
HAL Id: hal-03124677
https://hal.science/hal-03124677

Submitted on 28 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A NEW INTERMEDIATE REPRESENTATION FOR
COMPILING AND OPTIMIZING FAUST CODE

Yann Orlarey, Stéphane Letz, Dominique Fober, Romain Michon

To cite this version:
Yann Orlarey, Stéphane Letz, Dominique Fober, Romain Michon. A NEW INTERMEDIATE REP-
RESENTATION FOR COMPILING AND OPTIMIZING FAUST CODE. International Faust Con-
ference, Dec 2020, Paris, France. �hal-03124677�

https://hal.science/hal-03124677
https://hal.archives-ouvertes.fr

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

A NEW INTERMEDIATE REPRESENTATION FOR COMPILING AND OPTIMIZING
FAUST CODE

Yann Orlarey,a Stéphane Letz,a Dominique Fober,a and Romain Michon,a,b

aGRAME – Centre National de Création Musicale, Lyon, France
bCenter for Computer Research in Music and Acoustics, Stanford University, USA

orlarey@grame.fr

ABSTRACT

The Faust compiler relies on several intermediate representations
to translate a Faust program. One step, in particular, consists of
moving from a functional representation of computations on infi-
nite signals to an imperative (stateful) representation of computa-
tions on samples. This translation phase is complex, as it combines
the recursive tree traversal, the division of the computations into
instructions, the scheduling, and the code generation. As a result,
the implementation of new code generation strategies is difficult to
achieve.

In this paper, we propose a new intermediate representation in
the form of a graph whose nodes represent computations on infinite
signals and the edges time dependencies between these computa-
tions. The graph structure makes it much easier to handle recursive
dependencies as well as to experiment with all kinds of schedul-
ing strategies. We will present several of them whose performance
have been tested with the examples of the Faust distribution. Per-
formance gains can sometimes be quite significant compared to the
current compiler.

1. INTRODUCTION

A FAUST program denotes a mathematical function [1] that oper-
ates on audio signals. The FAUST compiler aims at producing the
most efficient implementation of this function in one of the sup-
ported target languages, e.g. C, C++, Java, Rust, WebAssembly,
LLVM IR, SOUL, etc. Currently, all these target languages are
imperative. We can therefore see the Faust compilation as a trans-
lation of a stateless function on audio signals into a stateful im-
perative program on samples. For this purpose, we have a specific
intermediate representation: the FAUST Imperative Representation
(FIR) which is used before generating the actual code.

In this article, we propose a new intermediate representation,
located just before the FIR, which makes it possible to specify
the order and organization in memory of the computations regard-
less of the FIR translation. Because of the importance of memory
caches [2], the memory layout and the order of the computations
have indeed a lot of influence on the performance of the code. It
is therefore interesting to be able to propose different compilation
strategies in this respect. This is the purpose of the new intermedi-
ate representation that we are proposing.

2. FROM SIGNALS TO INSTRUCTIONS GRAPHS

The compilation of a FAUST program is currently based on five
steps:

1. The first step, the lambda-calculus phase, allows to pass
from the algorithmic description of an audio circuit to its

evaluated form: a flat circuit that contains only primitive
operations. It is the result of this first phase which is repre-
sented in SVG diagrams.

2. The second step, called symbolic propagation, consists in
symbolically propagating signals into the circuit in order to
obtain, for each of its outputs, an expression describing how
it is computed.

3. Then comes a phase of symbolic calculation which aims at
simplifying these expressions and putting them in normal
form. During this phase a number of rewriting rules are
applied, e.g., 0 ∗ S becomes 0, S + S becomes 2 ∗ S, etc.

4. These expressions are then translated into another inter-
mediate representation, the Faust Imperative Representa-
tion (FIR), a kind of idealized imperative programming lan-
guage.

5. Finally, the FIR representation is translated into the chosen
target language, e.g., C++.

The new representation is between phase 3 and phase 4. The
signal expressions resulting from symbolic propagation are split
into a set of instructions and organized in an oriented graph re-
flecting the dependencies between these instructions.

2.1. Signals Expressions

The set S of signal expressions is defined by the following (sim-
plified) rules:

S ::= k | input(n) | op(s1, s2, . . .) | s1@s2 |Xi

A signal s is either:

• a constant signal k

• an input signal input(n)

• a primitive operation on signals op(s1, s2, . . .)

• a delayed signal s1@s2

• an element Xi of a group of mutually recursive signals.
The group X has an associated list of definitions D(X) =
(s1, s2, . . .). By extension we will write D(Xi) = si the
ith definition associated with the symbol X .

