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Multi-Fidelity Machine Learning from Adaptive-and Multi-Grid RANS Simulations

A generalized multi-fidelity (MF) metamodel of CFD (computational fluid dynamics) computations is presented for design-and operational-space exploration, based on machine learning from an arbitrary number of fidelity levels. The method is based on stochastic radial basis functions (RBF) with least squares regression and in-the-loop optimization of RBF parameters to deal with noisy data. The method is intended to accurately predict ship performance while reducing the computational effort required by simulation-based optimization (SBDO) and/or uncertainty quantification problems. The present formulation here exploits the potential of simulation methods that naturally produce results spanning a range of fidelity levels through adaptive grid refinement and/or multi-grid resolution (i.e. varying the grid resolution). The performance of the method is assessed for one analytical test and three SBDO problems based on CFD simulations, namely a NACA hydrofoil, the DTMB 5415 model, and a roll-on/roll-off passenger ferry in calm water. Under the assumption of a limited budget of function evaluations, the proposed MF method shows better performance in comparison with its single-fidelity counterpart. The method also shows very promising results in dealing with and learning from noisy CFD data.

INTRODUCTION

Ship performance depends on design and operational/environmental parameters. The accurate prediction of performance metrics (such as resistance and powering requirements, seakeeping, maneuverability, and dynamic stability, as well as structural response and failure) requires prime-principle-based high-fidelity computational tools (e.g. computational fluid dynamics, CFD), especially for innovative configurations and extreme/offdesign conditions. These tools are generally computationally expensive, making the design-and operational-space exploration a technological and algorithmic challenge, as often occurs in simulation-based design optimization (SBDO) and in uncertainty quantification (UQ).

To reduce the computational cost of SBDO and UQ processes, metamodeling methods via supervised machine learning have been developed and successfully applied in several engineering fields [START_REF] Viana | Special Section on Multidisciplinary Design Optimization: Metamodeling in Multidisciplinary Design Optimization: How Far Have We Really Come?[END_REF]. With these methods, an approximate and easy to evaluate model of expensive computations is constructed based on a limited number of simulations. The optimization or exploration is then performed over the metamodel. The performance of metamodels is problem-dependent and determined by several concurrent issues, such as the presence of nonlinearities, the problem dimensionality, and the approach used for its training [START_REF] Liu | A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[END_REF]. In the last decade, research has moved to functionadaptive approaches, also known as dynamic/adaptive metamodels [START_REF] Volpi | Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification[END_REF], which are able to improve their fitting capability by adaptive sampling. Here, the design of experiments used for metamodel training is not defined a priori but dynamically updated, exploiting the information that becomes available during the analysis process. Thus, training points are added where they are most useful, reducing the number of function evaluations required to represent/optimize the desired function. Unfortunately, the adaptive sampling/learning process can be affected by computational-output noise [START_REF] Liu | A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design[END_REF]. Adaptive sampling methods may react to noise by adding many training points in noisy regions, rather than selecting new points in unseen regions [START_REF] Wackers | Adaptive Multifidelity Shape Optimization based on Noisy CFD Data[END_REF]. This deteriorates the model quality/efficiency and needs to be carefully considered.

In addition to dynamic/adaptive metamodels and with the aim of reducing further the computational cost of SBDO/UQ, multi-fidelity (MF) approximation methods have been developed, with the objective of combining the accuracy of high-fidelity solvers with the computational cost of low-fidelity solvers. Thus, MF metamodels use mainly low-fidelity simulations and only few high-fidelity simulations are used to preserve the model accuracy. Additive and/or multiplicative correction methods, also known as "bridge functions" [START_REF] Han | Improving variable-fidelity surrogate modeling via gradientenhanced kriging and a generalized hybrid bridge function[END_REF], can be used to build MF metamodels. Several metamodels have been used in the literature with MF data, such as non-intrusive polynomial chaos [START_REF] Ng | Multifidelity Uncertainty Quantification Using Non-Intrusive Polynomial Chaos and Stochastic Collocation[END_REF], co-kriging [START_REF] Baar | Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging[END_REF] and radial basis functions (RBF, Serani et al. 2019). In CFDbased analysis/optimization, different fidelity levels may be obtained by varying the physical model, the grid size, and/or using experimental data with simulations. Most MF methods generally use two-fidelity levels. Recently, Serani et al. (2019) proposed a MF metamodel with an arbitrary number of fidelity levels, based on stochastic RBF. The use of MF models with noisy data and the assessment of the effect of noise associated with different fidelity levels is still little discussed and requires rigorous formulations and implementations.

