N

N
N

HAL

open science

Offline Learning for Planning: A Summary

Giorgio Angelotti, Nicolas Drougard, Caroline Ponzoni Carvalho Chanel

» To cite this version:

Giorgio Angelotti, Nicolas Drougard, Caroline Ponzoni Carvalho Chanel. Offline Learning for Plan-
ning: A Summary. Bridging the Gap Between AI Planning and Reinforcement Learning (PRL),

ICAPS 2020 Workshop, Oct 2020, Nancy, France. pp.153-161. hal-03125176

HAL Id: hal-03125176
https://hal.science/hal-03125176

Submitted on 29 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03125176
https://hal.archives-ouvertes.fr

- OATAO

Open Archive Toulouse Archive Ouverte

Open Archive Toulouse Archive Ouverte (OATAO)

OATAO 1is an open access repository that collects the work of some Toulouse

researchers and makes it freely available over the web where possible.

This is an author's version published in: https://oatao.univ-toulouse.fr/26790

Official URL:

To cite this version :

Angelotti, Giorgio and Drougard, Nicolas and Ponzoni Carvalho Chanel, Caroline Offline Learning for Planning: A
Summary. (2020) In: Bridging the Gap Between Al Planning and Reinforcement Learning (PRL), ICAPS 2020
Workshop, 22 October 2020 - 23 October 2020 (Nancy, France). (Unpublished)

Any correspondence concerning this service should be sent to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

Offline Learning for Planning: A Summary

Giorgio Angelotti,'> Nicolas Drougard,'? Caroline P. C. Chanel'*
UANITI - Artificial and Natural Intelligence Toulouse Institute, Université de Toulouse,
41 Allées Jules Guesde, 31013 Toulouse - CEDEX 6, France
2ISAE-SUPAERO, Université de Toulouse,

10 Avenue Edouard Belin, 31055 Toulouse - CEDEX 4, France
{name.surname } @isae-supaero.fr

Abstract

The training of autonomous agents often requires expensive
and unsafe trial-and-error interactions with the environment.
Nowadays several data sets containing recorded experiences
of intelligent agents performing various tasks, spanning from
the control of unmanned vehicles to human-robot interaction
and medical applications are accessible on the internet. With
the intention of limiting the costs of the learning procedure it
is convenient to exploit the information that is already avail-
able rather than collecting new data. Nevertheless, the inca-
pability to augment the batch can lead the autonomous agents
to develop far from optimal behaviours when the sampled ex-
periences do not allow for a good estimate of the true dis-
tribution of the environment. Offline learning is the area of
machine learning concerned with efficiently obtaining an op-
timal policy with a batch of previously collected experiences
without further interaction with the environment. In this pa-
per we adumbrate the ideas motivating the development of the
state-of-the-art offline learning baselines. The listed methods
consist in the introduction of epistemic uncertainty dependent
constraints during the classical resolution of a Markov Deci-
sion Process, with and without function approximators, that
aims to alleviate the bad effects of the distributional mismatch
between the available samples and real world. We provide
comments on the practical utility of the theoretical bounds
that justify the application of these algorithms and suggest
the utilization of Generative Adversarial Networks to esti-
mate the distributional shift that affects all of the proposed
model-free and model-based approaches.

Learning using a single batch of collected experiences is a
statistical challenge of crucial importance for the develop-
ment of intelligent agents, specially in scenarios where the
interaction with the environment can be expensive, risky or
unpractical. There are countless examples that fall in these
categories: the training of unmanned aerial vehicles (Baek
et al. 2013), self-driving cars (Mirchevska et al. 2018), med-
ical applications (Jonsson 2018), Human-Robot interaction
(Chanel et al. 2020). Several environments are so complex
that a direct formulation of a model based on mere intuition
is inappropriate and unsafe because, depending on the task,
any mistake made by the agent can lead to catastrophic after-

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

maths. It is therefore necessary to infer the world dynamics
from a batch of previously collected experiences. The said
data set should be large and diverse enough for allowing
useful information extraction.

The process of learning an optimal policy can be mathe-
matically formalized as the resolution of a Markov Decision
Process (MDP) if the state of the system can be considered
as fully observable and the action effects are non necessarily
deterministic. This paper addresses the problems linked to
the resolution of MDPs starting from a single batch of col-
lected experiences by writing up a summary of the state-of-
the-art methods on offline learning and planning, and out-
lining their pros and cons. When the data set is fixed the
distributional shift between the true, unknown, underlying
MDP and its best data-driven estimate can be non negligi-
ble and lead, on resolution, to bad performing policies. This
discrepancy can be seen tightly linked to the uncertainty we
possess about the model. Several offline learning baselines
try to handle this issue or by constraining the policy or by
reshaping the reward taking into account a local quantifica-
tion of the said epistemic uncertainty and hence adapting the
classical resolution paradigms (Levine et al. 2020).

The document will be structured as follows:

1. Firstly, a recap of MDP resolution with MDP planning
algorithms, but also with reinforcement learning (RL) al-
gorithms is proposed.

2. Then, an intuitive description of offline model learning
and batch RL is presented.

3. And finally, a discussion is provided with comments on
the theoretical guarantees for the performance of the listed
baselines and suggestions for further improvements in this
field, like resorting to Generative Adversarial Networks
(GANS) to better estimate the underlying distributions.