2.2. Instructions

An instruction indicates that a signal must be written to memory.
This is usually the case for output signals that need to be writ-
ten to output buffers, delayed signals, and recursive signals that
need to be stored in delay lines. It can also be the case for shared
intermediate signals that are stored in memory to avoid needless

IFC-1

http://grame.fr
https://ccrma.stanford.edu
mailto:orlarey@grame.fr

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

recalculations. The set I of instructions is defined by the following
rule:

I ::= output(n, s′) | dwrite(M, s′) | vwrite(M, s′)

An instruction i ∈ I either:
• writes a signal into an output buffer: output(n, s′)
• writes a signal into a delay line: dwrite(M, s′)

• writes a signal into a vector: vwrite(M, s′)

Here M indicates a memory zone and s′ ∈ S′ is a slightly
transformed signal expression where delayed and recursive signals
are replaced by signals read from memory:

S′ ::= k | input(n) | op(s′1, s′2, . . .) | vread(M) | dread(M, s′)

A transformed signal s′ is either:
• a constant signal k
• an input signal input(n)
• a primitive operation on signals op(s′1, s′2, . . .)
• a read access to a signal in memory vread(M)

• an indexed read access to a signal in memory dread(M, s′)

2.3. From Signals to Instructions

We first introduce the function T : S→ S′×P(I) that transforms
a signal into a simplified signal and an associated set of instruc-
tions. Instructions are introduced when transforming recursive ex-
pressions and delays. The functionM assign to a signal s a unique
memory areaM(s)→M that can be a vector or a scalar depend-
ing of the context.

(const)
T (k)→ k × ∅

(input)
T (input(n))→ input(n)× ∅

(fun)
T (s1)→ s′1 × I1 T (s2)→ s′2 × I2 . . .

T (op(s1, s2, . . .)→ op(s′1, s
′
2, . . .)× I1 ∪ I2 ∪ . . .

(rec1)

D(Xi)→ si M(si)→M
T (si)→ s′i × Ii T (sd)→ s′d × Id

T (Xi@sd)→ dread(M, s′d)× {dwrite(M, s′i)} ∪ Ii ∪ Id

(rec2)
D(Xi)→ si M(si)→M T (si)→ s′i × Ii

T (Xi)→ dread(M, 0)× {dwrite(M, s′i)} ∪ Ii

(del)
M(sa)→M T (sa)→ s′a × Ia T (sd)→ s′d × Id

T (sa@sd)→ dread(M, s′d)× {dwrite(M, s′a)} ∪ Ia ∪ Id

2.4. Transforming the List of Output Signals into a Set of In-
structions

The next step is to transform the list of signals (s1, s2, ...) ∈ S
resulting from the symbolic propagation phase, into a set of in-
structions I = {i1, i2, ...} ∈ P(I).

T (s1)→ s′1 × I1 T (s2)→ s′2 × I2 . . .

(s1, s2, ...)→ {output(1, s′1), output(2, s′2), . . .} ∪ I1 ∪ I2 ∪ . . .

2.5. Directed Graph of Instructions

Once we have the set of instructions, we can create a directed graph
whose nodes are the instructions of this set. Informally, there is an
edge from instruction i to an instruction j = dwrite(M, s′) if
and only if the signal associated with instruction i contains at least
one occurrence of dread(M, s′d). The value associated with this
edge will be the lowest value of the s′d signal.

There is an edge from instruction i and instruction j =
vwrite(M, s′) if and only if the signal associated with instruc-
tion i contains at least one occurrence of vread(M). In this case,
the value associated with this edge will be 0.

Output instructions output(n, s′) are never destination on
any edge. The graph may have cycles due to recursive signals. But
if all edges with a value greater than 0 are removed, the resulting
graph is guaranteed to be a DAG.

An Example. The instruction graph is the result of several sub-
steps that we will briefly illustrate using an example, a simple
Karplus-Strong string triggered by a button. Here is the Faust
code:

process = noise*button("play")
: resonator(80, 1)

with {
resonator(d,a) = (+ : @(d-1))

~ (average : *(a));
average(x = x+x’:*(0.5);
random = +(12345)~*(1103515245);
noise = random/2147483647.0;

};

Step 1. The first step consists in transforming the signals coming
from the symbolic propagation phases into a first set of instruc-
tions. The resulting graph, Figure 1, represents the dependencies
between instructions.

foat C0 :=
 4.656613e-10f*button(play);

int<1>R1 :=
 1103515245*int<1>R1@[1|1]+12345;

1

foat<79>D0 :=
 0.5f*(foat<2>R0@[1|1]+foat<2>R0@[2|2

])+C0*foat(int<1>R1@[0|0]);

foat<2>R0 :=
 foat<79>D0@[79|79];

