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ABSTRACT: This article presents a method to find close-to-Pareto-optimal solutions for a multi-objectives round-trip
dial-a-ride problem (DARP) decomposed into two dependent sub-problems. In the studied problem, each user expresses two
requests, a morning request and an evening request, that represent a round-trip itinerary on one day. The two objectives
are the cost and excess ride time minimization. Instead of integrating all the requests into one single DARP, the requests are
split between two smaller DARPs: one for the collection of morning requests and one for the collection of evening requests.
However, the two DARPs cannot be solved independently because they share a constraint: the user maximal daily ride time.
The developed heuristic aims to find a global close to optimal solution within reasonable computation time. The method is
applied on real data from the NOMAd project which aims to improve the transportation of disable children from their home
to medical centers in the city of Lyon.
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1 INTRODUCTION

The non-emergency transportation of patients from their
home to medical facilities is an important part of the
healthcare system. It concerns disabled patients who are
not able to go to medical facilities by themselves or who
are not able to reach a sufficient assistance from a family
member to do so. Many aspects are considered in this
activity. The first aspect is the human aspect. Many of
the patients use this service daily, and the trips can take
more than an hour. Transportation takes a considerable
amount of time in the daily life of the patients. So, it is
important to make it as pleasant as reasonably possible.
Good quality of service should be provided for the well-
being of the patients. The second aspect is financial. In
France, patients transportation cost 3.5 billion euros in
2010 and 5 million of persons were using this service
(Tellez et al. 2020). The transportation cost is charged on
the patients or on the healthcare system. This represents a
considerable amount of money that can be reduced. Other
aspects can be considered : the organisational aspect, the
technical aspect, the environmental aspect, etc. But overall,
the well-being and the financial aspect are the two most
important. This transportation problem can be modelled
as a dial-a-ride problem.

The dial-a-ride problem is itself a variant of the vehicle rout-
ing problem (VRP) which is a NP-hard problem, making
computation time increase exponentially with the instance
size. DARP and its variants have been extensively studied
in the literature with cost reduction as the most studied
objective (Cordeau and Laporte 2007; Gendreau et al. 2008;
Braekers et al. 2016). In medical context, the well-being
of the patients is essential. As a consequence, a second

objective affiliated with this notion is often added. In our
problem, we decided to use the unaccepted excess ride
time as the service quality objective. The excess ride time
corresponds to the ride time minus the minimal ride time.
The unaccepted excess ride time corresponds to the ride
time minus the maximal allowed ride time. All the requests
are known in advance, so the problem is static and deter-
ministic (Ho et al. 2018). Time windows constraints at
pick-up and delivery points have been considered (Psaraftis
1983; Jaw et al. 1986; Toth and Vigo 1997). A fleet size
and mix component has also been considered: the fleet is
constituted of an unlimited number of heterogeneous capac-
itated vehicles (Golden et al. 1984; Ulusoy 1985). Vehicles
are able to go to back to their depot more than once a day,
adding a multi-trip component to the problem (Azi et al.
2007; Macedo et al. 2011; Hernandez et al. 2014). The
multi-trip component has been previously studied in medi-
cal environment (Wong and Bell 2006; Lim et al. 2016) but
no formulation took into account a maximal daily ride time
constraint for the users. In previous studies, requests from a
user were independent as the maximal ride time constraint
were only associated with a single trip. In that case, it is
possible to have an excessively long round-trip duration
for a user despite respecting the individual maximal ride
time constraint. This situation can potentially be avoided
to improve the quality of service.