1 A Review of MDPs
def

An MDP is formally defined as a tuple M =
(S, A, T,r,~v, o) where S is the set of states, A the set
of actions, T : A x S x S — [0,1] is the state transi-
tion function defining the probability that dictates the evo-
lution from s € S to s’ € S after taking the action a € A,
R: Ax S = [Rumin, Rmaz] With Ryaz, Rinin € R and

Rpax > Ruoin is the reward function that indicates what
the agent gains when it selects action a € A and the system
state is s € S, v € [0,1) is called the discount factor and
to S — [0,1] is the initial probability distribution over
states s € S at time ¢ = 0. A policy is defined as a func-
tion that maps states to actions, suchas 7 : A x S — [0, 1];
m(a|s) can be interpreted as the probability of taking action
a € A when being in the state s € S. Time evolution is dis-
crete and at every time step the agent observes the system,
acts on the environment and earns a reward. The following
definitions refer to an MDP with discrete A and S but they
can be straightforwardly rearranged to address MDP with
continuous states and actions spaces.

Solving an MDP amounts to finding a policy 7* which,
Vs € S, maximizes the value function:

So — S] .

The value function can also be expressed recursively as the
fixed point of the Bellman operator:

r s def =
Vir(s) S E gpmn(lsn) [Y R(st, ar)
t=0

stp1~T(+|s¢,a¢)

Vir(s) = > m(als) (R(s, a)+v > T(s]s, a)v;[(s')> .

acA s'eS

We define also the Q-value function:

Q"(s.a) = R(s,a) +7 > T(s'| s,a) V(s
s’esS

and we notice that Vj;(s) = Equr(.|s) [Q7 (5,a)].

Resolution Schemes

With basic planning algorithms like Value or Policy Iteration
where the contraction property of the Bellman operator is
exploited, one can compute a value V' and a policy 7 that
iteratively converge to V* and 7*, respectively (Sutton and
Barto 1998; Mausam and Kolobov 2012). These algorithms
require to store in memory the whole state space. However,
the application of the Bellman operator demands that all the
functions that compose the MDP are known. What can we
do, for instance, if the transition function is unknown?

Model-free Approaches In such scenarios, temporal dif-
ference (TD) schemes like Q-learning (Watkins and Dayan
1992) can be applied. In Q-learning the Q-function is com-
puted iteratively by minimizing the TD error using sampled
transitions (s, a,r, s’). Q-learning is a model free RL algo-
rithm because 1) it does not require an a-priori knowledge
of the model, 2) it exploits a growing batch of sampled ex-
periences. Another popular model free approach is based on
Policy Gradients (Williams 1992) which maximizes an esti-
mate of the value function with respect to the policy where
the expected value over the transition distribution is replaced
by sampled transitions.

Policy Gradients methods serve as the base for the Actor-
Critic architecture by which the variance of the gradient with
respect to the policy is reduced either by replacing the cumu-
lative reward with an estimate of the Q-value or by subtract-
ing from it an estimate of the value function (Sutton et al.

1999). The module that compute Q-value and value func-
tion estimates is called the Critic and the one that computes
« thanks to the Policy Gradient method is named the Actor.

Model-based Approaches Another route to follow is that
of first using a batch of previously sampled experiences to
obtain both 7" and R which are respectively estimates of the
transition function 7' and of the reward function R of the
unknown MDP. And then, to directly execute a planning al-
gorithm or to use T asa generative model of new fictitious
experiences (s, a, r, s') and subsequently apply a model-free
technique using the new data set augmented with the artifi-
cial transitions. Such a scheme was first mentioned in the
Dyna-Q algorithm (Sutton and Barto 1998), even though
it was prescribed to be used in combination with periodi-
cal further explorations of the environment. Regarding the
MDP planning literature, techniques which exploit heuristic
guided trial-based solving have been created to address large
finite state spaces. Amongst all Upper Confidence bounds
applied to Trees (UCT) and more recently, PROST (Kocsis
and Szepesvari 2006; Keller and Eyerich 2012). Such algo-
rithms could be applied to the estimated MDP generative

model, using 7" and R.
Notice that when new data is generated the optimal policy

of the MDP defined by T can be different from the one of
the original MDP since they really define two different deci-
sion processes. The authors of the work (van Hasselt, Hes-
sel, and Aslanides 2019) questioned the advantage of using a
model to generate fictitious data over working directly on the
batch with model free algorithms. Model-based techniques
are normally more data efficient than model free competitors
since probably the model learning stage can capture more
easily the characteristics needed to estimate the Q-value and
value function. However, in that paper it is empirically dis-
played that an appropriately fine-tuned model-free algorithm
can achieve a superior data efficiency performance.

Function Approximators

When the state or the action space has the cardinality of
the continuum a tabular representation of policies and value
functions is unfeasible. If the states are characterized by con-
tinuous feature vectors, planning algorithms are not applica-
ble without a preliminary discretization. (Munos and Moore
2002) proposes a variable resolution discretization of .S as-
suming that a perfect generative model is available. The lat-
ter enables to split recursively the feature space where more
control is required preventing an unforgivable loss of reso-
lution in the transition function of the aggregate MDP. Even
though the variable resolution scheme provides a more ef-
ficient splitting criterion than an uniform grid, it does not
manage to escape from the curse of dimensionality. Con-
versely, some promising attempts have been fulfilled in the
case of a continuous action space and finite state space
(Mansley, Weinstein, and Littman 2011). Resorting to the
Universal Approximation Theorem (Csdji 2001) it has been
found practical to use function approximators in order to es-
timate the policy and the value functions. The increase in
computational power of the last decade gave birth to a rich

community of scientists and engineers who use function ap-
proximators with thousands of parameters such as neural
networks. Model-free algorithms using neural networks are
Deep Q-learning Networks (Mnih et al. 2015), Policy Gradi-
ents (Williams 1992; Sutton et al. 1999) and their subsequent
improvements (Hessel et al. 2018) (Schulman et al. 2015;
Mnih et al. 2016; Barth-Maron et al. 2018; Haarnoja et al.
2018) that led to development of agents which achieved bet-
ter than human performances in games like Go (Silver et al.
2016), Chess (Silver et al. 2017), and also some video games
of the ATARI suite.

