered
intra-subject but not inter-subject classification as was used
in the present study. Therefore, these findings show that our
approach is a well-suited method for processing EEG signal
as previously demonstrated by [26], [27]. Moreover, the
performance obtained here with inter-subject classification
and a dry-EEG system is altogether quite high in a general
manner, but also very promising in its robustness to inter-
subject variability and to ecological settings.

Taken together, these findings open good prospects for
the implementation of a smart cockpit that would adapt
to the user’s state. For instance, one could imagine that
the modality (e.g. tactile, visual) of the alarm could be
optimized to increase the likelihood of reaching pilot’s
awareness. Another possibility would be to consider
adaptive autonomy and to lower the pilots’ engagement by
giving more authority to the autoflight system to reduce

their workload. Nonetheless, there is a need to improve
the accuracy of this pBCI before it could be implemented
into real cockpits. Future research should investigate other
metrics such as connectivity features that have been shown
to efficiently predict long term attentional performance
[43]. Another possible approach would be to apply adaptive
mixture independent component analysis to identify different
brain network associated with auditory misses and hits, as
it has previously been shown to identify brain dynamics
underlying attention fluctuation in driving [44].

ACKNOWLEDGMENT

This study was supported by the Agence Innovation De-
fense (AID - DGA), the AXA research fund and the Artificial
and Natural Intelligence Toulouse Institute (ANITI). The
authors wish to express their gratitude to Fabrice Bazelot,
Stephane Juaneda and all the pilots who took part in the
experiments.

REFERENCES

[1] T. Gateau, G. Durantin, F. Lancelot, S. Scannella, and F. Dehais,
“Real-time state estimation in a flight simulator using fnirs,” PloS
one, vol. 10, no. 3, p. e0121279, 2015.

[2] M. Causse, F. Dehais, M. Arexis, and J. Pastor, “Cognitive aging and
flight performances in general aviation pilots,” Aging, Neuropsychol-
ogy, and Cognition, vol. 18, no. 5, pp. 544–561, 2011.

[3] F. Dehais, J. Behrend, V. Peysakhovich, M. Causse, and C. D.
Wickens, “Pilot flying and pilot monitoring’s aircraft state awareness
during go-around execution in aviation: A behavioral and eye tracking
study,” The International Journal of Aerospace Psychology, vol. 27,
no. 1-2, pp. 15–28, 2017.

[4] S. Vossel, J. J. Geng, and G. R. Fink, “Dorsal and ventral attention
systems: distinct neural circuits but collaborative roles,” The Neuro-
scientist, vol. 20, no. 2, pp. 150–159, 2014.

[5] K. Molloy, T. D. Griffiths, M. Chait, and N. Lavie, “Inattentional
deafness: visual load leads to time-specific suppression of auditory
evoked responses,” Journal of Neuroscience, vol. 35, no. 49, pp.
16 046–16 054, 2015.

[6] J. J. Todd, D. Fougnie, and R. Marois, “Visual short-term memory load
suppresses temporo-parietal junction activity and induces inattentional
blindness,” Psychological science, vol. 16, no. 12, pp. 965–972, 2005.

[7] F. Dehais, H. M. Hodgetts, M. Causse, J. Behrend, G. Durantin, and
S. Tremblay, “Momentary lapse of control: A cognitive continuum
approach to understanding and mitigating perseveration in human
error,” Neuroscience & Biobehavioral Reviews, 2019.

[8] J. P. Bliss, “Investigation of alarm-related accidents and incidents in
aviation,” The International Journal of Aviation Psychology, vol. 13,
no. 3, pp. 249–268, 2003.



[9] F. Dehais, M. Causse, F. Vachon, N. Régis, E. Menant, and S. Trem-
blay, “Failure to detect critical auditory alerts in the cockpit: evidence
for inattentional deafness,” Human factors, vol. 56, no. 4, pp. 631–644,
2014.

[10] F. Dehais, M. Causse, N. Régis, E. Menant, P. Labedan, F. Vachon, and
S. Tremblay, “Missing critical auditory alarms in aeronautics: evidence
for inattentional deafness?” in Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 56, no. 1. Sage Publications
Sage CA: Los Angeles, CA, 2012, pp. 1639–1643.

[11] F. Dehais, C. Tessier, L. Christophe, and F. Reuzeau, “The perse-
veration syndrome in the pilots activity: guidelines and cognitive
countermeasures,” Human Error, Safety and Systems Development, pp.
68–80, 2010.

[12] F. Dehais, R. N. Roy, and S. Scannella, “Inattentional deafness
to auditory alarms: Inter-individual differences, electrophysiological
signature and single trial classification,” Behavioural brain research,
vol. 360, pp. 51–59, 2019.

[13] G. Durantin, F. Dehais, N. Gonthier, C. Terzibas, and D. E. Callan,
“Neural signature of inattentional deafness,” Human brain mapping,
vol. 38, no. 11, pp. 5440–5455, 2017.

[14] D. E. Callan, T. Gateau, G. Durantin, N. Gonthier, and F. Dehais,
“Disruption in neural phase synchrony is related to identification of
inattentional deafness in real-world setting,” Human brain mapping,
2018.
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