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We present results from a high resolved Large Eddy Simulation of a freely developing

Blasius profile over a concave boundary in a large spanwise domain. Due to the large

initial Reynolds and Görtler numbers (Reθ ,0 = 1170,Gθ ,0 = 75), we observe the onset of

two dominant wavelengths, the first dominating in the linear/transition region, λ1, and the

second dominating in the turbulent region, λ2. Extending previous linear stability analy-

sis (LSA) to higher Görtler numbers and non-dimensional wavenumbers, both dominant

wavelengths of the Görtler instability correspond to predictions of LSA, the latter compa-

rable to laminar theory by replacing the kinematic viscosity with the turbulent viscosity in

the definition of the Görtler number. The predicted spatial modes compare well with the

computed profiles for both λ1 and λ2. The skin friction coefficient C f is found heteroge-

neous in the spanwise direction according to the emerging wavelengths λ1 and λ2 of the

Görtler instability. We report a smooth increase of C f from the theoretical predictions of

a laminar boundary layer to those for a turbulent boundary layer over a flat plate with a

slight overshoot in the domain of existence of the second dominant wavelength λ2.

a)Electronic mail: eletta.negretti@legi.cnrs.fr
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I. INTRODUCTION

Boundary layer flows are ubiquitous in both nature and engineering applications and are sub-

ject to instabilities which generally lead to the transition to turbulence. When the flow devel-

ops over a curved boundary this transition may occur through the development of the so-called

Görtler instability1–5, which results from a local unbalance between the centrifugal force and the

normal pressure gradient. The boundary layer then exhibits unstable flow motion in the form

of pairs of counter-rotating streamwise vortices that gives rise to longitudinal streaks, leading to

strongly distorted velocity profiles and normal-to-wall flow motion correlated with local low and

high momentum fluxes. Due to their direct application in industrial6,7 and geophysical8–10 con-

texts, experimental11–13 and numerical14–16 studies on the development of the Görtler instability

in boundary layer flows were performed using both wavelength-forced and wavelength-free inlet

conditions. Inflow conditions showed to be a crucial choice since they lead either to a unique

prescribed wavelength of the Görtler instability or to a freely developing system of multiple wave-

lengths.

For boundary layers developing over a flat plate, previous studies17,18, highlight the importance

of the inlet conditions in determining the laminar-turbulent transition, not only in terms of the

transition Reynolds number Reθ ,t based on the momentum thickness θ and the free stream velocity

U∞, but also influencing the formation of characteristic flow coherent structures that develop in the

boundary layer. This, in turn, can strongly change the behaviour of flow properties such as the

drag coefficient with important consequences in industrial and geophysical contexts. For example,

Schlatter and Örlü 19 showed that the skin friction coefficient C f have very different developments

depending on the tripping method used to force transition to turbulence. In general, it was observed

that, for a Blasius boundary layer over a flat plate, the smaller the transition Reynolds number

Reθ ,t , the more likely an overshoot of C f was reported depassing the theoretical predictions for

a turbulent boundary layer; in contrast, when Reθ ,t was large (> 2,500) a smooth increase of C f

from laminar to turbulent predictions over a flat plate has been observed (see also Méndez et al. 20).

In a Görtler flow, the typical evolution of the flow includes a first linear region characterized

by a distortion of the mean flow which is well predicted by linear stability theory3, followed by

a non-linear region characterized by the above-mentioned longitudinal Görtler structures with a

mushroom-like spanwise section and upwash/downwash location. Swearingen and Blackwelder 12

(see also Park and Huerre 21) concluded that the Görtler vortices do not degenerate directly to
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turbulence, instead they set-up a localized shear-layer instability that results in the appearance of

secondary instabilities. Their main finding was the association of the secondary instabilities with

the high shears in the spanwise direction rather than with those in the wall-normal direction (see

also Schultz and Volino 22).

Méndez et al. 20 studied the laminar-to-turbulent transition in a Blasius flow over a concave

wall by forcing the wavelength of the Görtler instability using wall-roughness elements, following

the study of Schrader, Brandt, and Zaki 14 , while increasing the spanwise dimension of the compu-

tational domain to assure a better transition to turbulence. They identified and characterized four

regions encountered in the transition process (linear, nonlinear, transition to turbulence and fully

turbulent) and performed a parametric study showing that the transition point is delayed when the

radius of curvature is increased, however, at the same critical Görtler number.

So far, eighter numerical (Schrader, Brandt, and Zaki 14 , Méndez et al. 20 and references herein)

or experimental8,9,11–13,22 studies focusing on the evolution of the boundary layer over a curved

boundary reported the onset of only one unstable Görtler wavelength within the full considered

domain. Generally, these numerical studies started with initial laminar flow conditions with the

subsequent onset of one Görtler wavelength as predicted from LSA and that degenerated into

a turbulent flow. The experiments also include studies were the flow already attained turbulent

conditions when reaching the curved boundary. Tani 11 demonstrated experimentally that Görtler

vortices can exist also in a turbulent boundary layer (see also Hopfinger et al. 8 , Albayrak, Hopfin-

ger, and Lemmin 9 , Swearingen and Blackwelder 12). In this cases, the dominant wavelength of

the Görtler instability can be predicted using LSA, but a ’turbulent’ Görtler number based on the

turbulent viscosity νt has to be considered instead of the classical Görtler number defined using

the kinematic viscosity ν .