In model-based settings, approximators usually need the
specification of a prior distribution for 7" which is often cho-
sen Gaussian since these algorithms are usually applied to
problems driven by a deterministic dynamics or to problems
whose intrinsic stochasticity can be thought being induced
by a Gaussian distribution in some latent space (Deisenroth
and Rasmussen 2011; Chua et al. 2018; Hafner et al. 2019;
Kaiser et al. 2020; Hafner et al. 2020). The latter is a strong
limitation of these approaches since, more often than not,
taking decisions under uncertainty amounts to deal with
multi-modal transition distributions that would be poorly de-
scribed by a normal distribution.

2 Single Batch Learning

As we have stated in the introduction, learning from a single
batch of collected experiences is a necessity of compelling
importance for a safe, cost limited and data efficient devel-
opment of intelligent agents. We will see that several algo-
rithms which constrain the optimal policy obtained with RL
or planning tools to one that does not drive the agent to re-
gions of S x A that have been poorly sampled in the data
set lead to more effective policies than the one used to col-
lect the batch. Usually the results are also better than the one
obtained with a policy that has been calculated by straight-
forwardly applying the schemes listed in Section 1.

The utilization of function approximators to estimate the
value functions using a single batch requires theoretical deli-
cacy since many convergence guarantees do not stand. In the
paper (Chen and Jiang 2019) the authors realized that usu-
ally two fundamental assumptions are implicitly required in
order for the following algorithms to work:

1. mild shifts between the distributions of the real world and
the one inferred from the data in the batch,

2. conditions on the class of candidate value-functions
stronger than just the membership of the optimal Q-value
to this function class.

Related to those points, (Chen and Jiang 2019) explores the
notion of concentratability coefficient (Munos 2003), which
is hereafter recalled.

V(s,a) € S x Aand Vh > 0,V7:

P (sp, = s,ap = a|sg ~ po,)
UB(S’G)

where pp is the probability distribution that generated the
batch assuming that the transitions are independent and
identically distributed. The existence of C' ensures that any

<C,

attainable distribution of state-action pairs is not too far
away from p. The main result reported in (Chen and Jiang
2019) is that not constraining C precludes sampled efficient
learning even with “the most favourable” data distribution
UB-

Rather than focusing on the practical implementation of
the different methodologies, which as we will see is often
approximate due to the intractability of the terms present in
the derived theoretical bounds, we aim to perform a sim-
ple yet comprehensible adumbration of the ideas that sup-
port their development. With this in mind we are going to
neglect implementation related technicalities and sketch the
theoretical foundations of single batch learning algorithms.

Constraints for Model-free Algorithms

The first successful applications of offline learning for plan-
ning and control with function approximators are very re-
cent (Fujimoto, Meger, and Precup 2019; Fujimoto et al.
2019). In these works the authors showed that performing
Q-learning to solve a finite state MDP using a fixed batch
B leads to the optimal policy 7 for the MDP Mp whose
transition function is the most likely one with respect to the
transitions (s, a,r, s") € B. More often than not, the optimal
policy for My performs poorly in the true environment. The
discrepancy between the transition function of the original
process and the one learnt from the batch will be the key
element of the following discussion.
Indeed, the extrapolation error for a given policy 7:

e(s,a) < Q"(s,0) ~ Q(s.)
defined as the difference between the Q-value function of the
real MDP and the Q-value function of the most likely MDP
learnt from the batch could be computed with an operator
similar to the Bellman’s one:

e(s,a) = ~ Z {(T(s’|s,a) — Tp(s'|s,a)) V4 (s')

s'esS

+T(s|s,a) w(a'|s/)e(s',a’)]
a’'€A

The authors noticed that the extrapolation error is a func-
tion of divergence between the true transition distribution
and the one estimated from the batch along with the error at
succeeding states. Their idea is then to minimize the error by
constraining the policy to visit regions of S x A where the
transition distributions are similar. Henceforth, they modi-
fied Q-Learning and Deep Q-Learning algorithms to force
the new “optimal” policy to be not so distant from the one
that was used during the collection of the batch. They train a
generator network that gets as an input a state s to estimate
the batch generating policy and then allow for a small per-
turbation around it. The magnitude of the perturbation is an
hyperparameter. In this way, they obtain a policy that always
achieves better performance than the one used during the
batch collection. This algorithm is called Batch Constrained
Q-Learning (BCQ).

In a subsequent work, it has been shown that the error in
the estimation of the Q-value with neural networks is gen-
erated by the back-up of poor estimates of the Q-value that

comes from regions S x A that were badly sampled in 5 (Ku-
mar et al. 2019). To contrast the accumulation of the error,
the authors developed the Bootstrapping Error Accumula-
tion Reduction (BEAR) algorithm which, exploiting the no-
tion of distribution concentratability, manages to constrain
the improved policy to the support of the one that generated
the batch. Strictly speaking, they blame the back-up of Q-
value estimates of states with Out Of Distribution (OOD)
actions for increasing the extrapolation error. They should
blame for OOD state-action transitions, but in offline Q-
learning the Q function is computed only at states that are
in the replay buffer. This constraint is softer than the one
imposed by BCQ and it has been showed to provide better
results.

When BEAR and BCQ are applied on batches generated
with a random policy, they can eventually perform worse
than Deep Q-learning naively applied using the batch as
a fixed replay buffer. In these cases, if the data set is big
enough, there are not many OOD actions (Kumar et al.
2019). Probably, enforcing a constraint as done in BEAR
and BCQ will provide a too little window for policy im-
provement.

In the same year, yet another inspiring paper about of-
fline reinforcement learning was published (Wu, Tucker, and
Nachum 2019). The authors of the latter showed that any
policy constraining approach like BCQ, BEAR and KL-
Control (Jaques et al. 2019) can be obtained as a special
case of their Behaviour Regularized Actor Critic (BRAC)
algorithm.