The objective of the present work is to present a generalized adaptive MF metamodel for designand operational-space exploration of complex industrial problems, based on noisy simulations. The proposed MF method advances the authors' previous work by combining an arbitrary number of fidelity levels (Serani et al., 2019) with noise reduction of the CFD outputs through regression and in-the-loop optimization of the model [START_REF] Wackers | Adaptive Multifidelity Shape Optimization based on Noisy CFD Data[END_REF]. Stochastic RBF [START_REF] Volpi | Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification[END_REF] are used in combination with an adaptive sampling method, based on the objective function and the metamodel prediction uncertainty (Serani et al., 2019). The present formulation fully exploits the potential of simulation methods that naturally produce results spanning a range of fidelity levels: i.e. Reynolds-Averaged Navier-Stokes (RANS) simulations with adaptive grid refinement or multi-grid resolution.

The performance of the proposed MF machinelearning method is assessed for an analytical test problem and three SBDO problems, (1) the drag-coefficient of a NACA hydrofoil, (2) the calm-water resistance of the DTMB 5415 model, and (3) the calm-water resistance/payload ratio of a roll-on/roll-off passengers (RoPax) ferry, under the assumption of limited budget of function evaluations. CFD computations are based on two unsteady RANS solvers: ISIS-CFD [START_REF] Queutey | An Interface Capturing Method for Free-Surface Hydrodynamic Flows[END_REF], developed at Ecole Centrale de Nantes/CNRS and integrated in the FINE/Marine simulation suite from NUMECA Int., for the NACA hydrofoil and the DTMB 5415; and χnavis [START_REF] Di Mascio | On the Application of the One-Phase Level Set Method for Naval Hydrodynamic Flows[END_REF][START_REF] Di Mascio | Prediction of hydrodynamic coefficients of ship hulls by high-order Godunov-type methods[END_REF][START_REF] Broglia | Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method[END_REF], developed at CNR-INM, for the RoPax ferry. In ISIS-CFD, mesh deformation and adaptive grid refinement are adopted to allow the automatic shape deformation. The fidelity levels are defined by the grid refinement ratio. In χnavis, different fidelities are obtained with a multi-grid approach. Prob-lems are solved with a number of fidelity levels between 1 and 4.

ADAPTIVE MULTI-FIDELITY MACHINE LEARNING METHOD

Consider an objective function f (x), where x ∈ R D is the design and/or operational uncertainty vector of dimension D. Let the true function f (x) be assessed by numerical simulations s l (x) with different fidelity levels l, which are considered to have random noise:

s l (x) ≡ f l (x) + N l (x) with l = 1, . . . , N, (1)
where s 1 (x) denotes the highest-fidelity level, s N (x) is the lowest-fidelity, and {s l (x)} N -1 l=2 are the intermediatefidelity levels. f l (x) is the hypothetical simulation response without noise. The simulation noise for each fidelity level N l is considered as realizations of zero-mean uncorrelated random variables. This noise will be (partially) removed in the metamodels. A multi-fidelity approximation f (x) of f (x) can then be built by hierarchical superposition of the lowest-fidelity metamodel fN (x) and the intra-level multi-fidelity errors εl (x) as

f (x) ≈ f (x) = fN (x) + N -1 l=1 εl (x), (2) 
with εl (x) = fl (x) -fl+1 (x).