Here, we perform well resolved Large-Eddy Simulations (LES) of a Blasius boundary layer

over a concave wall. We let the Görtler instability develop freely, starting from a linear region and

reaching turbulent conditions at the end of the computational domain. In particular, the Reynolds

and Görtler numbers at the inlet are set to much higher values (Reθ0 = 1,175, Gθ0 = 75) as com-

pared to previous studies. In their study of boundary layer data over a flat plate, Örlü and Schlat-

ter 23 demonstrated that starting with a high laminar Reθ (= 750) yields different results not only

in terms of the skin friction coefficient, but also for integral and global quantities. Here, the im-

posed high Gθ0 = 75 enables reaching high enough turbulent Görtler numbers in the turbulent

region to ensure the onset of a second dominant wavelength. The large spanwise domain permits
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Lψ = 10δ0
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FIG. 1. Sketch of the computational domain. The inlet and outlet are highlighted in blue and red respec-

tively. All dimensions are expressed in terms of the initial boundary layer thickness δ0. The domain for

physical analysis spans from φ = 0 to φ = π/2, and a buffer layer is used for 10 more degrees.

the presence of up to 52 Görtler vortices in the laminar region, with the observed wavelength

corresponding to the theoretical most amplified wavelength predicted by LSA for the present con-

ditions. The skin friction coefficient is found to be accordingly heterogeneous, both in the laminar

and turbulent regions with values that exceeds the predictions for a turbulent boundary layer over

a flat plate in the turbulent region, similarly to Örlü and Schlatter 23 .

The paper is organized as follows: in section II we describe the numerical resolution method.

Section III includes results for the flow topology and the characteristic statistics of each developed

region (§III A), the comparison with theoretical predictions of linear stability theory (§III B) and

the effects on the skin friction coefficient (§III C). Conclusions are given in section IV.

II. NUMERICAL METHOD

Large-Eddy Simulations (LES) have been performed using the YALES2 flow solver24, which

solves the incompressible Navier-Stokes equations for turbulent flows on unstructured meshes

using a projection method for pressure-velocity coupling25. It relies on fourth-order central finite-

volume schemes and on highly efficient linear solvers26. The time integration is explicit for con-

vective terms using a fourth-order modified Runge-Kutta scheme, with a semi-implicit integration

for the diffusive terms. We used unstructured grids composed by prisms and tetrahedron elements,
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Reθ0 Gθ0

(
R
θ0

)1/2

Transition method ∆ξ+×∆ψ+×∆z+

Méndez et al. 20 75 1.5 50.0 Roughness elements 19.10×0.55×5.80

Schrader, Brandt, and Zaki 14 75 1.5 50.0 Roughness elements 15.70×0.70×7.10

Schultz and Volino 22 133 5.3 25.0 Free-stream turbulence -

Present study 210 13.4 16.0 Numerical noise 04.90×0.17×4.90

Present study 290 18.4 16.0 Numerical noise 04.90×0.17×4.90

Present study 1175 75.0 16.0 Numerical noise 04.90×0.17×4.90

Örlü and Schlatter 23 55 ∞ 00.0 Tripping at Reθ = 55 25.30×14.2×10.8

Örlü and Schlatter 23 750 ∞ 00.0 Tripping at Reθ = 750 25.30×14.2×10.8

TABLE I. Physical configuration and numerical resolution. References are sorted by Gθ0 in ascending order.

allowing to have a high resolution of the near-wall region. The dynamic Smagorinsky subgrid-

scale model is used27.

A sketch of the computational domain is given in figure 1. A local frame (ξ ,ψ,z) is used to

conveniently characterize the flow in the present curved domain, where ξ , ψ and z are the stream-

wise, wall-normal and spanwise directions, respectively. The inlet velocity is set to a Blasius

boundary layer with a thickness δ0 and a free-stream velocity U∞. The geometry of the computa-

tional domain is a 90-degree concave channel with constant curvature R = 30δ0, with a spanwise

length Lz = 20δ0 and a wall-normal length Lψ = 10δ0. Close to the wall, the mesh size in the

streamwise, wall-normal and spanwise directions is ∆ξ = 3.6× 10−2δ0, ∆ψ = 1.2× 10−3δ0 and

∆z = 3.6×10−2δ0 respectively, for a total number of mesh cells Nc = 2.4×108. This ensures that

the mesh size at the wall, expressed in wall unit + (normalization with the wall friction velocity

uτ , and the kinematic viscosity ν), are (∆ξ+,∆ψ+,∆z+) = (4.90,0.17,4.90) at the inlet and reach

maximum values of (∆ξ+,∆ψ+,∆z+)= (28.20,0.98,28.20) in the turbulent region. At the bottom

and top boundaries (outer and inner radii boundaries), no-slip and free-slip boundary conditions

are prescribed, respectively. The flow is set to be periodic in the spanwise direction. At the end

of the 90-degree domain, a buffer layer is used (90◦ < φ < 100◦) and a convective outflow28 after

(φ = 100◦).

We let Görtler vortices develop spontaneously without forcing the spanwise wavelength, with-
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FIG. 2. (a) Ratio between the Kolmogorov scale η and the mesh size in the streamwise direction ∆ξ (black

line), along with the ratio between the sub-grid viscosity νSGS and the kinematic viscosity of the fluid ν . (b)

Streamwise evolution of the energy spectrum E11 for ξ/δ0 = 10,15,20,25,35 (from light grey to black).