1 79

OUT0 :=
 foat<2>R0@[0|0]

OUT1 :=
 foat<2>R0@[0|0]

Figure 1: Output signals, delay lines and recursive signals are
transformed into instructions

foat C0 :=
 4.656613e-10f*button(play);

int<1>R1 :=
 1103515245*int<1>R1@[1|1]+12345;

1

foat<81>D0 :=
 0.5f*(foat<81>D0@[80|80]+foat<81>D0@

[81|81])+C0*foat(int<1>R1@[0|0]);
80

OUT0 :=
 foat<81>D0@[79|79]

79

OUT1 :=
 foat<81>D0@[79|79]

79

Figure 2: Mutually defined delay lines are merged

IFC-2

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

As indicated in 2.3, each output signal, delay line or recursive
signal is a natural candidate to be an instruction, because it will
have to be written in memory at some point. We also take ad-
vantage of this phase to factorize control signals so that they are
calculated only once per block.

Step 2. The second step is to merge delay lines that can be
merged as here R0 and D0. As we can see Figure 2, R0, which
is itself a delay on D0, is absorbed by D0.

Step 3. The third step Figure 3 consists in transforming the delay
lines into read-write entries in tables dimensioned to the power of
two immediately above the maximum delay.

foat C0 :=
 4.656613e-10f*button(play);

int[2](sigGen(0)) R1[time&1] :=
 1103515245*R1[(time-1)&1]+12345;

1

foat[128](sigGen(0)) D0[time&127] :=
 0.5f*(D0[(time-80)&127]+D0[(time-81)&1

27])+C0*foat(R1[time&1]);
80

OUT0 :=
 D0[(time-79)&127]

79

OUT1 :=
 D0[(time-79)&127]

79

Figure 3: Delay lines are implemented using read-write tables

Step 4. The last step, Figure 4, finally consists in factoring
common sub-expressions created by the previous transformations.
Here, two time-based index operations are stored in V0 and V1.

foat C0 :=
 4.656613e-10f*button(play);

time := time+1;

int V0 := time&1;

int[2](sigGen(0)) R1[V0] :=
 1103515245*R1[(time-1)&1]+12345;

1

foat[128](sigGen(0)) D0[time&127] :=
 0.5f*(D0[(time-80)&127]+D0[(time-81)&1

27])+C0*foat(R1[V0]);
80

int V1 :=
 (time-79)&127;

OUT0 := D0[V1]

79

OUT1 := D0[V1]

79

Figure 4: Previously created common sub-expressions are factor-
ized

2.6. Scheduling

To build and manipulate the graph we use the Digraph library
(https://github.com/grame-cncm/digraph), a very simple, C++-11
template-based, directed graph library. It offers several useful
functions for our purpose:
• graph2dag transforms a graph with cycles into a directed

acyclic graphe (DAG) of cycles using Tarjan’s algorithm
[3],

• parallelize transforms a DAG into a sequence of parallel
nodes,

• serialize transforms a DAG into a sequence of nodes,

• cut(n) transforms a graph by removing all connections
with a value greater or equal to n

The scheduling of an instruction graph consists of assigning
to each instruction i of the graph an order O(i) which indicates
when an instruction must be computed and which respects time
dependencies. In other words, if there is a 0-time dependency re-
lationship between two instructions i and j, then O(i) > O(j). In
other words, if there is a 0-time dependency relationship between
two i and j statements, then i must be computed after j because
the computation of i immediately depends on the computation of
j.

We have implemented 6 scheduling modes:

1. mode 0: transforms the graph into a DAG of cycles, and
serialize it. For each node (a graph representing a cycle),
cut all connections with values > 1, serialize-it and emit the
FIR code,

2. mode 1: cut all connections with values > 1, serialize-it and
emit the FIR code,

3. mode 2: cut all connections with values > 1, parallelize-it
and emit the FIR code in a breadth-first manner,

4. mode 3: cut all connections with values > 1, serialize-it with
priority on output instructions and emit the FIR code,

5. mode 4: cut all connections with values > 1, serialize-it with
priority on delay lines and emit the FIR code,

6. mode 5: Use a deep-first traversal with priority on output
instructions and immediate dependencies and emit the FIR
code.