In this work, we tackle this issue by adding a maximal daily
ride time constraint which binds together a set of requests
made by a user. The term daily ride time refers to the
set of requests and the term ride time refers to a single
request. For each user, setting the maximal daily ride time
to a value smaller than the sum of the maximal ride times
is the key to reduce the inequalities. Each user calls for a
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round-trip, which is a pair of pick-up and delivery needs,
with a maximal daily ride time constraint. Consequently, it
is no more possible to consider the morning request (from
home to the medical facility) and the evening request (from
the medical facility back home) of a user as independent
requests. The goal is to improve the quality of service
and reduce inequities among patients. All those consider-
ations make our problem a fleet size and mix round-trip
dial-a-ride problem with a round-trip constraint. In order
to compute a feasible solution within reasonable compu-
tation time, we decomposed the problem into two smaller
dependent sub-problems with a shared constraint. The
first sub-problem is a DARP on the morning requests, the
second sub-problem is a DARP on the evening requests.
This decomposition has two main advantages. Firstly, the
size of the problem is reduced by twofold. As the problem
is NP-hard, it exponentially reduces the computation time.
Secondly, it is possible to compute the sub-problems in
parallel. Subdividing the problem or using parallel compu-
tation has been done in the past. Decomposing the problem
into independent sub-problems is a common practice in the
school bus routing problem which is a variant of the DARP
(Ellegood et al. 2020). The first sub-problems could be
a scheduling problem or/and an assignment problem and
the last sub-problem is a routing problem. However, the
sub-problems were independent as feasible sub-solutions
were certain to lead to a feasible global solution. In another
hand, cooperative parallel computing on the same problem
(Crainic et al. 1997) has also shown great improvement in
computation time. But again, the parallel computations to-
wards a feasible solution were independent. In our problem,
the sub-problems are dependent. As a consequence, the
global solution made by the combination of the morning
and evening results may not respect the maximal daily
ride time constraint. In that case, we designed a heuristic
that gradually modifies the problem’s data and recomputes
sub-solutions in order to reach a feasible daily solution.
The method used to solve this problem is applied on real
data from the NOMAd project. The NOMAd project aims
to improve the transportation of disabled children from
their home to medical facilities in the metropolis of Lyon.

The remainder of this article is structured as follows: section
2 presents the mathematical model while section 3 describe
the heuristic used to solve the problem. The experiments
are presented in section 4. Finally, the results are given in
section 5.

2 PROBLEM SETTINGS AND MATHEMATICAL
MODEL

2.1 Problem settings

As the problem is split into two sub-DARPs, the following
is the mathematical model of a single sub-DARP.

A sub-DARP is modeled by a graph � = (+, �). The set
+ of nodes contains the set of starting depots $+, the set of
arrival depots $−, the set of pick-up nodes % and the set of

delivery nodes �. Each node 8 ∈ + has a service duration
B8 and a time windows [08 , 18]. The service duration B8 is
equal to 0 for any node in $+ and in $−. The arc between
two nodes 8 and 9 represents the fastest and shortest path
from 8 to 9 . Thus, each arc is associated with a duration
C8 9 and a distance Δ 8 9 . In reality, two nodes may have the
same geographical position (e.g., starting depot and ending
depot)

 is the set of vehicle types. Each vehicle has a starting
depot $+

:
∈ $+, an arrival depot $−

:
∈ $−, a maximal

capacity &: , a fixed cost 5: , a duration cost U: and a
distance cost W: . The maximal shift length of a driver is
): .

' is the set of requests. Each request A ∈ ' has a pick-up
node ?A ∈ %, a delivery node 3A ∈ �, a maximal ride
time )+A , a minimal ride time )−A and a quantity @A of users
to be transported. The minimal and maximal ride time
settings are described in section 4.1. The load variation
at a node is notated as q, having q?A = @?A at a pickup
node and q3A = @3A at a delivery node. At the starting
depot and ending depot, the load variation is equal to 0
(q$+

:
= q$−

:
= 0) and there is no user inside a vehicle.

This notation allows to translate the load variation from a
request to a node.

� is the set of daily requests. Each daily request 3 ∈ �
is composed of the morning A< ∈ ' and evening request
A4 ∈ ' made by a user: 3< = A<, 34 = A4. A daily request
has a maximal daily ride time )+

3
and a minimal daily ride

time )−
3
. The minimal daily ride time is the sum of the

morning and evening minimal ride time ()−
3
= )−

3<
+ )−

34
).

The maximal daily ride time setting is described in section
4.1.

