
HAL Id: hal-03124941
https://hal.science/hal-03124941

Submitted on 29 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HYBRIDIZING FAUST AND SOUL
Stéphane Letz, Yann Orlarey, Romain Michon, Dominique Fober

To cite this version:
Stéphane Letz, Yann Orlarey, Romain Michon, Dominique Fober. HYBRIDIZING FAUST AND
SOUL. International Faust Conference, Dec 2020, Paris, France. �hal-03124941�

https://hal.science/hal-03124941
https://hal.archives-ouvertes.fr

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

HYBRIDIZING FAUST AND SOUL

Stéphane Letz,a, Yann Orlarey,a, Romain Michon,a,b and Dominique Fobera

aGRAME – Centre National de Création Musicale, Lyon, France
bCenter for Computer Research in Music and Acoustics, Stanford University, USA

{letz,orlarey,michon,fober}@grame.fr

ABSTRACT
SOUL is a new audio Domain Specific Language and a run-

time platform developed by ROLI, which aims at modernizing
and optimizing the way high-performance and low-latency au-
dio code is written and executed. FAUST is a functional Domain
Specific Language specifically designed for real-time audio signal
processing. Both approaches share common ideas: sample-level
DSP computation, fixed memory and CPU footprints, dynamic JIT
compilation, CPU efficiency, multi-targets deployment (native and
embedded platforms, up to the Web). This paper presents a work in
progress done around the idea of hybridizing FAUST with SOUL.

1. INTRODUCTION

There is now a long history of using FAUST [1] inside existing
audio languages or environments. The FAUST compiler typically
generates DSP objects as a C++ class to be wrapped by so-called
“architecture files” and connected to the external world [2]. The
first versions were developed to generate static executables, to be
used as standalone applications or loaded as plugins in existing
audio environments. This has been done with (to name a few):

• for Max/MSP with faust2max6, 1

• for SuperCollider with faust2supercollider
• for Csound with faust2csound

The compiled DSP code then appears as an audio node pro-
cessing audio streams, inserted in the host application audio
pipeline, and must be controlled with a graphical user interface,
MIDI, OSC, or any kind of control interface.

A second category of integrations appeared with the develop-
ment of libfaust, the library version of the FAUST compiler,
embedding its LLVM backend and able to dynamically compile
and execute programs [3]. The technology has been used in sev-
eral environments (non-exhaustive list):

• in faustgen, an external for the Max/MSP and PureData
environments

• in faustlive, a standalone QT application [4]
• in pure-faust allowing us to run Faust-generated signal

processing modules in Pure2

• in Antescofo, a language developed at IRCAM whose main
goal is to synchronize electronic systems and musicians in
the context of interactive music composition [5]

• in Chuck with the FAUCK project [6] which combines the
FAUST and Chuck languages

1https://github.com/grame-cncm/faust/tree/
master-dev/architecture/max-msp

2https://github.com/agraef/pure-lang/wiki/Faust

Depending on the context, the FAUST code can be directly
edited in the host environment using an integrated editor, or al-
ternatively with an external editor. Having the FAUST compiler
directly integrated in the host environment means that all the li-
braries [7, 8] and examples can be directly used, and very efficient
code compiled for the native CPU 3 can be generated on-the-fly.
Ubiquitous music ecosystems can then be considered and devel-
oped using this approach.

This paper presents a work in progress carried out around the
idea of hybridizing FAUST and SOUL. Several tools recently de-
veloped will be demonstrated to compile FAUST DSP programs to
SOUL (using the new SOUL backend added in FAUST compiler)
and to combine code produced by both languages. A proposal for
hybridization at source code level will be exposed.

2. THE SOUL LANGUAGE

SOUL is an audio Domain Specific Language and a runtime plat-
form first announced at the Audio Developer Conference 2018 by
ROLI. 4 It aims to provide developers a secure by design language
to be safely executed on Domain Specific Architectures (DSAs)
like remote devices, drivers, bare-metal or realtime kernels. 5 It
follows a processors and graph model where stream processing is
described in processors connected in larger graphs.