(3)

For the l-th fidelity level the available simulation data is defined as T l = {x T j , s l (x j )} J l j=1 , with J l the training set size. The resulting intra-level error training set is defined as

E l = {(x T j , ε l (x j )} J l j=1 , with ε l (x j ) = s l (x j ) -fl+1 (x j ). ( 4 
)
This choice is based on the idea that a significant amount of noise can be present in the sampling data and that the metamodels effectively filter this noise. Thus, in the presence of noise, the (l + 1)-th metamodel is a better representation of the (l + 1)-th response than the actual simulations. To ensure the most effective training process and considering the nature of the CFD solvers used (using adaptive and/or multi grids), lower-fidelity simulations are added in all the points x j where a high-fidelity point is simulated. If there is no noise, the metamodel fl+1 (x j ) interpolates the data in all the training points, so the error data in the training points ε l (x j ) is exact. Finally, given a metamodel that provides both a prediction and its associated uncertainty, and assuming that the uncertainties associated with the lowest-fidelity level U fN and the intra-level errors U εl are uncorrelated, the multi-fidelity prediction uncertainty U f reads

U f (x) = U 2 fN (x) + N -1 l=1 U 2 εl (x). (5) 
An example with two fidelities, without noise, is shown in Figure 1.

Adaptive Sampling Method

The multi-fidelity metamodel is dynamically updated by adding new training points following a two-step procedure:

1. Identify the new training point x ;

2. Defining β l = c l /c 1 , where c l is the computational cost associated to the l-th level and c 1 the computational cost of the highest-fidelity, 

U ≡ {U ε1 /β 1 , ..., U εN-1 /β N -1 , U fN /β N }
The overall training procedure aims at the reduction of the prediction uncertainty associated to the metamodel. To achieve this goal (i.e. reducing the uncertainty), points with large uncertainty need to be identified by an optimizer and added to the training set. Therefore as far as the uncertainty is concerned, the optimizer is required to solve an 'argmax' problem. To balance exploration and exploitation of the design space, the uncertainty is aggregated with the objective function, needing the minus sign in the 'argmin' problem 6.

Stochastic Radial Basis Functions with Least Squares Approximation

The metamodel prediction f (x) is computed as the expected value (EV) over a stochastic tuning parameter of the RBF metamodel, τ ∼ unif[1, 3]:

f (x) = EV [g(x, τ )] τ , (7) 
with

g(x, τ ) = K j=1 w j x -c j τ , (8) 
where w j are unknown coefficients, • is the Euclidean norm, and c j are the RBF centers, whose coordinates are defined via k-means clustering [START_REF] Lloyd | Least squares quantization in PCM[END_REF] of the training points. The uncertainty U f (x) associated with the stochastic RBF metamodel prediction is quantified by the 95%-confidence interval of g(x, τ ), evaluated using a Monte Carlo sampling over τ [START_REF] Volpi | Development and validation of a dynamic metamodel based on stochastic radial basis functions and uncertainty quantification[END_REF]. Noise reduction is achieved by choosing a number of stochastic RBF centers K less than the number of training points J . Hence, w j are determined with least squares regression by solving

w = (A T A) -1 A T s, (9) 
where w = {w j }, a ij = x ic j τ , and {x i , s(x i )} J i=1 ∈ T . The optimal number of stochastic RBF centers (K ) is defined by minimizing a leave-oneout cross-validation (LOOCV) metric [START_REF] Fasshauer | On choosing "optimal" shape parameters for RBF approximation[END_REF][START_REF] Li | A cooperative radial basis function method for variable-fidelity surrogate modeling[END_REF]. Let h(x) be a metamodel trained by all points but the i-th point, then K is defined as:

K = argmin K (RMSE), ( 10 
)
where the root mean squared error (RMSE) is defined as

RMSE = 1 J J i=1 s(x i ) -h(x i ) 2 . ( 11 
)
To avoid abrupt changes in the metamodel prediction from one iteration to the next one, during the adaptive sampling procedure the search for K can be constrained.