2.2 Mathematical formulation

Variables

• G:
8, 9
: is a binary variable which is equal to 1 if vehicle

k uses arc (i,j) and 0 otherwise, : ∈  , (8, 9) ∈ �

• F:
8
: is a continuous variable representing the arrival

time of vehicle k at node i, : ∈  , 8 ∈ +

• ;:
8
: is an integer variable representing the number of

users in vehicle k after visiting node i, : ∈  , 8 ∈ +

• FFA : is a continuous variable representing the excess
ride time of the request r, A ∈ '



MOSIM’20 - 12 au 14 novembre 2020 - Agadir - Maroc

Objectives

• The cost of a solution represents its transportation cost
which the sum of all the fixed cost, the duration cost
and the distance cost.

min�>BC = min
∑
:∈ 

5 :
∑
8∈%

G:
>+
:
8
+

+
∑
:∈ 

U: (F:>−
:
− F:

>+
:

)

+
∑
:∈ 

∑
(8, 9) ∈�

W:Δ 8 9G
:
8 9

(1)

• The excess ride time of a solution is the sum of the
excess ride times of the users.

min �G24BB'834)8<4 = min
∑
A ∈'

FFA (2)

Constraints

The big-M values are defined in section 4.1.1.

• One and only one vehicle ensures pick-up and delivery
for a request.

∑
(?A , 9) ∈�

G:?A 9 −
∑

( 9 ,3A ) ∈�
G:93A = 0,

∀A ∈ ',∀: ∈  (3)

∑
:∈ 

∑
( 9 ,%A ) ∈�

G:9 ?A = 1, ∀A ∈ ' (4)

• A vehicle leaves and returns to its depot no more than
once. ∑

8∈+
G:
>:+ 8
≤ 1, ∀: ∈  (5)

∑
8∈+

G:
8>:−
≤ 1, ∀: ∈  (6)

• No vehicle enters its starting depot or leaves its ending
depot. ∑

8∈+
G:
8>:+
≤ 0, ∀: ∈  (7)

∑
8∈+

G:
>:− 8
≤ 0, ∀: ∈  (8)

• The flow is conserved.∑
( 9 ,8) ∈�

G:98 −
∑
(8, 9) ∈�

G:8 9 = 0,

∀8 ∈ % ∪ �,∀: ∈  (9)

• Any vehicle which leaves its depot arrives at its arrival
depot. ∑

8∈%
G:>:+ 8

−
∑
8∈%

G:8>−
:
= 0, ∀: ∈  (10)

• The arrival time at each node is greater than the time at
the previous node plus the service time at the previous
node and the transportation time between the two
nodes.

F:9 ≥ F:8 + C8 9 + B8 − "11 (1 − G:8 9 ),

∀(8, 9) ∈ �,∀: ∈  (11)

• The arrival time at any node is within its time window.

08 − "12 (1 −
∑
9∈+

G:8 9 ) ≤ F:8 ≤ 18 ,

∀8 ∈ +,∀: ∈  (12)

• For any request, pick-up happens before delivery.

F:?A + B?A + C?A3A − "13 (1 −
∑
9∈+

G:8 9 ) ≤ F:3A ,

∀(8, 9) ∈ �,∀A ∈ ',∀: ∈  (13)

• A vehicle leaves from its starting depot.

F:
>+
:

+ B>+
:
+ C>+

:
>−
:
− "14 (1 −

∑
9∈+

G:
>+
:
9
) ≤ F:>−

:
,

∀: ∈  (14)

• The load when leaving a node is equal to the previous
load plus the load variation.

;:9 ≥ ;:8 + q 9 − "15 (1 − G:8 9 ),

∀(8, 9) ∈ �,∀: ∈  (15)

• The load cannot exceed the vehicle capacity.

;:8 ≤
∑
9∈+

&:G:8 9 , ∀8 ∈ +,∀: ∈ : (16)
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• The transportation time of a user cannot exceed his/her
maximal ride time.

F:3A − F
:
?A
− B?A ≤ )+A , ∀A ∈ ',∀: ∈  (17)

• The shift length of a driver cannot exceed its maximal
shift length.

F:>−
:
− F:

>+
:

≤ ): , ∀: ∈  (18)

• The excess ride time is the duration difference between
solution path and the shortest path. This definition is
used to clarify the second objective notation.