As a language, it follows a classical procedural imperative
language with various types, data, and control structures. Some
syntactical choices simplify writing common stream access oper-
ations and processor connections. It is also a dynamic JIT com-
piled language (using LLVM), producing memory bounded and
hard real-time-ready programs. Since the language is compiled,
various compile-time optimizations can be achieved, such as pro-
ducing code for a fixed sample rate or fixed parameters for filters,
etc. As a platform, it aims at becoming a runtime distributed with
specialized hardware, and possibly become a standard.

2.1. Processor and Graph

Processors are the basic blocks of DSP processing. They declare a
set of audio and control input/output streams and implement pro-
cessing in a mandatory special run() function, usually contain-
ing an infinite loop, inside which inputs are read and outputs are
written, doing whatever operations are needed on the processed
samples.

A special advance() method has to be called to move all
the streams forward by a fixed time interval, depending of the pro-

3On modern SIMD supporting CPUs, compiling for the machine “na-
tive” CPU instead of a “generic” one, can give a significant speedup.

4https://www.youtube.com/watch?v=-GhleKNaPdk
5https://github.com/soul-lang/SOUL/blob/master/

docs/SOUL_Overview.md

IFC-1

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

cessor rate. This coroutine model allows to return control to the
graph computation, in order to process the other processors in the
graph topology.

Control streams can be synchronous, with values possibly re-
ceived at each time-stamp, asynchronous, with values received at
any time, or event-based with an associated sample-accurate call-
back.

Processors are then connected together to form graphs of ar-
bitrary size. Graphs will themselves declare input/output control
and audio streams. Processors or graphs within a graph can run at a
faster or slower rate than the graph containing them. The oversam-
pling factor is specified as a compile-time integer constant with
different interpolation and filtering strategies.

2.2. Polyphony Support

Compared to FAUST, since it is a more generic programming lan-
guage, SOUL allows the description of DSP algorithms, as well
as the mechanisms to use them in larger programs. Polyphonic
instruments can be directly coded in the language as arrays of
DSP voices, allocated with a voice allocator triggered by incoming
MIDI events.

2.3. Running and Embedding SOUL Code

SOUL programs are described in a high-level audio-plugin-like
format as SOUL patches, appropriate for enabling SOUL support
in DAWs and other plugin. At the time of writing, the SOUL
compiler can be accessed and tested with:

• The soul command, which contains both the compiler and
the JIT chain embedded in a simple MIDI, audio, and GUI
runtime built using the JUCE framework. The command
can also generate the heart Internal Representation (IR)
format or C++ code. 6

• A loadable library named SOUL_PatchLoader usable
with a C++ API to dynamically compile and run SOUL
patches to be rendered by an additional audio, MIDI, and
control runtime.

• The SOUL Playground, 7 a Web platform compiling
SOUL code to WebAssembly, and where code and exam-
ples can be tested with MIDI and audio samples support.

For developers, a preliminary SDK with a set of C++ API
header and helper files can be used to access the compiler as a
library. SOUL patches can be loaded and compiled.

A PlayerInstance object is then created and has to be fed
with audio buffers and MIDI events. External resources like audio
samples can be declared in the source code with a special syntax,
and will be automatically loaded by the library.

3. HYBRIDIZING FAUST AND SOUL

Several tools have been developed to experiment hybridizing the
two languages. The initial idea was to act at the level of the source
code, and see how the FAUST compilation chain could be adapted
to generate SOUL code.

6At the time of writing, the exact API exposed by the C++ code is still
not stable.

7https://soul.dev/playground/

3.1. The SOUL Backend

A SOUL backend has been added to the FAUST compiler. It trans-
lates the intermediate Faust Imperative Representation (FIR) into
SOUL source code. The equivalent of the C++ dsp class standard
API (with a set of access and initialisation methods) is generated
as a SOUL processor. The sample computation code in emit-
ted in the special mandatory run() function, in an endless loop,
which calls the special advance() function at its end to give
control back to the DSP graph computation.

Controllers are translated in the SOUL concept of input event
streams, where all received values trigger sample-accurate call-
backs. The actual controller values are declared as fields in the
SOUL processor, to be written by the event callback with the
received values. When external events are received, a global
fUpdated flag is set to true (in each callback) to indicate that
the control state has to be recomputed at the next audio cycle. A
control() function, called at the beginning of the run() func-
tion will check this flag and do the computation if needed.