(c) Streamwise evolution of the explicitly resolved TKE kRES and the sub-grid TKE kSGS.

out free-stream turbulence level nor white noise perturbations. Hence, the centrifugal instability

is triggered by numerical noise. The spanwise length of the computational domain was chosen

in order to get up to 52 Görtler rolls within the initial linear region, based on linear stability pre-

dictions where the expected non-dimensional wavelength is Λ = (U∞λ/ν)(λ/R)1/2 = 500, where

λ is the wavelength defined as the distance between two pairs of counter-rotating Görtler vor-

tices. This allows to reach converged spatial statistics in the spanwise direction in both the linear

and turbulent regions. The Reynolds number based on the inflow boundary layer thickness δ0 is

Reδ0 = (U∞δ0)/ν = 10,000 while the Reynolds number based on the inflow momentum thickness

is Reθ0 = (U∞θ0)/ν = 1,175. The Görtler number is consequently Gθ0 = Reθ0 (θ0/R)1/2 = 75.

A. Numerical validation and turbulent state

Figure 2a displays the streamwise evolution of the Kolmogorov scale η = (ν3/ε)1/4 (explicitly

determined using structure functions29) normalized by the longitudinal mesh size ∆ξ (black line)

and the evolution of the sub-grid eddy viscosity νsgs normalized by the kinematic viscosity ν (grey

line). We see that νSGS/ν � 1 and η/∆ξ ≈ 5 in the linear region, so that the chosen grid size at

the wall in the linear region (ξ/δ0 ≤ 11) is sufficiently small to resolve all scales and the LES is

practically equivalent to a DNS.

Figure 2b gives the energy spectrum as a function of the streamwise wavenumber κξ at different

streamwise positions (different solid lines), showing that starting from ξ/δ0 = 10 all energetic
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FIG. 3. (a) Normalized energy spectrum for ξ/δ0 = 35,40,45 (from light grey to black solid lines), with

the −5/3 slope (black solid line) and the Taylor micro-scale (vertical dotted line). (b) Velocity profiles in

wall units u+ = f (y+) for ξ/δ0 = 35,40,45 (from light grey to black circles).

scales are resolved. Further downstream, we see the evolution of the spectra consistent with an

energy transfer from small to larger wavenumbers up to the cut-off wavenumber κSGS (see vertical

dotted line in figure 2b) representative of the sub-grid model. Figure 2c shows the streamwise

evolution of the normalized directly resolved (kRES) and modeled (kSGS) turbulent kinetic energy

(TKE). After transition to turbulence, kRES accounts for less than 20% of the total TKE, which

gives a criterion for good LES resolution29,30.

To assess the turbulence level reached in the last part of the computational domain we plot

in figure 3a the normalized energy spectrum E11/(εν5)1/4 as a function of κξ/η for ξ/δ0 =

(35,40,45). The spectra converge and the inertial zone (i.e. Taylor microscale κλ η , dashed black

line) is partially resolved and consistent with a −5/3 power law. We also estimated the Reynolds

number Reλ = u′λ/ν based on the Taylor microscale λ = (νu′
2
/ε)1/2 and found values Reλ > 100

for ξ/δ0 > 15, with an increasing value up to Reλ ≈ 200 at the end of the computational domain.

The velocity profiles expressed in wall-units u+ = f (y+) computed at the end of the domain

(ξ/δ0 = (35,40,45)) are displayed in figure 3b . They converge toward a turbulent velocity profile

in agreement with the log-law u+=(1/0.41) log(y+)+5.2 found in turbulent boundary layers over

flat plates. We note that the velocity profiles exhibit an inflection point, specific of a secondary

motion in the flow induced by the presence of Görtler vortices.

An overall assessment of the boundary layer development can be obtained through the boundary
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FIG. 4. (a) Evolution of the boundary layer thickness δ99 normalized by the displacement thickness δ ∗

(grey) and the momentum thickness θ (black) versus Reθ . Present results with Reθ0 = 1175 (solid lines) are

compared with results from Örlü and Schlatter 23 (squares: Reθ0 = 750; triangles: Reθ0 = 55). (b) Shape

factor as a function of Reθ . A 2% error with respect to results from Örlü and Schlatter 23 at Reθ0 = 55 is

highlighted in grey.

layer thickness δ99 as well as its integral measures, i.e. the displacement (δ ∗) and momentum-loss

(θ ) thicknesses. The ratio between δ99 and δ ∗ (grey solid line) and θ (black solid line) is depicted

in figure 4a, along with the the shape factor (H12 = δ ∗/θ ) in 4b, as a function of Reθ . We compare

our results to those of Örlü and Schlatter 23 for two cases: the first having Reθ0 = 55 (triangles) and

the second with Reθ0 = 750 (squares). As pointed out by Örlü and Schlatter 23 , a strong increase

of the normalized boundary layer thicknesses occurs when transitioning to turbulence if the initial

Reynolds number is large (Reθ0 = 750 for Örlü and Schlatter 23 and Reθ0 = 1,175 in the present

study), which clearly contrasts with the smooth increase in the case of Reθ0 = 55. The shape factor

H12 reveals a similar behaviour as in the case of Örlü and Schlatter 23 with a turbulent state reached

at the end of the computational domain however with values that are 8% of the convergence limit

(cf. Örlü and Schlatter 23). These results confirm thus the findings of Örlü and Schlatter 23 for

which starting with a higher laminar Reθ ,0 retards reaching the fully turbulent regime.
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(a) (b)

FIG. 5. Three-dimensional views of iso-contours of the normalized Q-criterion Q∗ = QR2/U2
∞ = 1, com-

puted from the instantaneous flow velocity field (a) and the mean flow velocity field (b) colored by the

instantaneous non-dimensional vorticity ω∗
ξ
= ωξ δ0/U∞ and the mean non-dimensional streamwise vortic-

ity 〈ω∗
ξ
〉t = 〈ωξ 〉tδ0/U∞. Streamwise streaks structures (Görtler vortices) are visible in the non-linear region

of the instability (22◦ < φ < 42◦), and persistent in the turbulent region (b).