The general idea is to either 1) penalize the value function
estimated by the actor or 2) regularize the policy generated
by the critic by a distance in probability space between the
batch collector policy 7 and the currently evaluated one,
as:

VS(S) = Z’ny ar~(-|st) |:T(8t7at)

t=0 st41~T(+]s¢,at)

—aD(7(-[s¢), 7B (-|se))|s = so}

where D is a distance function in probability space (e.g. Ker-
nel MMD, Kullback-Leibler, Total Variation, Wasserstein,
etc) and « is an hyperparameter. While the policy regular-
ized learning objective of the actor maximizes the following
criterion:

E [Q(s,a)] — aD(n([s), 75(|s))

(s,a,r,s")~B | a~m(-]s)

Their results showed that overall value penalization works
better than policy regularization and the distance D that pro-
vides the best performing policy is the Kullback-Leibler di-
vergence.

In their practical implementation both BCQ and BEAR
use an average Q-value over an ensemble of Q-value net-
works to reduce the prediction error. In BRAC, the minimum
Q-value over an ensemble of Q-value networks is used.

Extrapolation Error Reduction with Random
Ensembles of Q-value Networks

In parallel to the previous studies, the authors of (Agarwal,
Schuurmans, and Norouzi 2019) empirically demonstrated
that the stabilization of Deep Q-learning networks using a
single data set can be achieved by training at the same time
a multitude of different Deep Q-value Networks with their
weights differently initialized. During training the final es-
timate of the Q-value will be a normalized random linear
combination of the output of the intermediate Q-functions,
while in the end they will just consider as the final Q-value
estimate their average. The linear combination step is equiv-
alent to a Dropout layer in a neural network. By doing so the
final output will be stabler and if a network will be more af-
fected than another by an OOD action back-up, the final av-
erage over the random ensemble will likely mitigate this er-
ror. The authors called this neural network architecture Ran-
dom Ensemble Mixture (REM).

Generative model learning for Model-based
approaches

Steps forward in the development of model based RL using
a single batch have been done respectively in MOPO and
MOReL (Yu et al. 2020; Kidambi et al. 2020). In both cases,
a generative model is first learnt from the batch and then
used to create new transitions. On the augmented data set
then a model-free algorithm is applied. In this fashion, since
we can use the generative model to “explore” the S x A
space, the error in the Bellman back-up will not be induced
directly by ill sampled regions but by the epistemic error of
the model.

Intuitively, the more chaotic is the underlying system, the
greater will a trajectory generated by the learnt model di-
verge from a real one given the very same starting state
distribution and an identical sequence of actions to ap-
ply. Broadly speaking, as described below, the two meth-
ods build a penalized (MOPO) and pessimistic (MOReL)
MDP whose optimal policies are encouraged to visit regions
of S x A where the epistemic error is expected to be lit-
tle (MOPO), or areas that would be likely to be sampled
by the same distribution dynamics that generated the batch
(MOReL).

Model Error Penalized MDP In MOPO, defining as

N ([7] R, o L Vi ()] as the performance of a policy

for the MDP M, a theoretical bound for nys (7] — 0, [7] is
recovered. In particular, they show that:

s [ﬂ'] > E(s,a)wp’l& |:T(S’ a) - ﬁ II’lgE/iX (V]C[<S/))
Dry (T([s,a), T(|s,a)) | = ny (7] (1)

where J is the discounted state-action distribution of tran-

sitions along the Markov Chain induced by T and 7 starting
from the initial state distribution pg.

The right hand side is the performance of the MDP M
whose dynamics is driven by T', but with reward function
penalized by a term which is directly proportional to the

total variation distance between the true and the inferred
transition functions. Since both Dpy and maxy Vi (s')
are unknown, in the practical implementation the penalty
is replaced by Au(s,a) where A is an hyperparameter
and v : S x A — [0,400) such that u(s,a) >
Doy (T(-|s,a),T(-|s,a)) ¥(s,a) € S x A. Therefore find-
ing the optimal policy for the penalized MDP amounts to
obtaining the policy that maximizes the lower bound on 7.

Notwithstanding, we believe that their bound is greatly
dependent on the choice of a proper hyperparameter A and
function u, which is not trivial for stochastic MDPs while
it can be appropriately approximated by the covariance of
a Gaussian Process for deterministic environments like the
one used as test-cases in their paper. Moreover, if the penal-
ization is too big the lower threshold will be likely of little
use. Imagine the extreme situation where V(s,a) € S x A,
r > 0and r — Au < 0. In this case nps[7] > 0 V7 trivially,
while, calling M the reward penalized MDP with dynamics

driven by T, nyz[m] < 0. Therefore, maximizing the bound
will not necessarily lead to a policy that works better than
chance on the real MDP.

In (Yu et al. 2020) the performance of a policy is defined
as the expected value of V}; over the starting state distri-
bution p. This starting state distribution is then interpreted
as the distribution of states in the batch. However, the latter
could be much different from the true starting state distribu-
tion if the batch is of modest size.