Sub-classes (typically needed when tables are used) are com-
piled as SOUL struct definitions with a set of associated func-
tions (initialisation, filling the structure, etc). Waveform primitives
are compiled as static arrays. FAUST code can be generated in
float or doublemode, which naturally translates to the SOUL
float32 and float64 types. Here is an example of FAUST
source code:

random = +(12345)~*(1103515245);
noise = random/2147483647.0;

vol1 = hslider("vol1", 0.5, 0, 1, 0.01);
vol2 = hslider("vol2", 0.5, 0, 1, 0.01);

process = noise * vol1, noise * vol2;

and (part of) its translation in SOUL:

processor noise {
input event float32 eventfHslider0
[[name: "vol1",
group: "/v:Noise/vol1",
min: 0.0f,
max: 1.0f,

init: 0.5f,
step: 0.00999999978f]];

input event float32 eventfHslider1
[[name: "vol2",
group: "/v:Noise/vol2",
min: 0.0f,
max: 1.0f,

init: 0.5f,
step: 0.00999999978f]];

output stream float32 output0;
output stream float32 output1;

float32 fHslider0;
int32[2] iRec0;
float32 fHslider1;
int32 fSampleRate;
bool fUpdated;
float32[2] fControl;

IFC-2

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

event eventfHslider0 (float32 val) {
fHslider0 = val; fUpdated = true;

}

event eventfHslider1 (float32 val) {
fHslider1 = val; fUpdated = true;

}

void control() {
fControl[0] = (4.65661287e-10f *

float32 (fHslider0));
fControl[1] = (4.65661287e-10f *

float32 (fHslider1));
}

void run() {
// DSP loop running forever...
loop {

// Updates control only if
needed

if (fUpdated) {
fUpdated = false;
control();

}
// Computes one sample
iRec0[0] = ((1103515245 * iRec0

[1]) + 12345);
float32 fTemp0 = float32 (iRec0

[0]);
output0 << float32 ((fControl

[0]*fTemp0));
output1 << float32 ((fControl

[1]*fTemp0));
iRec0[1] = iRec0[0];

// Moves all streams forward
// by one ’tick’
advance();

}
}

}

Here, two controllers are declared as eventfHslider0 and
eventfHslider1, and are modified in the associated callbacks.
Two audio output streams output0 and output1 are declared.
The control() function is called in run() if necessary (when
fUpdated is true). Finally run() computes the output samples
and calls advance() when finished.

3.2. Architectures

Using the SOUL_PatchLoader library, a PlayerInstance
object can be created from a SOUL patch. A soulpatch-dsp
adapter class, subclass of the dsp base class, has been written to
use any SOUL patch with the existing FAUST architecture files.
Several tools have also been developed to ease the interaction be-
tween FAUST and SOUL programs.

3.3. The faust2soul Tool

The faust2soul tool compiles a FAUST DSP program
in a folder containing the generated SOUL source code
and SOUL patch. With the adapted wrapper architec-
ture file (minimal.soul for the monophonic case and
poly-dsp.soul for the polyphonic one, containing some
generically written SOUL polyphonic handling code), the result
can be a monophonic DSP, or a MIDI controllable polyphonic
one (when the DSP describes an instrument, following the freq,
gain, gate parameter naming convention). The resulting SOUL
patch can be played using the soul runtime, by using the code as
a sub part of a more complex program, or by compiling it in the
SOUL playground.

3.4. The soul-faust-player Tool

Since signal processors designed in the SOUL language are sim-
ilar to the notion of DSP produced by the FAUST compiler, it is
quite natural to consider the possible hybridization between the
two languages, by having them cohabit in the same program. The
two compilation chains then have to be used together to produce a
single resulting executable program.

The idea has been tested by extending the SOUL language
syntax, with blocks named faust {....} containing arbitrary
FAUST programs. Those blocks are then extracted from the orig-
inal file, compiled into SOUL processor blocks using the SOUL
backend, and the resulting SOUL code is then inserted back into
the original file, then compiled by the SOUL compilation chain.
This feature can be tested in a tool name soul-faust-player.

An example of hybrid file is shown below: an addSynth syn-
thesizer is defined first, then a SOUL block, then a second FAUST
effect stereoEcho. The sequence SOUL graph does the ac-
tual connections between the three processors.