FFA =
∑
:∈ 
(F:3A − F

:
?A
) − )−A , ∀A ∈ ' (19)

• G:
8, 9

is a binary variable, F:
8
is a continuous variable,

;:
8
is an integer variable, FFA is a continuous variable,

G:8, 9 ∈ {0, 1} F:8 ∈ R+

;:8 ∈ Z+ FFA ∈ R+ (20)

3 SOLUTION METHOD

3.1 Sub-DARP Pareto computation

A sub-DARP is solved as a mono-objective problem. For
one sub-solution computation, only the cost or the unac-
cepted excess ride time objective is considered.

A large neighborhood search algorithm (LNS) from the
previous work on the NOMAd project has been used to
find sub-solutions (Tellez et al. 2018). As our problem is
multi-objective, we needed an approach to consider the
two objectives. It exists three main approaches: weighted
objectives, lexicographic optimization and Pareto frontier
optimization (Ho et al. 2018). The weighted approach is
the simplest to implement. However, it requires to know
beforehand the trade-offs between the different objectives
in order to implement proper weights. The lexicographic
approach is appropriate when one objective is by far more
important than the second. The Pareto frontier is the correct
approach when a global picture of the trade-off between
the objectives is needed. However, the computational
time is the longest because of a larger number of solution
computations. In our case, we used the Pareto frontier
optimization because the trade-offs between the cost and
the unaccepted excess ride time are unknown.

To find the extreme points of the Pareto front, we used a
lexicographic approach. For the first extreme point, cost is
minimized then its value becomes the upper boundary for
minimizing the unaccepted excess ride time. The objective
®6 used to find this extreme point is defined in equation (21).

;4G <8= ®6 = (�>BC,*=0224?C43�G24BB'834)8<4) .
(21)

The objective minimization order is swapped for the second
extreme point.

The lexicographicmethod requires to add two boundary con-
straints for the maximal cost value and for the unaccepted
excess ride time value, respectively�<0G(22), �<0G (23).

• The cost is smaller than �<0G and the unaccepted
excess ride time is smaller than �<0G∑

:∈ 
5 :

∑
8∈%

G:
>+
:
8
+
∑
:∈ 

U: (F:>−
:
− F:

>+
:

)

+
∑
:∈ 

∑
(8, 9) ∈�

W:Δ 8 9G
:
8 9 ≤ �<0G

(22)

∑
A ∈'

FFA ≤ �<0G (23)

The other points of the Pareto front are found by relaxing
the constraint related to the first objective. We used the
augmented-epsilon constraint method (Mavrotas 2009).

3.2 Heuristic

The computation of a solution is done in a four steps
loop: separate computation, combination, verification and
modification. This loop is illustrated in the figure 1.

Compute 
morning Pareto

Compute 
evening Pareto

Combine morning and
evening solutions

Separate feasible and 
unfeasible solutions

Modify 
initial data

End 
computation

Se
pa

ra
te
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m
pu

ta
ti

on
C
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bi

na
ti

on
Ve

ri
fi

ca
ti

on
M
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n No satisfactory

results
Satisfactory

results

Figure 1 – Heuristic for daily solution

During the separate computation phase, the morning and
evening Pareto fronts are computed using the LNS heuristic.
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Then during the combination phase, all the combinations
of the morning and evening sub-solutions are computed. �
is the set of the solutions 2 from the combination of the
sub-solutions. The daily cost of the solution is the sum
of the costs of the morning sub-solution and the evening
sub-solution. The same calculation is done for the daily
unaccepted excess ride time. It is equal to the sum of
the morning unaccepted excess ride time and the evening
unaccepted excess ride time.

During the verification phase, the respect of the maximal
daily ride time constraint is checked for every user in
every solution. The maximal daily ride time constraint
is formulated as in the formula (24). Every solution that
does not respect this constraint is rejected. Within the
set of feasible solutions, the dominated solutions are also
ignored. The final set of solutions constitutes the Pareto
front of the global daily feasible solution. However, it
is possible that no combination constitutes a satisfactory
solution (e.g., high daily cost). In that case, we proceed to
the modification phase.

• Maximal daily ride time constraint

F
:<
3A<
− F:<?A< − B?A< + F

:4
3A4
− F:4?A4 − B?A4 ≤ )

+
3

∀3 ∈ �,∀:<, :4 ∈  (24)

In essence, the modification phase aims to modify the
initial data to find new solutions. In the process, one or
some of the maximal ride time constraints are decreased.
Different strategies have been tested is order to reach a
global satisfactory Pareto. Those modification strategies
are described in section 4.1.5 .