Therefore a more robust definition could be
N[y,) EC Esur, [Vir(s)], where pf;, is the sta-

tionary distribution of states (if it exists) for the MDP M
with dynamics dictated by the policy 7. Using this new defi-
nition, the lower bound on 7,/ [as, 7] acquires an extra term
dependent on the difference A& A (8) = w7 (s) — iy (s).
Indeed, the performance of a policy in the true MDP can be
expressed as:

ma s = Beopg, Vi (s)]

— B, [Vi(s)] - / WAL, (Vi (s)

where, dy(s) is a measure over the state space. It is then
possible to obtain the same bound of Equation (1) but with
the extra term dependent on the integral over the state space
of the discrepancy between the stationary distributions:

Myr (15 7] — e (g, 7] =
— By [wr ()] = Bonpg, [Vr(s)] =
= Buy, VRO = Vi) + [du9)aT, (Vi)

where the expected value over the distribution p7. o is similar
to the one computed in (Yu et al. 2020) but with py = “71:}1‘
Therefore the right hand side can be bounded from below:

Myr (15 7]
Bs,a)~or, {DTV (T('|Sva),f”(~ls,a))}
g KOS OGS

— o] < 7 max (Vi ()

where p}[now is the discounted state-action distribution

of transitions along the Markov Chain induced by T and 7
starting from the stationary distribution -

Exploiting the definition of penalized MDP M:

e [7] > gy [T,] - / W(S)AT, | ()Vir(s)

The latter can again be bounded from above by plugging
in the absolute value of A and the max of V' over the state
space:

nu(phe, T > gl
—ma V() [dn(s)1A, 5, (5)

It is remarkable that now the optimal policy for M does
not necessarily maximizes the bound. Assuming that our al-
gorithm is monotonically improving the policy, it could be
then convenient to stop it earlier and settle for a sub-optimal
policy which in turn maximizes the bound. It’s all about bal-
ancing the trade-off between the optimality condition for M
and the discrepancy within the stationary distributions. The
newly added term is unfortunately intractable due to the lack
of knowledge about the MDP.

In the implementation of MOPO new trajectories are gen-
erated starting from states already present in the batch up
to h following time steps. Ablation experiments have shown
that the roll-out horizon h is indeed required to obtain good
results. We suspect that the state distributional shift that
was neglected is to be blamed for the occurrence of the be-
haviour. Generating data that are not so far away from ones
in the batch prevents the accumulation of model error, but
this theoretical aspect, even if already mentioned in (Janner
et al. 2019), should not affect the bound that aims to be valid
on any uncertainty penalized MDP independently of other
factors.

Pessimistic MDP The authors of MOReL define an MDP
with an extra absorbing state y. The state space of the pes-
simistic MDP is S = S U {y}, while the transition function

5oy if Dry (7(1s,0), T(Js,0)) >0,
T(s'|s,a) = 4 5.)

T(s'|s,a)
The reward function R is identical to the original one except
fory: R(y,a) = —k Va € A.
0 is a freely chosen threshold and x >> 0 is a penalty. Es-
sentially if the model error is greater than 6 the agent will
end up for sure in the strongly penalized absorbing state.
Therefore any optimal policy for the pessimistic MDP will
try to avoid transitions for which the model error is high.
The optimal policy 7« when applied on the real MDP bounds

from above the performance of the optimal policy of the true
MDP.

else if s =y,
otherwise.

ARy - .
?WL:L (C(MO?IJ’O?T) T) +E |:/7TM :|)

> nar[po, ™ — N o, 7

with,
C(pos fio, T, T') = Dry (o, fio) + ﬁ max Dry (T, T)

The two performances are similar if the D7y between the
real starting state distribution and the one inferred from the
batch is negligible, if the maximum model error is little, and
also, if the expected value of the first hitting time of the ab-
sorbing state while applying the policy 7* in the pessimistic
model 774" is small.

Again, in a practical implementation the choice of good
estimators of the epistemic error, of the distributional dis-
tance between starting states, and also, of the first hitting
time is of crucial importance. In the large batch regime the
authors neglect the first two terms and focus only on the ex-
pectation of the first hitting time which can be bounded from
the above by the discounted distribution of visits to (s, a) €
U, where U represents the unknown state-action pairs that
lead to the absorbing state, when applying a ~ 7*.The late
distribution can be in turn bounded by a term proportional to
the support mismatch of the distribution of states that were
never sampled in the original data set.

3 Discussion
Theoretical bounds and function approximators

The theoretical bounds which justify the creation of the
previously listed algorithms rely either on a penalty or on
a regularization term proportional to a sort of uncertainty
that obnubilates our knowledge about the underlying sys-
tem. Sometimes the penalty is expressed as an estimate of
the epistemic model error, other times as a difference be-
tween starting or stationary state distributions, finally it can
be quantified as Out Of Distributions (OOD) state-action
pairs with respect to the policy used during the collection
of the data set.

The penalty or regularization term is often proportional
to an upper bound of the value function or to a free hyper-
parameter. As we have seen the latter statement implies that
when this constant is too big the intractable performance of a
policy on the real MDP is bounded by a tractable term which
unfortunately will be of little use.

Only REM stabilizes the accumulation of the error in Q-
learning thanks to a constraintless weighted random ensem-
ble average. Despite its nicety, the stabilization is not prop-
erly a goal-oriented correction to the deviation of the optimal
Q-value estimated using a single batch from the real one.

Model-based approaches also learn a function R, however
there is no term linked to the uncertainty in the evaluation
of the reward in the batch penalized resolution scheme for
offline learning algorithms. We believe that such a term pro-
portional to the reward error is not truly necessary since we
expect it to be stemmed from the same regions of S x A
that are badly sampled in the data set 3 and considering that
the penalization is already applied on the reward or value
functions.

Finding a proper estimator of the errors is not trivial.
The algorithms were often tested on deterministic environ-
ments where a reasonable estimator of the model error can

be achieved by the maximal variance in between an ensem-
ble of different Gaussian models. Since it’s reasonable to
expect that the model error will be high in regions that were
ill-sampled in the batch, another way to measure it could
be getting an estimate of the probability that a given (s, a)
could have been generated by the same process that gave
birth to the batch. Therefore estimating the probability dis-
tribution of (s,a, s’) in the true MDP with policy 75 is a
priority.