Since there is currently no way to ask processors and graphs
about their audio and control inputs/outputs in a generic way, the
names of the controller and audio inputs/outputs of the FAUST gen-
erated blocks have to be known in advance to write the connection
block code in the graph sequence section. This is obviously
a rather serious limitation that makes the whole approach a bit ex-
perimental for now.

faust addSynth {
import("stdfaust.lib");
vol = hslider("volume

[unit:dB]",-20,-96,0,0.1) :
ba.db2linear : si.smoo;

freq = hslider("freq
[unit:Hz]",500,100,2000,1);

process = vgroup("addSynth",(
os.osc(freq) +
0.5*os.osc(2.*freq) +
0.25*os.osc(3.*freq))*vol);

}

processor ClassicRingtone {
output stream float out;
void run() {

int[] pitch =
(76,74,66 68,73,71,62,64);

int[] durations =
(1,1,2,2,1,1,2,2);

IFC-3

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

let spQuarterNote =
int(processor.frequency/7);

float swPhase;

loop {
for (int note = 0; note < pitch

.size; ++note) {
let nF = soul::

noteNumberToFrequency(
pitch.at(noteIndex));

let noteLength =
spQuarterNote*durations.
at(noteIndex);

let phaseInc = float(nF*
twoPi*processor.period);

loop(noteLength) {
out << 0.9f * sin(

swPhase);
swPhase = addModulo2Pi(

swPhase, phaseInc);
advance();

}
}

}
}

}

faust stereoEcho {
import("stdfaust.lib");
gain = hslider("gain",0.5,0,1,0.01);
feedback =

hslider("feedback",0.8,0,1,0.01);
echo(del_sec, fb, g) = +~de.delay

(50000,del_samples)*fb*g
with {

del_samples = del_sec*ma.SR;
};
process =

echo(1.6,0.6,0.7),
echo(0.7,feedback,gain);

}

graph sequence [[main]] {
// Events to control Faust Synth
input event float32 eventfHslider1
[[name: "freq",
path: "/addSynth/freq",
min: 100.0f,
max: 2000.0f,
init: 500.0f,
step: 0.01f,
unit: "Hz"]];

input event float32 eventfHslider0
[[name: "volume",
path: "/addSynth/volume",
min: -96.0f,
max: 0.0f,
init: -20.0f,
step: 0.100000001f,

unit: "dB"]];

// Events to control Faust Echo
input event float32 eventfHslider2
[[name: "gain",
path: "/stereoEcho/gain",
min: 0.0f,
max: 1.0f,
init: 0.5,
step: 0.01f]];

input event float32 eventfHslider3
[[name: "feedback",
path: "/stereoEcho/feedback",
min: 0.0f,
max: 1.0f,
init: 0.8,
step: 0.01f]];

output stream float audioOut0;
output stream float audioOut1;

connection {
// Connect to Faust addSynth
eventfHslider0 -> addSynth.

eventfHslider0;
eventfHslider1 -> addSynth.

eventfHslider1;

// Connect to Faust stereoEcho
eventfHslider3 -> stereoEcho.

eventfHslider0;
eventfHslider2 -> stereoEcho.

eventfHslider1;

addSynth.output0 -> stereoEcho.
input0;

ClassicRingtone.out -> stereoEcho.
input1;

stereoEcho.output0 -> audioOut0;
stereoEcho.output1 -> audioOut1;

}
}

3.5. The soul-faust-tester Tool

The soul-faust-tester tool allows for the testing of DSP
CPU usage of FAUST and SOUL programs, dynamically com-
piling and running them, using the soulpatch-dsp adapter
class in the case of SOUL. It measures the DSP CPU usage as
MBytes/sec and as a percentage of the audio bandwidth at 44.1
kHz.

4. DISCUSSION

4.1. SOUL As a Language

Giving the programmer the ability to embed piece of FAUST code
directly in a SOUL program is quite natural since each FAUST
program finally appears as a processor {...} block in the
generated code, that can be used like a native SOUL processor

IFC-4

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

block. Each language has advantages and drawbacks. Depending
on the needs, some programmers will prefer the imperative SOUL
approach, others prefer the more declarative FAUST mathematical
specification. Moreover, with the presented tools, SOUL develop-
ers can immediately take profit of all libraries and examples of the
FAUST ecosystem.