III. RESULTS

In the following, ensemble average 〈·〉 is performed along homogeneous samples. Averag-

ing over time at each point (ξ ,ψ,z) provides e.g. temporal mean velocity 〈u〉t (ξ ,ψ,z), where

u = (u,v,w) is the vector of the three velocity components in the longitudinal, wall-normal and

spanwise directions respectively. Additional averaging along the spanwise direction of the domain

provides temporal and spatial mean velocities, e.g. 〈u〉t,z (ξ ,ψ).

A. Flow topology

The topology of the flow is described using a non-dimensional Q-criterion defined as Q∗ =(
Ωi jΩi j−Si jSi j

)
/
(
2δ 2

0 /U
2
∞

)
. Herein, Ωi j is the vorticity tensor and Si j the strain rate tensor. A

three-dimensional view of the iso-contours of the Q-criterion set to Q∗ = 10−3 is shown in figure

5. Figure 5(a) is computed from the instantaneous velocity field u colored by the instantaneous

non-dimensional streamwise vorticity ω∗
ξ
= ωξ δ0/U∞, while figure 5(b) is computed from the

9
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ξ/δ0
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FIG. 6. Instantaneous streamwise velocity field u/U∞ at ξ/δ0 = 15 (a), 25 (b) and 30 (c). In (a) mushroom-

like structures of the Görtler instability are evident (see inset for a zoomed view). For ξ/δ0 > 25 (b-c), a

scale multiplicity is observed in the instantaneous velocity fields (i.e. turbulent state).

mean flow 〈u〉t colored by the mean non-dimensional streamwise vorticity 〈ω∗
ξ
〉t = 〈ωξ 〉tδ0/U∞.

The longitudinal streak structures present for 21◦ < φ < 42◦ are observed both in figures 5(a) and

5(b) meaning that they are spatially steady, which is characteristic for Görtler vortices. In figure

5(a), we see that the onset of the Görtler vortices appears at about ξ/δ0 = 11 (φ = 21◦, Reθ =

1,200), and the transition to turbulence starts at about ξ/δ0 = 22 (φ = 42◦, Reθ = 1350). The

turbulent region is reached at ξ/δ0 > 31 (φ > 59◦, Reθ = 1,500) (see also §II A). The iso-contour

of the Q-criterion computed from the mean flow velocity field (figure 5b) exhibits large scale

longitudinal vortical Görtler structures in both the transition and in the turbulent region. Spanwise

instantaneous streamwise velocity fields are displayed in figure 6 at three different streamwise

locations ξ/δ0 = (15,25,30) (a,b,c, respectively) highlighting the typical mushroom like structure

of the Görtler instability13, well defined in the initial development region (figure 6a) while figure

6(b,c) shows the onset of scale multiplicity further downstream.

Since the Görtler vortices are spatially steady, they induce a distortion of the mean flow5 which

leads to a spanwise heterogenity of the flow properties. A measure of the spanwise heterogeneity

level (SHL) of the mean flow has been proposed by Méndez et al. 20 as follows:

uSHL (ξ ) =

√
1
Lz

∫ Lz

0

[
〈u〉′t (ξ ,ψ,z)

]2dz, (1)
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where 〈u〉′t (ξ ,ψ,z) = 〈u〉t (ξ ,ψ,z)−〈u〉t,z (ξ ,ψ) is the spanwise fluctuation of the mean velocity

field 〈u〉t (ξ ,ψ,z).
Equation (1) represents the spanwise standard deviation of the temporal mean flow, and the

streamwise evolution of its value at the wall-normal position ψ = 0.25δ0 is displayed in figure 7(a).

We see that all three components of uSHL rapidly increase in the first region which corresponds

to the linear growth of the Görtler instability and starts to saturate at ξ/δ0 ≈ 11. The level of

heterogeneity is maintained for ξ/δ0 > 25 for all three components. This is not observed in a

turbulent boundary layer over a flat plate, where a statistical spanwise homogeneity of the flow is

expected.

Selected profiles of uSHL are shown in figure 7(b) along with the associated mean streamwise

velocity profiles 〈u〉t,z. At ξ/δ0 = 10 (linear region), the computed 〈u〉t,z matches the Blasius

solution. uSHL and vSHL have maximum values for ψ/δ0 = 0.12 and ψ/δ0 = 0.16, respectively

while wSHL has two maxima reached for ψ/δ0 = 0.05 and ψ/δ0 = 0.28. Note that the wall-normal

positions of the maxima of all three components of uSHL are consistent with the observation of the

Görtler vortices (cf. figure 6a). At ξ/δ0 = 25 (non-linear region), an inflection point is observed on

the mean streamwise velocity profile 〈u〉t,z (grey line in figure 7b), which is due to the development

of the Görtler vortices. Wall-normal profiles of uSHL and wSHL are strongly influenced by the non-

linear effects and the wavelength multiplicity thus having complex shapes while the vSHL profile

shape remains nearly the same. The width of all three profiles is thickening in the non-linear

region, which might be associated with a sudden increase of turbulent state (see the appearance

of three-dimensional structures in figure 5a and non-linear saturation in figure 7a). At ξ/δ0 = 40

in the turbulent region, the mean velocity profile as well as uSHL profiles are thicker, and an

inflection point is still observed on the 〈u〉t,z profile, consistent with the large-scale streamwise

vortices observed in the turbulent region (figure 5c). In this region, uSHL and wSHL have their

maximum value very close to the wall at ψ/δ0 = 0.08, while vSHL still keeps the same profile

shape and its maximum moves away from the wall, similarly to what is observed when Görtler

vortices grow in the non-linear region.