3. BENCHMARKS

We tested these 6 modes on a fairly representative set of 26 FAUST
programs (see Figure 5). Compared to the current scalar mode, we
have the following improvement on average:

• mode 0 average improvement: 22%,

• mode 1 average improvement: 25%,

• mode 2 average improvement: 29%,

• mode 3 average improvement: 23%,

• mode 4 average improvement: 25%,

• mode 5 average improvement: 25%

Now, considering the mode giving the best result for each test
(it is not necessarily the same one), we get an average improvement
of +41%. But all modes failed to improve zitaRev.dsp over
the current scalar mode, with a loss of performances of at least
−7%. The most spectacular improvement is obtained by mode 1
on karplus32.dsp: +237%! Surprisingly, mode 2 is the best
mode for 11 of the 26 tests.

4. CONCLUSION

The new intermediate representation that we have proposed in this
article aims at simplifying the code generation phase of the Faust
compiler which is currently very complex and not very convenient

IFC-3

https://github.com/grame-cncm/digraph

Proceedings of the 2nd International Faust Conference (IFC-20), Maison des Sciences de l’Homme Paris Nord, France, December 1-2,
2020

0%

100%

200%

300%

400%

bub
ble
.ds
p

cla
rine

tMI
DI.
dsp

filte
rBa
nk.
dsp

filte
rOs
c.d
sp

free
ver
b.d
sp

fren
chB

ell.
dsp

gui
tarE

ffec
tCh
ain
.ds
p

kar
plu
s32
.ds
p

kar
plu
s.d
sp

kis
ana

.ds
p

ma
trix
.ds
p

mix
er.d

sp

noi
se.
dsp

noi
seM

eta
dat
a.d
sp

osc
.ds
p

osc
i.ds
p

rain
.ds
p

saw
too
thL
ab.
dsp

spe
ctra

lLe
vel
.ds
p

sTu
ned

Ba
r6.d

sp

vio
linM

IDI
.ds
p

virt
ual
An
alo
g.d
sp

virt
ual
An
alo
gLa

b.d
sp

voc
alF
OF
MID

I.ds
p

win
d.d
sp

zita
Re
v.d
sp

old

cm0-short

cm1-short

cm2-short

cm3-short

cm4-short

cm5-short

Figure 5: Relative performances of the new compilation modes compared to the current scalar mode on 26 FAUST programs (tested on a
4-cores AMD A10-7700K Radeon R7, Ubuntu 16.04 and GCC 9.2.1)

for experimentation. The idea is to decouple the mapping in mem-
ory of the signals from the other operations necessary to generate
the code. The latter can thus rely on an explicit graph structure,
which is much easier to manipulate and navigate.

The mapping in memory of signals is defined by a notion of
instruction that associates a symbolic memory label and a signal.
We thus remain in the domain of infinite signals, but we have spec-
ified the signals that will have to be written in memory.

The set of instructions thus forms the vertices of a graph whose
edges indicate temporal dependencies. One can traverse and trans-
form this graph in many ways. For example, in vector or parallel
mode, one can cut all time-dependencies greater than the vector
size. This will make it possible to vectorize or parallelize cer-
tain recursive computations that can currently only be compiled
in scalar mode. It is also very easy to experiment with different
scheduling strategies, i.e. different ways of traversing the graph
while respecting time dependencies. We have presented several of
them.

It is interesting to note that they are simple code reorganiza-
tions, which do not involve either algorithm changes or changes
in complexity. However, due to the importance of memory caches
on modern processors, the differences in performance can be quite
significant.

It should be noted that, in all the tests we have performed,
none of the strategies is systematically superior to the others. This
shows the interest of having, at the compiler level, options to eas-
ily choose among these different code organization strategies, es-
pecially since manual exploration of this set of variants seems out
of reach for a human programmer writing directly in C++.

This is a work in progress, the vector and parallel modes have
not yet been implemented and a lot of effort has to be made to ex-

tend these new options to all backends. But we think the approach
presented here is very promising.

5. REFERENCES

[1] Yann Orlarey, Stéphane Letz, and Dominique Fober, New
Computational Paradigms for Computer Music, chapter
“Faust: an Efficient Functional Approach to DSP Program-
ming”, Delatour, Paris, France, 2009.

[2] Alan Jay Smith, “Cache memories,” ACM Comput. Surv., vol.
14, no. 3, pp. 473–530, Sept. 1982.

[3] Robert Tarjan, “Depth-first search and linear graph algo-
rithms,” SIAM journal on computing, vol. 1, no. 2, pp. 146–
160, 1972.

IFC-4

	1 Introduction
	2 From Signals to Instructions Graphs
	2.1 Signals Expressions
	2.2 Instructions
	2.3 From Signals to Instructions
	2.4 Transforming the List of Output Signals into a Set of Instructions
	2.5 Directed Graph of Instructions
	2.6 Scheduling

	3 Benchmarks
	4 Conclusion
	5 References