The SOUL language and platform is still at its early stages.
Since SOUL is developed and promoted by a commercial com-
pany, the future status of the project is still not clear. Only part
of the source code is currently available as open-source, basically
everything from the frontend up to the generation of the heart IR
format.8 It has yet to be seen if the complete compilation chain will
be fully opened, possibly allowing deeper integration with external
tools or languages as demonstrated with the hybrid FAUST/SOUL
prototype.

4.2. SOUL As a Platform

The promise of the SOUL platform is to bring a runtime that can
be deployed on a whole set of architectures, from a classical com-
puter to embedded architectures, up to the Web. 9 The designers of
SOUL hope for instance to convince Apple to allow the deploy-
ment of the SOUL JIT compiler on the iOS platform. This would
allow any audio language generating SOUL code to access this
platform. A similar idea could be considered in the Web browser
domain. If successful, this approach will allow Faust DSP code to
be easily deployed on new platforms.

5. BENCHMARK

Since FAUST and SOUL both generate sample-level DSP code, we
can compare FAUST code generated using the LLVM backend and
JIT compiled to native, versus FAUST code generated to SOUL
and executed using the SOUL_PatchLoader library. Here is
the result for a set of DSPs, with an additional C++ version (where
the code has been compiled for a generic CPU), the LLVM ver-
sion for the native CPU, and the same for SOUL, since by default
SOUL always generates code for the native CPU (see Figure 1).
As expected, CPU native compiled code usually runs faster than
the generic one, and we can see that some optimisations are prob-
ably still lacking in the SOUL LLVM IR generated code.

6. CONCLUSION

The presented work shows how the purely functional FAUST lan-
guage can be hybridized with the new imperative SOUL language.
Several tools have been developed to ease interactions between the
two languages.

It turns out that the current limitations of SOUL regarding
generic access to processor and graphs internal characteristics lim-
its what can be currently done at the source code level.

One other possibility would be to access the SOUL compi-
lation chain at a more internal level (like directly generating the
SOUL heart IR format for instance) so that to better mix the
two languages. Since the SOUL implementation is not fully open-
source, we cannot evaluate if this kind of smoother integration is
technically possible yet.

8https://github.com/soul-lang/SOUL
9https://github.com/soul-lang/SOUL/blob/master/

docs/SOUL_Overview.md

Figure 1: Faust DSPs compiled for C++, LLVM and SOUL, all us-
ing LLVM 8.0 version. Values of 1 are given by the C++ reference
for each test, other values are relative to this reference.

7. ACKNOWLEDGMENTS

We want to thank SOUL designers and developers Cesare Ferrari
and Julian Storer for fruitful discussions on the SOUL language
and platform.

8. REFERENCES

[1] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour, Paris, France, 2009.

[2] Stéphane Letz, Yann Orlarey, Dominique Fober, and Romain
Michon, “Polyphony, sample-accurate control and MIDI sup-
port for FAUST DSP using combinable architecture files,” in
Proceedings of the Linux Audio Conference (LAC-17), Saint-
Étienne, France, 2017.

[3] Stéphane Letz, Dominique Fober, and Yann Orlarey, “Com-
ment Embarquer Le Compilateur Faust Dans Vos Applications
?,” in Proceedings of the Journées d’Informatique Musicale,
Paris, France, 2013.

[4] Sarah Denoux, Stéphane Letz, Yann Orlarey, and Dominique
Fober, “FAUSTLIVE, Just-In-Time Faust Compiler... and
much more,” in Proceedings of the Linux Audio Conference,
Karlsruhe, Germany, 2014.

[5] Nicolas Schmidt Gubbins, Arshia Cont, and Jean-Louis Gi-
avitto, “First steps toward embedding real-time audio com-
puting in Antescofo,” Journal de Investigacion de Pregado
(Investigacion, Interdisciplina, Innovacion), vol. 6, 2016.

[6] Ge Wang and Romain Michon, “Fauck!! hybridizing the faust
and chuck audio programming languges,” in Proceedings of
Sound and Music Conference (SMC-16), Hamburg, Germany,
Septmber 2016.

[7] Julius O. Smith, “Signal processing libraries for Faust,” in
Proceedings of Linux Audio Conference (LAC-12), Stanford,
USA, May 2012.

[8] Romain Michon, Julius Smith, and Yann Orlarey, “New signal
processing libraries for Faust,” in Proceedings of the Linux
Audio Conference (LAC-17), Saint-Etienne, France, 2017.

IFC-5