The most practical way of learning a probability distribu-
tion function without a prior could be to use a GAN (Good-
fellow et al. 2014). A GAN is comprised of a Generator and
a Discriminator. The first is a neural network which receives
random noise as an input and generates an output with the
same shape of the data in a training set. The second gets an
input with the correct shape and provides as output a real
number. While training the Discriminator tries to identify
which data was present in the training batch between sam-
ples that really populate it and the output of the generator.
The higher the output of the Discriminator on a sample will
be, the most likely that sample will be in the batch if the
Discriminator is well trained. At the same time the goal of
the Generator will be that of fooling the Discriminator. The
loss functions minimized during the training are peculiar of
a min-max game. Sophisticated GANSs architecture can use
a well trained Generator to build fake samples that could
fool even a human. A striking example is StyleGAN2 by
NVIDIA (Karras et al. 2019) which can generate high qual-
ity dimensional pictures of people that do not really exist.

We believe that the use of a GAN’s Discriminator trained
on B to obtain an estimate of the log-likelihood of a transi-
tion (s, a,r, s") with respect to the unknown transition dis-
tribution should be a promising venue for penalizing the re-
ward and/or the value functions with a more pertinent esti-
mator of the distance between the true distribution of data
and the one we can infer from a single batch. In this way
we may be able to recover an informative quantity about the
distributional shifts in a non parametric way that is indepen-
dent of any possible prior and might, in principle, also work
for systems driven by a stochastic time evolution. Doing so
we would drop off the Gaussian assumption that has been so
far used in almost all of the model-based techniques.

However, GANs have some weak spots: the training is
unstable because the loss function is not convex, the proce-
dure takes time, and they suffer from mode collapse. The
latter is maybe the most problematic issue since when the
unknown latent distributions is multi-modal the Generator
may focus on building up samples that benefits from char-
acteristics that are typical only of a little slice of the whole
set. Since the Discriminator is trained alongside the Genera-
tor, it will learn to recognize samples that are typical of that
specific mode. Several approaches to mitigate mode collapse
(Ghosh et al. 2018) and training instability (Arjovsky, Chin-
tala, and Bottou 2017) have been attempted so far, but the
issues can be still considered unsolved.

Off-policy Evaluation

It is necessary to find statistically robust methods which are
able of estimating how well an algorithm will run in the real

world without interacting with it. Off-policy evaluation is
an active field which would require a summary of its own.
Recent approaches utilize optimized versions of Importance
Sampling to estimate the unknown ratio between stationary
distributions of states under dynamics driven by different
policies. Recent works propose to create a sort of Discrim-
inator and optimize a min-max loss function to serve this
purpose (Liu et al. 2018; Zhang et al. 2020).

The application of a min-max optimization loss function
in the field strengthens our intuition that the implementation
of a GAN anyhow in the estimation of the distributional shift
might be useful.

Batch Quality and Size Scalability

It is of compelling necessity to develop and test the base-
lines in common environments using the same batches to
shine a light onto the change in performance of the differ-
ent paradigms when the quality (and the variety) and the
size of the available data increase. D4RL (Datasets for Deep
Data-Driven Reinforcement Learning) is a collection of data
sets recorded using policies of different qualities (random,
medium, expert) on the typical benchmarking environments
used by the RL community (OpenGym, MuJoCo, Atari etc.)
(Fu et al. 2020). However, the offline learning community
has yet to settle to the use of a common pipeline for bench-
marks. The results achieved by MOReL using D4RL are re-
ported in Table 1, for comparison with different baselines
examine the reference (Kidambi et al. 2020). Independently
of the quality of the batch we notice an improvement in the
performance, expressed as the average cumulative reward
over a sequence of trajectories, of the optimal policy for the
pessimistic MDP when evaluated in the true environment.

The results achieved with MOPO are reported in Table
2. MOPO performs better than all previous baselines on
randomly generated batches and on data sets which con-
sist of the full replay buffer of a Soft-Actor Critic (SAC)
trained partially up to an environmental specific perfor-
mance threshold. Surprisingly, on batches generated with the
sub-optimal trained SAC the best baselines are BRAC with
value function penalty and BEAR. The main difference be-
tween the last two types of data sets is that while the latter
is generated with a fixed policy, the previous one is a collec-
tion of transitions gathered with a mixture of differently per-
forming policies. When the sub-optimal policies are not so
bad, it seems reasonable to just slightly modify them to ob-
tain better results, hence BEAR and BRAC looks like viable
methods. However, when the overall batch policy is not so
good, constraining the reward with respect to the model er-
ror (and the transitions close to the ones present in the batch
up to a roll-out horizon) can be more fulfilling.

As mentioned also by the authors of BRAC, their algo-
rithm when applied to small data sets becomes more suscep-
tible to the choice of the hyperparameters. This is probably
because on small data set the distributional shift / model er-
ror can become significant. It is crystal clear that the field
needs better theoretical foundations and better algorithms in
order to learn more safe and performing policies from small
batches collected with strategies of any quality, even uni-
form random ones.

Environment Pure-Random Pure-Partial
Hopper-v2 2354 & 443 (20) 3642 £ 54 (1376)
HalfCheetah-v2 | 2698 & 230 (—638) | 6028 + 192 (4198)
Walker2d-v2 1290 + 325 (—7) 3709 + 159 (1463)
Ant-v2 1001 + 3 (—263) 3663 £ 247 (1154)

Table 1: Average cumulative return of the policy obtained
with MOReL as reported in (Kidambi et al. 2020). A Pure-
Partial policy is a partially trained suboptimal policy. The
number between parentheses is the average cumulative re-
ward with the batch collecting policy. All results are aver-
aged over 5 random seeds.