In order to extract the wavelengths responsible for the spatial heterogeneity, we focus on the

wall-normal component of the velocity, which is associated with the upwash and downwash mo-

tions, characteristic of the Görtler instability. A spatial FFT is therefore performed in the spanwise

direction on the velocity fluctuation 〈v〉′t and the streamwise evolution of the power spectral density

is shown in figure 8(a). Unlike the previous studies of Méndez et al. 20 and Schrader, Brandt, and
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FIG. 7. (a) Streamwise evolution of uSHL at ψ = 0.25δ0 (Eq. 1) for the longitudinal (solid line), wall-normal

(dashed line), and spanwise (dotted line) velocity components with the saturation reached at ξ/δ0 ≈ 22. (b)

Selected vertical profiles at ξ/δ0 = (10,25,40) (from left to right, respectively) for uSHL and normalized by

their maximum. The grey solid lines in (b) represent the base state Blasius profile.

Zaki 14 where the instability wavelength is forced, here we report the onset of various wavelengths,

also observed in Tandiono, Winoto, and Shah 13 .

In the linear region (2< ξ/δ0 < 11), multiple wavelengths can be identified (cf. figure 8a), and

the most amplified wavelength is found to be λ1 = 0.385δ0. λ1 is dominant for 2 < ξ/δ0 < 22

which corresponds to both linear and non-linear regions. At the breakdown of the Görtler vortices

(figure 7a), larger wavelengths (0.5δ0 < λ < 1.0δ0) are found in the spectrum which persist only

for a distance ∆ξ ≈ 6δ0.

Further downstream in the turbulent region (ξ/δ0 > 30), the dominant wavelength in the flow

is found to be λ2 = 1.55δ0.

B. Comparison to linear stability theory

In order to estimate the theoretical predicted growth rates and most unstable wavelengths, we

extended the LSA of Floryan and Saric 3 for a larger domain of the non-dimensional wavenumber

0.03 < αθ < 3.0, with αθ = (2π/λ )θ , and for Görtler numbers 0.5 < Gθ < 100.0. For this, we

considered the linear perturbation equations of continuity and momentum for a Blasius boundary

layer over a curved wall using a normal modes approach. The governing stability equations read

12
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FIG. 8. (a) Spectrogram from a spatial FFT in the spanwise direction on the wall-normal disturbance veloc-

ity 〈v〉′t normalized by the local maximum amplitude. Two dominant wavelengths emerge in the different

development regions: λ1 = 0.385δ0 (linear region, black dotted line), λ2 = 1.55δ0 (turbulent region, blue

dotted line) and an intermediate wavelength λ = 0.709δ0 (red dotted line); (b) respective streamwise evo-

lution of the power spectral densities (solid lines) with the theoretical growth from LSA (dashed lines).

then

β û+
dv̂
dψ

+αŵ = 0 (2)

û
∂U
∂ξ

+βUû+ v̂
∂U
∂ψ

+V
dû
dψ
− d2û

dψ2 +α
2û = 0 (3)

βUv̂+ û
∂V
∂ξ

+ v̂
∂V
∂ψ

+V
dv̂
dψ

+2G2Uû+
dp̂
dψ
− d2v̂

dψ2 +α
2v̂ = 0 (4)

βUŵ+V
dŵ
dψ
−α p̂− d2ŵ

dψ2 +α
2ŵ = 0 (5)

where the perturbation velocities are defined as[
u′,v′, p′

]
= [û(ψ) , v̂(ψ) , p̂(ψ)]cos(αz)exp(βξ ) (6)

w′ = ŵ(ψ)sin(αz)exp(βξ ) (7)

with (U,V ) the base flow, α the wavenumber, β the spatial growth rate and (û, v̂, ŵ) the spatial

modes.

The system of equations (2–5) is expressed in matrix form through Mi j

dζi

dψ
= Mi j (ψ)ζ j (8)

13
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where ζ1 = û, ζ2 =
dû
dψ

, ζ3 = v̂, ζ4 =
dv̂
dψ

, ζ5 =
d2v̂
dψ2 , ζ6 =

d3v̂
dψ3 , which constitutes an eigenvalue

problem with boundary conditions

ζ1 = ζ3 = ζ4 = 0 for ψ = 0 (9)

ζ1 = ζ3 = ζ4 = 0 for ψ → ∞, (10)

for which solutions exist only for specific sets of (α,β ,G)3. It is solved as a boundary value

problem using a 4th-order Runge-Kutta integration method following the work of Petitjeans 31 .

The value of β which fulfills the boundary conditions (10) is calculated for a set of given (G,α)

values3,31.

Figure 8(b) is extracted from figure 8(a) for the two dominant wavelengths λ1 (black line) and

λ2 (blue line) along with an intermediate wavelength of about 2λ1 (red line). It shows the stream-

wise evolution of the energy contained in the wall-normal component of the velocity fluctuations

for each of the above identified wavelengths. The estimated theoretical growth rates for each of

these three wavelengths are reported in figure 8(b) as linear dashed lines, revealing a good agree-

ment between the LSA predictions and the simulation results. The energy associated with λ1 and

2λ1 is damped further downstream at ξ/δ0 ≈ 25, while the energy associated with λ2 keeps grow-

ing, hence becoming the dominant wavelength for ξ/δ0 ≥ 30 until the end of the computational

domain.