4 EXPERIMENTS

4.1 Data pre-processing

4.1.1 Setting the big-M

Several big-M are used in the model. In order to restrict
the research space, they are set to a minimal value. When
indexes are used, their values and domain of definition are
set by the corresponding constraints.

"11 = "8 9 = 18 + C8 9 + B8
"12 = "8 = 08

"13 = "A = B?A + C?A3A
"14 = ">+

:
>−
:

= B>+
:
+ C>+

:
>−
:

"15 = max
>∈%

q>

4.1.2 Setting the minimal ride time

The minimal ride time for a user is set by the formula
(25). It corresponds to the greatest value between the

shortest path and the time window opening duration minus
the service time at the pick-up node. The figures 2 and 3
illustrates this concept. The time window opening duration
is the difference between the upper bound of the pick-up
node time window and the lower bound of the delivery node
time window. Indeed, if the time window opening duration
is greater than the shortest path, taking the shortest path
does not respect the time window constraints (12).

)−A = min[C?A3A ; 03A − 1?A − B?A ] (25)

PTW DTW

direct          
ride time

min       
ride time

service 
time

service 
time

Figure 2 – Long min ride time setting

PTW DTW

direct 
ride time

min 
ride time

service 
time

service 
time

Figure 3 – Short min ride time setting

4.1.3 Setting the maximal ride time

The maximal ride time duration can be modified before
the solution computation to avoid some of the feasible
sub-solutions that lead to infeasible global solution. The
maximal ride time is set by the formula (26). Initially, the
maximal ride time is set to 150% of the minimal ride time
value. If the initial maximal ride time is greater than the
minimal ride time plus the maximal daily excess ride time,
it can be reduced. Indeed, any ride time greater than this
value in a sub-problem will not be a feasible solution for
the global problem. This concept is illustrated by the figure
4.

)+A = min[1.5 ∗ )−A ;)−A + )+3 − )
−
3 ] (26)
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Figure 4 – Maximal ride time setting

4.1.4 Setting the maximal daily ride time (applied to
NOMAd)

In the NOMAd project, the maximal daily ride time has
been set to 150% of the daily minimal ride time. For
example, a user shortest round-trip itinerary takes 2 hours,
so his/her maximal daily ride time is equal to 3 hours.

But for users that are really close to their destination, this
setting is not realistic and put too much constraint. Thus,
a different setting is done for any user who resides less
than 15 minutes away from his/her arrival. The maximal
ride time value is changed to the minimal ride time plus
15 minutes. Thus, the maximal daily ride time value is
equal to the minimal daily ride time value plus 30 minutes.
For example, a user shortest itinerary takes 2 minutes, so
his/her maximal ride time is set to 17 minutes (instead of 3
minutes) and his/her maximal daily ride time is set to 34
minutes.

Consequently, the maximal daily ride time is set by the
following formula:

)+3 = <0G [)
−
3 + 30; 1.5 ∗ )−3 ] (27)

This method to set the maximal daily ride time is specific
to the NOMAd project.

4.1.5 Description of modification strategies

The modification of the initial data has three components:
data processing, selection and new maximal ride time
setting.

Strategy
1 2 3 4 5 6 7 8

Data proc. avg value x x x x
worst value x x x x

Selection worst user x x x x
bad users x x x x

Decrease fixed x x x x
variable x x x x

Tableau 1 – Strategies for modifying the problem’s data

Data processing aims to extract new information from the
results. It can be applied or not depending on the chosen
strategy. Further process is then based on the raw data
or the processed data. When data processing is applied,
the difference between the maximal daily ride time minus
the mean of the daily ride times from all the solutions for
each user is calculated ()+A −

∑
2∈�

308;H'834) 8<42
|2 | ). The

value obtained represents for each user his/her average daily
ride time deviation from his/her maximal allowed daily
ride time. A positive value indicates that in average, a
user spends too much time in transports. A negative value
indicates that in average, a user spend less than his/her
maximal allowed ride time in transports. If the results are
not processed, then the worst value from all the solution is
considered for each user.