4 Conclusions

In this paper we have examined the state-of-the-art RL and
planning algorithms motivated by the necessity to exploit
their application to improve offline learning using a single
batch of collected experiences. This is challenging prob-
lem of crucial importance for the development of intelligent
agents. In particular, when the interaction of such agents
with the environment is expensive, risky or unpractical. Our
goal was that of providing to the reader a self-contained
summary of the general ideas that flow behind the main
topic. For simplicity, we focused on MDPs but once the
listed difficulties will be addressed we aim to extend the
discussion to Partially Observable MDPs which are a more
appropriate object to describe the interaction of agents in
partial observable environments. We started with a recap of
MDPs and resolution schemes. Then we presented the sin-
gle batch learning and planning problem. Our main contri-
bution is an outline of model-free and model-based batch
RL algorithms while providing comments on size scalabil-
ity, efficiency and on the usefulness of theoretical bounds. In
particular, we proposed an improvement of the definition of
performance of the value function following a specific pol-
icy that led us to believing that a sub-optimal policy for a re-
ward uncertainty penalized MDP can be better than the opti-
mal one when applied in the true environment. Secondly, we
analyzed the penalization introduced in all sorts of offline-
learning algorithms. We showed that if the coefficients mul-
tiplying the distributional shift estimator are too big then
the theoretical threshold which bounds the performance of
the policy applied in the real world is always respected, and
therefore of little practical utility. We also advised the future
implementation of GANs for a better estimate of distribu-
tional shifts and model errors. Indeed, estimators that opti-
mizes a min-max loss function give hint that this might be a
viable solution.

References

Agarwal, R.; Schuurmans, D.; and Norouzi, M. 2019.
An optimistic perspective on offline reinforcement learning.
arXiv: Learning.

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
gan. ArXiv abs/1701.07875.

Baek, S.; Kwon, H.; Yoder, J.; and Pack, D. 2013. Optimal
path planning of a target-following fixed-wing uav using se-
quential decision processes. 2955-2962.

Data set type | Environment | Batch Mean | Batch Max | SAC BEAR | BRAC-vp | MBPO | MOPO
random halfcheetah -303.2 -0.1 3502.0 | 2885.6 | 3207.3 3533.0 | 3679.8
random hopper 299.26 365.9 347.7 | 289.5 370.5 126.6 412.8
random walker2d 0.9 57.3 192.0 | 307.6 | 23.9 395.9 596.3
medium halfcheetah 3953.0 4410.7 -808.6 | 4508.7 | 5365.3 3230.0 | 4706.9
medium hopper 1021.7 3254.3 5.7 1527.9 | 1030.0 137.8 840.9
medium walker2d 498.4 3752.7 44.2 1526.7 | 3734.3 582.5 645.5
mixed halfcheetah 2300.6 4834.2 -581.3 | 4211.3 | 5413.8 5598.4 | 6418.3
mixed hopper 470.5 1377.9 93.3 802.7 |53 1599.2 | 2988.7
mixed walker2d 358.4 1956.5 87.8 4953 | 445 1021.8 | 1540.7
med-expert halfcheetah 8074.9 12940.2 -55.7 6132.5 | 5342.4 926.6 6913.5
med-expert hopper 1850.5 3760.5 329 109.8 | 5.1 1803.6 | 1663.5
med-expert walker2d 1062.3 5408.6 -5.1 1193.6 | 3058.0 351.7 2527.1

Table 2: Results for D4RL datasets as reported in (Yu et al. 2020). Each number is the average undiscounted return of the policy
at the last iteration of training, averaged over 3 random seeds. Data set types depend on the policy used to collect the batch:
random (random policy), medium (suboptimally trained agent with a Soft Actor-Critic), mixed (adoperate as batch the replay
buffer use to train a Soft-Actor Critic until an envirnomental specific threshold is reached), medium-expert (mix of an optimal
policy and a random or a partially trained one). SAC column stands for a Soft Actor Critic (model-free) agent. BRAC-vp is the
version of BRAC with the value penalty. MBPO is the vanilla model-based algorithm described in (Janner et al. 2019). Check
the reference (Yu et al. 2020) for details about the hyperparameters.

Barth-Maron, G.; Hoffman, M. W.; Budden, D.; Dabney, W.;
Horgan, D.; Dhruva, T.; Muldal, A.; Heess, N. M. O.; and
Lillicrap, T. P. 2018. Distributed distributional deterministic
policy gradients. ArXiv abs/1804.08617.

Chanel, C. P. C.; Roy, R. N.; Dehais, F.; and Drougard, N.
2020. Towards mixed-initiative human-robot interaction:
Assessment of discriminative physiological and behavioral
features for performance prediction. Sensors 20:296.

Chen, J., and Jiang, N. 2019. Information-theoretic con-
siderations in batch reinforcement learning. In Chaudhuri,
K., and Salakhutdinov, R., eds., Proceedings of the 36th In-
ternational Conference on Machine Learning, ICML 2019,
9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, 1042—-1051.
PMLR.

Chua, K.; Calandra, R.; McAllister, R.; and Levine, S. 2018.
Deep reinforcement learning in a handful of trials using
probabilistic dynamics models. ArXiv abs/1805.12114.

Csdji, B. C. 2001. Approximation with artificial neural net-
works.

Deisenroth, M. P., and Rasmussen, C. E. 2011. Pilco: A
model-based and data-efficient approach to policy search. In
In Proceedings of the International Conference on Machine
Learning.

Fu, J.; Kumar, A.; Nachum, O.; Tucker, G.; and Levine, S.
2020. D4rl: Datasets for deep data-driven reinforcement
learning. ArXiv abs/2004.07219.

Fujimoto, S.; Conti, E.; Ghavamzadeh, M.; and Pineau, J.
2019. Benchmarking batch deep reinforcement learning al-
gorithms. ArXiv abs/1910.01708.

Fujimoto, S.; Meger, D.; and Precup, D. 2019. Off-policy
deep reinforcement learning without exploration. volume 97
of Proceedings of Machine Learning Research, 2052-2062.
Long Beach, California, USA: PMLR.