We predict the theoretical most amplified wavelength for the Görtler number Gθ0 = 75 and a

base flow corresponding to a Blasius boundary layer in the linear region of λ th
1 = 0.38δ0, which

matches the present observation.

As already observed experimentally8,9,11,12 the Görtler instability may exist also in a fully

developed turbulent boundary layer. Tani 11 argued that the laminar boundary layer Görtler in-

stability diagram can be used to determine the instability characteristics of a turbulent bound-

ary layer if the kinematic viscosity is replaced by the turbulent viscosity in the definition of the

Görtler number. In this case, a turbulent Görtler number is the relevant parameter, defined as

GT = U∞θ/νt(θ/R)1/2. Figure 9(a) (solid line) displays the turbulent Görtler number GT , in

which the turbulent viscosity is estimated using the same approach of Tani 11 , who assumed a

constant turbulent viscosity in the outer part of the boundary layer, for which Clauser 32 sug-

gested the expression νt = 0.018U∞δ ?, where δ ? is the displacement thickness. We also esti-

mated the GT by calculating directly the turbulent viscosity using the Boussinesq hypothesis as

14
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FIG. 9. (a) Variation of the turbulent Görtler number GT in the longitudinal direction calculated using the

turbulent viscosity with the mixing length model νt = 0.018U∞δ ? from Clauser 32 (solid line), where δ ?

is the displacement thickness, and from the Boussinesq hypothesis νt = −〈u′v′〉t,z/∂ψ〈u〉t,z (dashed line).

For comparison, Gθ is also plotted (grey line). (b) Curves of constant non-dimensional amplification rates

βθReθ . The black thick solid line and thick dashed lines correspond to the stability limit and the curve of

maximum amplification rate, respectively. Present LES results are highlighted by the grey box, considering

the turbulent Görtler number GT =U∞θ/νt(θ/R)1/2.

νt = −〈u′v′〉t,z/∂ψ〈u〉t,z (dashed line). Figure 9 includes also the classical Görtler number Gθ

based on the kinematic viscosity ν (grey line) for comparison. We see that both estimations for

GT are very similar, and the turbulent Görtler number ranges within 2.7<GT < 10 in the turbulent

region for ξ > 25δ0.

The spatial amplification rate curves obtained from the LSA are displayed in figure 9(b), with

the thick black line being the neutral stability curve. The range of the reported turbulent Görtler

numbers GT and normalized wavelengths αθ (note that αθ varies with θ since the wavelength λ2

is kept constant) extracted from the present LES are highlighted within the grey box: the turbulent

domain is clearly Görtler unstable. Moreover, the dominant wavelength observed in the present

simulation, λ2, corresponds to a normalized wavenumber αθ ≈ 0.6 that fairly fits the dominant

wavenumber given by the LSA, represented by the dashed line of maximum amplification rate in

figure 9(b). Hence, during transition to turbulence, the effective Görtler number decreases (from

Gθ ,0 to GT ), favoring the onset of larger wavelengths, in accordance with the theoretical LSA

predictions and with the present observations. In previous numerical studies Gθ ,0 is smaller (cf.

15



Linear to turbulent Görtler instability transition

table I) so that the turbulent Görtler number falls close or even below the neutral stability curve

(cf. figure 9b). Also, at such smaller GT the most unstable modes have smaller wavenumbers so

that the formation of Görtler vortices may be inhibited by a limited computational domain in the

spanwise direction.

From the spectral analysis, we find that in the linear region, the equivalent number of pairs of

counter-rotating vortices corresponding to the most amplified wavelength λ1 is Nλ1 = 52, which

is sufficiently large to perform a phase-based statistical study in the spanwise direction with con-

verged statistics. Considering that the spanwise flow heterogeneity is mainly driven by the domi-

nant wavelength, the phase-averaged velocity field ũ(ξ ,ψ, z̃) is defined as:

〈ũ〉t (ξ ,ψ, z̃) =
1

Nλκ

Nλκ
−1

∑
i=0
〈u〉t (ξ ,ψ, z̃+ iλκ) , (11)

where z̃ ∈ [0,λκ ] is the reduced spanwise component, and κ = 1,2 represents the two dominant

wavelengths. Similarly, we introduce the phase-averaged fluctuation velocity field 〈ũ〉′t (ξ ,ψ, z̃) =
〈ũ〉t (ξ ,ψ, z̃)−〈u〉t,z (ξ ,ψ).

In the linear region, the computed velocity field within z̃ is compared with the theoretical ex-

pression of the spatial modes û. We expect the present results to fit the expression of the velocity

disturbances defined in the LSA:

〈ũ〉′t (ξ ,ψ, z̃) = û(ψ) [cos(α z̃) ,cos(α z̃) ,sin(α z̃)]exp(βξ ) . (12)

In order to compute the spatial mode û using equation (12), we perform a cross-correlation of

the fluctuation velocity 〈ũ〉′t and the harmonic functions [cos(α z̃) ,cos(α z̃) ,sin(α z̃)], where α is

obtained using the spanwise FFT. The spatial growthrate β is not needed since û is normalized by

the maximum value of û denoted ûmax
3.