Selection is setting the scope of the initial data which is
going to be modified. Two scopes have been explored:
worst user and bad users. The worst user selection implies
only selecting the user with the maximal deviation. The bad
users selection implies selecting all the users that exceed
their maximal daily ride time.

When the selection of users is complete, their maximal ride
time value is decreased. This reduction happens only on
a sub-request (morning or evening) depending on which
sub-problem contributes the most to the maximal daily
ride time constraint violation. For example, a user has a
morning itinerary with small unaccepted excess ride time
and an evening itinerary with huge unaccepted excess ride
time, thus only the evening maximal ride time of this user
is going to be decreased. The amount of the decrease can
either be a fixed value n , or a variable value n3 . The variable
value depends on the amount of constraint violation of the
selected user. The bigger the constraint violation, the
greater the reduction.

The table 1 describes the 8 strategies that have been tested.
Strategy 0 designates a simple morning and evening sub-
solutions combination without processing any further opti-
mization.

5 RESULTS

The results are demonstrated using one example but other
instances of the problem show similar outcomes. The
example has 67 users and 134 requests. The experiments
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were run on a laptop computer with an Intel(R) Core(TM)
i5-4310U CPU@ 2.00 GHz processor and 7.90Go of RAM.
The heuristic was coded in Python and the LNS was coded
in C++.

5.1 Pareto fronts comparison

In a set of Pareto fronts, a Pareto is better than another
Pareto if it has more non-dominated points on the lower
daily cost interval. As we are not interested in high daily
cost solutions, the higher daily cost interval is ignored by
this method. The lower daily cost interval is the interval
between the minimal daily cost in the set of Pareto fronts
and the intermediate daily cost. The intermediate daily
cost is the mean between the minimal and maximal daily
costs in the set of Pareto fronts ((2>BC<0G + 2>BC<8=)/2).
This concept is illustrated by a simple example in the figure
5. In the example, the blue Pareto has two non-dominated
points in the lower daily cost interval and the red Pareto
has one non-dominated points. This metric was used to
compare the results.

Cos
t m

in

Excess ride time

Cost

Cos
t m

ax

Cos
t i

nte
r

Excess ride 
time max

Excess ride 
time min

Figure 5 – Pareto fronts comparison using the intermediate
daily cost

5.2 Heuristic performance and strategies comparison

First of all, whatever the strategy employed, the heuristic
allow to find better solutions than a simple combination of
morning and evening Pareto fronts (strategy 0). Obtained
results have a wider range of non-dominated points and are
more exhaustive. The figure 6 shows the obtained results
for the previously cited example.

We discovered that some strategies lead in average to
better solutions. Indeed, for the same parameters, some
strategies give in average more non-dominated points. By
running the set of experiments we had, we obtained the
results presented in the table 2. The strategy 0 designate
the simple combination of sub-solution without further
optimization. The strategy that shows the best results is
the strategy 1 in which the worst user is selected based on
raw data and the amount of reduction is a fixed value. In
average, this strategy allows to find 14.8 non-dominated
points in the lower daily cost interval. It is five points more
than the second best strategy.

Strategy average number of non-dominated points
0 1.9
1 14.8
2 8.3
3 8.6
4 6.5
5 9.1
6 5.2
7 6.6
8 6.2

Tableau 2 – Average number of non-dominated points
comparison

6 CONCLUSION

In this paper, we presented a new approach for solving a
multi-trip dial-a-ride problem with dependent requests. We
showed that the maximal daily ride time constraint greatly
increases the complexity of the problem as it creates de-
pendencies between the requests. The heuristic developed
to solve this problem generates a set of non-dominated
feasible global solution. Applied to real cases, the person
in charge to organize the routes can select the best solution
based on the heuristic results and his/her practical experi-
ence. Every strategy showed an improvement in the global
solution. However, we discovered that the parameters of
the heuristic (LNS runtime, number of computed points in
a sub-Pareto, decrease value, ...) has a great influence on
the final results. Further research can address this issue by
finding the relationship between the parameters, the studied
instance and the results. This would allow finer tuning of
the parameters for each problem.
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