Ghosh, A.; Kulharia, V.; Namboodiri, V. P.; Torr, P. H. S.;
and Dokania, P. K. 2018. Multi-agent diverse generative
adversarial networks. 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition 8513-8521.
Goodfellow, 1. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A. C.; and Bengio,
Y. 2014. Generative adversarial nets. In NIPS.

Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In ICML.
Hafner, D.; Lillicrap, T. P.; Fischer, 1. S.; Villegas, R.; Ha,
D. R,; Lee, H.; and Davidson, J. 2019. Learning latent dy-
namics for planning from pixels. In ICML.

Hafner, D.; Lillicrap, T. P.; Ba, J.; and Norouzi, M. 2020.
Dream to control: Learning behaviors by latent imagination.
ArXiv abs/1912.01603.

Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M. G.; and
Silver, D. 2018. Rainbow: Combining improvements in deep
reinforcement learning. ArXiv abs/1710.02298.

Janner, M.; Fu, J.; Zhang, M.; and Levine, S. 2019. When
to trust your model: Model-based policy optimization. In
NeurlPS.

Jaques, N.; Ghandeharioun, A.; Shen, J. H.; Ferguson, C.;
Lapedriza, A.; Jones, N. J.; Gu, S.; and Picard, R. W. 2019.
Way off-policy batch deep reinforcement learning of im-
plicit human preferences in dialog. ArXiv abs/1907.00456.

Jonsson, A. 2018. Deep reinforcement learning in medicine.
Kidney Diseases 5:1-5.

Kaiser, L.; Babaeizadeh, M.; Milos, P.; Osinski, B.; Camp-
bell, R. H.; Czechowski, K.; Erhan, D.; Finn, C.; Koza-
kowski, P; Levine, S.; Sepassi, R.; Tucker, G.; and
Michalewski, H. 2020. Model-based reinforcement learning
for atari. ArXiv abs/1903.00374.

Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.;
and Aila, T. 2019. Analyzing and improving the image
quality of stylegan. ArXiv abs/1912.04958.

Keller, T., and Eyerich, P. 2012. Prost: Probabilistic plan-
ning based on uct. In McCluskey, L.; Williams, B.; Silva,
J.R.; and Bonet, B., eds., ICAPS. AAAI

Kidambi, R.; Rajeswaran, A.; Netrapalli, P.; and Joachims,
T. 2020. Morel. ArXiv abs/2005.05951.

Kocsis, L., and Szepesvari, C. 2006. Bandit based monte-
carlo planning. volume 2006, 282-293.

Kumar, A.; Fu, J.; Soh, M.; Tucker, G.; and Levine, S. 2019.
Stabilizing off-policy g-learning via bootstrapping error re-
duction. In Advances in Neural Information Processing Sys-
tems 32. Curran Associates, Inc. 11784—11794.

Levine, S.; Kumar, A.; Tucker, G.; and Fu, J. 2020. Offline
reinforcement learning: Tutorial, review, and perspectives on
open problems. ArXiv abs/2005.01643.

Liu, Q.; Li, L.; Tang, Z.; and Zhou, D. 2018. Breaking
the curse of horizon: Infinite-horizon off-policy estimation.
In Bengio, S.; Wallach, H.; Larochelle, H.; Grauman, K.;
Cesa-Bianchi, N.; and Garnett, R., eds., Advances in Neural

Information Processing Systems 31. Curran Associates, Inc.
5356-5366.

Mansley, C.; Weinstein, A.; and Littman, M. 2011. Sample-
based planning for continuous action markov decision pro-
cesses. In Twenty-First International Conference on Auto-
mated Planning and Scheduling.

Mausam, and Kolobov, A. 2012. Planning with Markov
Decision Processes: An Al Perspective.

Mirchevska, B.; Pek, C.; Werling, M.; Althoff, M.; and
Boedecker, J. 2018. High-level decision making for safe
and reasonable autonomous lane changing using reinforce-
ment learning. In 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), 2156-2162.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik,
A.; Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.;
Legg, S.; and Hassabis, D. 2015. Human-level control
through deep reinforcement learning. Nature 518:529-533.
Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap,
T. P; Harley, T.; Silver, D.; and Kavukcuoglu, K. 2016.
Asynchronous methods for deep reinforcement learning. In
ICML.

Munos, R., and Moore, A. 2002. Variable resolution
discretization in optimal control. Machine Learning 49,
Numbers:291-.

Munos, R. 2003. Error bounds for approximate policy iter-
ation. In ICML.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M. I.; and
Moritz, P. 2015. Trust region policy optimization. In ICML.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou,

I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, L.; Lillicrap, T.;

Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529:484-503.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, L.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; Lillicrap, T. P.; Simonyan, K.; and Hassabis, D. 2017.
Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. ArXiv abs/1712.01815.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. [EEE Transactions on Neural Net-
works 16:285-286.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 1999. Policy gradient methods for reinforcement learning
with function approximation. In NIPS.

van Hasselt, H. P.; Hessel, M.; and Aslanides, J. 2019. When
to use parametric models in reinforcement learning? In Ad-
vances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc. 14322-14333.

Watkins, C., and Dayan, P. 1992. Q-learning. Machine
Learning 8:279-292.

Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Mach.
Learn. 8(3-4):229-256.

Wu, Y.; Tucker, G.; and Nachum, O. 2019. Behavior regular-
ized offline reinforcement learning. ArXiv abs/1911.11361.
Yu, T.; Thomas, G.; Yu, L.; Ermon, S.; Zou, J.; Levine, S.;
Finn, C.; and Ma, T. 2020. Mopo: Model-based offline pol-
icy optimization. arXiv preprint arXiv:2005.13239.

Zhang, R.; Dai, B.; Li, L.; and Schuurmans, D. 2020. Gen-
dice: Generalized offline estimation of stationary values. In
International Conference on Learning Representations.