The ensemble average profiles at ξ/δ0 = 7 representative of the linear region are shown in

figure 10 (a-c) as solid lines and compared with the obtained LSA solutions (dashed lines). The

dispersion of the computed local modes are highlighted with the shaded regions. The agreement

is good, with exception of a slight shift between the two curves and an overestimation of v̂, more

likely due to the simultaneous presence of other wavelengths with similar amplitudes in the simu-

lation profiles, as observed in figure 8(a).

The same statistical analysis is applied to the higher dominant wavelength λ2, both in the initial

linear region (2< ξ < 11δ0) and in the turbulent region (ξ > 35δ0) (figure 10 (d-f)). In the linear

region, spatial modes associated with λ2 obtained from the simulation compare well with the
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/û

m
a
x

0 5 10

−50

0

50

(d) (e) (f)

FIG. 10. Ensemble average of the spatial modes (û, v̂, ŵ) normalized bu ûmax obtained from LES (solid

lines) and theoretical predictions using LSA (dashed lines). Dispersion of the local modes from the LES

simulation is highlighted by the shaded grey regions. (a-c) Spatial modes associated with λ1 in the linear

region (ξ/δ0 = 7). (d-f) Spatial modes associated with λ2 in the turbulent region (ξ/δ0 = 40), with insets

showing the spatial modes associated with λ2 in the linear region, compared to LSA.

LSA modes (insets of figure 11, bottom panels), meaning that λ2 is present and grows from the

beginning of the computational domain. It is found that the local disturbance velocity modes

collapse, and a unique spatial mode emerges. In the turbulent region, the spatial modes have

a similar shape as those in the linear region but with a relaxation of the profile in the normal

direction; more importantly û is strictly positive, v̂ is strictly negative and ŵ is positive near the

wall and negative in the outer layer, as it is the case in the initial linear growth region. In terms

of amplitude, the observed spatial modes associated with λ2 have a much larger amplitude in the

turbulent region than in the linear region, as expected. The existence of the spatial modes in the

turbulent region is thus consistent with the observation of streamwise Görtler-like vortices in the

turbulent region reported in figure 5(b). This shows that spatial modes for the disturbance velocity
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FIG. 11. Curved wall colored by the mean skin friction coefficient 〈C f 〉t normalized by the local spanwise

averaged skin friction coefficient 〈C f 〉t,z. The zoomed area in the inset (40 < ξ/δ0 < 45) highlights the

persistence of the heterogeneity in the fully turbulent region.

converge and can be predicted using laminar LSA even in the fully turbulent region using the

turbulent Görtler number instead of the classical Gθ .

C. Skin friction coefficient

The presence of dominant wavelengths is expected to have an effect on several properties of

the flow, especially on the mean wall shear stress 〈τw〉t = µ∂ψ〈u〉t
∣∣
ψ=0 or in its non-dimensional

form, the mean skin friction coefficient 〈C f 〉t = 〈τw〉t/(0.5ρU2
∞).

In figure 11, we show the distribution of 〈C f 〉t over the full computational domain normalized

with the spanwise-averaged skin friction coefficient 〈C f 〉t,z in order to assess the heterogeneity of

the friction in the spanwise direction. The development of the Görtler instability clearly leads to a

steady spanwise heterogeneity of 〈C f 〉t within the linear and non-linear regions (2 < ξ/δ0 < 22),

as also reported in previous studies12–15,20,22. In our study however, this heterogeneity clearly

persists also in the turbulent region as highlighted by the inset box in figure 11 (40< ξ/δ0 < 45).

The spanwise fluctuations of 〈C f 〉t grow in the linear and non-linear regions (2< ξ/δ0 < 22) up to

3.5 times the local spanwise-average 〈C f 〉t,z, and up to 1.4 times in the transitional and turbulent

regions (ξ/δ0 > 22), i.e. up to 40% of 〈C f 〉t,z.
The phase-based statistical treatment given in equation (11) is also applied to the skin friction

coefficient 〈C f 〉t . Figure 12(a) shows the evolution of the mean skin friction coefficient 〈C f 〉t,z
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FIG. 12. (a) Evolution of the spanwise-averaged mean skin friction coefficient 〈C f 〉t,z (black solid line) and

the local mean skin friction coefficient 〈C f 〉t at upwash (lower line) and downwash (upper line) locations

with respect to λ1 (black dashed lines) and λ2 (blue dashed lines), as a function of Reθ . Grey dashed lines

represent theoretical laminar (C f = 0.441Re−1
θ

) and turbulent (C f = 0.024Re−1/4
θ

) laws, respectively, from

Smits, Matheson, and Joubert 33 . (b) Comparison with existing data (circles Méndez et al. 20 Reθ0 = 75;

squares Örlü and Schlatter 23 Reθ0 = 750) and LES simulations at lower Reθ0 and G0 (dashed black line for

(Reθ0 ,Gθ0) = (210,13.4) and dotted black line for (Reθ0 ,Gθ0) = (290,18.4))

(thick solid line) as a function of the Reynolds number Reθ . Laminar and turbulent laws from

Smits, Matheson, and Joubert 33 (dashed grey lines) are also reported for comparison. The evolu-

tion of 〈C f 〉t at upwash and downwash locations is computed using the reduced streamwise veloc-

ity field ũ(ξ ,ψ, z̃). Upwash and downwash locations are defined with respect to the two dominant

wavelengths λ1 and λ2 represented in figure 12 as dotted lines. The skin friction coefficient 〈C f 〉t,z
detaches quickly from the laminar solution at the inflow (lower black dashed line) due to the high

initial imposed Reynolds number Reθ ,0 = 1,175. In the linear region (1175 < Reθ < 1220), with

the dominant wavelength λ1, upwash and downwash effects start to appear. In the following non-

linear region, 〈C f 〉t,z upwash and downwash effects both increase noticeably. When saturation

occurs, upwash and downwash effects slowly diminish, and 〈C f 〉t is found to be homogeneous

with respect to λ1.