In the present work, K k-1 -2 < K k < K k-1 + 2, with k the adaptive sampling iteration. An example with J = 6 and K = 3 is shown in Figure 3. The function which gives the lowest EV for the LOOCV metric is the exact objective function f (x). Since f and h are deterministic functions, the EV of an error-squared term in the RMSE measure can be expanded as

s(x) = f (x) + N (x) f (x) U f (x) Training Set
EV s(x i ) -h(x i ) 2 = EV s(x i ) -f (x i ) + f (x i ) -h(x i ) 2 = EV (s(x i ) -f (x i )) 2 + 2EV [(s(x i ) -f (x i ))] f (x i ) -h(x i ) + f (x i ) -h(x i ) 2 . ( 12 
)
Since the noise has a zero mean, the EV in the middle term vanishes. Thus, the overall expected value for the error is minimized if h(x i ) = f (x i ). Therefore, the LOOCV criterion in Eq. 10 is a suitable measure of the quality of a metamodel function.

OPTIMIZATION PROBLEMS

The assessment of the multi-fidelity machine learning method is based on an analytical test and three CFDbased design optimization problems, with design space dimensions D = 1 and 2. Although shape optimization problems usually require a larger number of design variables (in the order of tens), here one-and twodimensional problems are selected for their ease of representation and discussion of the results. Problems are solved with a number of fidelity levels N ranging from 1 to 4. These are reasonable numbers in multi-fidelity shape optimization, where several grid resolution levels and/or physical models may be considered.

The initial training set for each problem is set as 2D + 1 points including the domain center and min/max coordinates for each variable. All fidelities are initially sampled in these points. Details are provided in the following subsections.

In the present work, the term uncertainty always refers to the metamodel prediction uncertainty (see Eq. 5), whereas the noise is associated with the objective function evaluation and intrinsically related to the fidelity level: higher fidelities tend to be less noisy.

A deterministic single-objective formulation of the particle swarm optimization algorithm (Serani et al., 2016), is used for the metamodel-based optimizations, as well as for the solution of the minimization sampling problem of Eq. 6. The optimization is performed with a fixed budget of function evaluations: considering a normalized computational cost of a highest-fidelity evaluation (equal to 1), the overall computational cost CC is proportional to the training set sizes J l and is defined as: 

CC = J 1 + N l=2 β l J l . (13) 

Analytical Test Problems

An analytical test problem with D = 1, 2 is used (see an example with D = 1 in Figure 4). The analytical test is defined as

minimize f (x) subject to l ≤ x ≤ u, (14) 
where l i = -12 and u i = 2 (for i = 1, . . . , D) are the lower and upper bound for x, respectively, and f (x) is approximated by N = 3 fidelity levels as

s 1 (x) = D i=1 [-0.5x i (sin(0.25x i ) cos(0.5x i ) + 3 -e x i )] + 16 + N 1 (x) s 2 (x) =s 1 (x) - D i=1 0.075x 2 i + N 2 (x) s 3 (x) =s 2 (x) - D i=1 [3 cos(0.5x i -0.76)] + 6 + N 3 (x), (15) 
with N l ∼ unif[-a l R 1 ; a l R 1 ] the noise associated to the l-th fidelity, a = {0.03, 0.05, 0.10} T , and R 1 the function range of the highest fidelity level.

NACA Hydrofoil

This problem addresses the drag coefficient minimization of a NACA four-digit airfoil. The following minimization problem is solved

minimize f (x) = C D (x) subject to C L (x) = 0.6 and to l ≤ x ≤ u, ( 16 
)
where x is the design variable vector, C D and C L are respectively the drag and lift coefficient. The equality constraint on the lift coefficient is necessary in order to compare different geometries at the same lift force (equal to the weight of the object), since the drag depends strongly on the lift. The simulation conditions are: velocity U = 10 m/s, chord c = 1 m, fluid density ρ = 1, 026 kg/m 3 , with a chord based Reynolds number Re = 8.41 • 10 6 .