The rapid onset of the second dominant wavelength λ2 after ceasing of λ1, induces a non-

homogeneous distribution of 〈C f 〉t in both the transition and turbulent regions. Upwash and

downwash effects with respect to λ2 start to appear right after the transition to turbulence, at
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Reθ = 1,500, and do not vanish within the limits of the present computational domain. The values

of 〈C f 〉t,z approach and slightly exceed the predictions for the turbulent boundary layer over a flat

plate33 in the final part of the computational domain (figure 12).

This is very different from what has been reported before7,13,14,20 at lower Reynolds Reθ and

Görtler Gθ numbers. In those studies, the spanwise-averaged skin friction coefficient 〈C f 〉t,z in

the non-linear region clearly overshoots the theoretical predictions for a turbulent boundary layer

over a flat plate and the skin friction coefficient is found to be larger already in the transition

region corresponding to the domain of existence of the first unstable mode λ1. Here, 〈C f 〉t,z
slightly exceeds the turbulent prediction only for the second dominant wavelength of the Görtler

instability in the turbulent domain, as shown in figure 12a. We compare our results with those of

Méndez et al. 20 , Örlü and Schlatter 23 that are represented as squares and circles in figure 12(b),

respectively. We also report results from additional two simulations we performed in which we

fixed the initial Reynolds number Reθ = 210 (light grey line) and Reθ = 290 (dark grey line),

keeping all other conditions identical. Our results at lower initial Reθ follow those of Méndez

et al. 20 and we also report an overshoot of the skin friction coefficient for the first dominant

wavelength (cf. also Ducoin, Shadloo, and Roy 7).

The high value of initial Reθ induce non-linear effects that act primarily on smaller wave-

lengths, i.e. on the first appearing Görtler wavelength λ1. This induces a fast damping of the

wavelength λ1 resulting in a different behaviour for the skin friction coefficient C f , where an

overshoot of the turbulent plate prediction is not observed for the first appearing unstable Görtler

wavelength. The results of Örlü and Schlatter 23 for large initial Reθ0 report an overshoot of C f

during transition to turbulence. Here, the rapid onset of the second wavelength λ2 allows C f con-

tinuing increasing until it reaches and slightly exceeds the flat plate turbulent prediction, while

approaching the flat plate turbulent law at the end of the computational domain.

Besides the different effects induced by initial conditions (such as tripping methods), the pres-

ence of an overshoot for the skin friction coefficient C f appears to depend on the curvature
√

θ/R

for a fixed value of the Görtler number Gθ , as reported in Méndez et al. 20: they observed a

diminution of the overshoot of C f at a given Görtler number when the radius of curvature R was

increased.
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IV. SUMMARY AND CONCLUSIONS

A Large Eddy Simulation of a boundary layer flow over a concave wall has been performed

using a Blasius inflow profile and without turbulence and wavelength forcing. The inlet Reynolds

and Görtler numbers are Reθ0 = 1,175 and Gθ0 = 75, respectively. Transition to turbulence is

induced by the natural development of the Görtler instability, and a developed turbulent region is

reached at the end of the computational domain, with maximum Reθ = 1,800 and Gθ = 140.

The developed flow over a concave wall exhibits steady large scale vortical structures that in-

duce a spanwise heterogeneity of the mean flow properties even in the developed turbulent region,

with a first clear wavelength in the initial development region λ1 = 0.385δ0 and a second clear

wavelength λ2 = 1.55δ0 in the turbulent region.

The predictions of both the most amplified wavelength along with the associated spatial modes

obtained by extending the LSA of Floryan and Saric 3 to a wider parameter domain of Gθ and

the non-dimensional wavelength Λ well compare to the computed wavelength and the spanwise

averaged spatial modes in the linear region for λ1. The dominant wavelength λ2 in the turbulent

domain is well predicted with the LSA if a turbulent Görtler number is considered, in which the

kinematic viscosity ν is replaced by the turbulent viscosity νt , as proposed by Tani 11 . Also, the

spatial modes associated with λ2 converge with a low scatter in the turbulent region.

The skin friction coefficient 〈C f 〉t increases locally up to a factor 3.5 in the non-linear region

of dominance of λ1 and up to a factor of 1.4 in the developed turbulent region for the downwash

location of the λ2 Görtler instability, very different from the homogeneous distribution of 〈C f 〉t
reported previously in the literature, in which no Görtler vorticies develop in the turbulent region

because the estimated turbulent Görtler number is close or even below the neutral stability curve.

Thus, the flow in the turbulent region becomes Görtler stable. The high value of initial Reθ in-

duce non-linear effects that act primarily on the first appearing Görtler wavelength λ1 damping its

growth, so that the skin friction coefficient C f slightly exceeds the flat plate turbulent prediction

for the second dominant wavelength λ2 at the end of the computational domain, and no overshoot

of C f is reported in the region of dominance of λ1. Additional simulations we performed with

a smaller initial Reθ ,0 are in accord with previous studies with an overshoot of C f for the first

dominant Görtler wavelength with respect to the turbulent plate predictions.
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