The hydrofoil shape (see Figure 5) is defined by the general equation for four-digit NACA foils [START_REF] Moran | An introduction to theoretical and computational aerodynamics[END_REF]. The upper (y u ) and lower (y l ) hydrofoil surfaces are computed as

       ξ u = ξ -y t sin θ ξ l = ξ + y t sin θ y u = y c + y t cos θ y l = y c -y t cos θ (17) 
with yc =        m p 2 2p ξ c - ξ c 2 , 0 ≤ ξ < pc m (1 -p) 2 (1 -2p) + 2p ξ c - ξ c 2 , pc ≤ ξ ≤ c ( 18 
)
where ξ is the position along the chord, c the chord length, y c the mean camber line, p the location of the maximum camber, m the maximum camber value, t the maximum thickness, and y t the half thickness:

y t = 5t 0.2969 ξ -0.1260ξ -0.3516ξ 2 +0.2843ξ 3 -0.1015ξ 4 . (19) 
In this work, two design spaces are defined. m ∈ [0.025, 0.065]. For both problems, the maximum camber position is fixed at p = 0.4.

Tests are run with one, two, and three fidelity levels (N = 1, 2, 3). The optimization budget is fixed at CC = 45 for both D = 1 and 2.

DTMB 5415 Model

The shape of the DTMB 5415 destroyer is optimized for minimal resistance R T . The optimization problem reads

minimize f (x) = R T (x) subject to L pp (x) = L pp,0 and to l ≤ x ≤ u, (20) 
where L pp,0 = 5.72 m (model scale) is the original length between perpendiculars. The ship is at even keel, with Froude number Fr = 0.30 and Re = 1.18 • 10 7 . The L pp constraint is automatically satisfied by the shape modification method.

The modified geometries (g) are produced by the linear superposition of D orthonormal basis functions (ψ) on the original geometry (g 0 ), as follows

g(ξ, x) = g 0 (ξ) + δ(ξ, x), (21) 
with

δ(ξ, x) = D k=1 x k ψ k (ξ), ( 22 
)
where ξ are the geometry Cartesian coordinates, whereas -1.25 ≤ {x k } D k=1 ≤ 1.25 and {ψ k } D k=1 are the reduced design variables and the eigenfunctions, respectively, provided by the design-space augmented dimesionality reduction (ADR) procedure described in [START_REF] Serani | Shape Optimization under Stochastic Conditions by Design-space Augmented Dimensionality Reduction[END_REF]. Details about the original design space definition can be found in Serani et al. (2016). In this work, two design variables are used.

The optimization is performed with N = 3 fidelity levels. For the initial sample plane (only for this problem), CFD simulations for all fidelities were run in the center of the domain, and with each design variable at either +1 or -1.

RoPax Ferry

The optimization of the RoPax ferry pertains to the minimization of the resistance over the ship displacement ∇:

minimize f (x) = R T (x)/∇(x) subject to l ≤ x ≤ u. ( 23 
)
The design variable vector is defined as x = {ABL, DF}, with the aft-body length ABL ∈ [0.3, 0.61315] and the draught factor DF ∈ [0.8, 1.2],

respectively. The original ship hull coordinates are in the domain center. The analysis is performed for a straight-ahead advancement, with the ship at even keel attitude. The operational speed is 19kn (at full scale). Computations are performed at model scale (scale factor λ = 27.14), with Fr = 0.245 and Re = 1.017 • 10 7 , which corresponds to a water density ρ = 998.2 kg/m 3 , kinematic viscosity ν = 1.105 • 10 -6 m 2 /s, and gravitational acceleration g = 9.81 m/s.

The parametric geometry of the RoPax is produced with the computer-aided design environment integrated in the CAESES ® software, developed by FRIENDSHIP SYSTEMS AG. The deformation of the hull surface is obtained by imposing the design variable values into the parametric model in CAESES ® . A surface grid of the RoPax ferry (i.e. the grid discretizing the hull surface) provides the displacement of the nodes on the hull surface.

The next step is the interpolation of the deformation vector from the surface grid to the volume grid. This is done in two steps: (1) the deformation of the hull surface is interpolated from the CAESES ® surface grid onto the patches on the hull surface of the hydrodynamic volume grid (the interpolation is performed using a system of RBFs); (2) the deformation of the hull surface is propagated in the volume grid (vertices are moved along coordinate lines normal to the surface, whereas the displacement of the nodes decays with the distance).

The optimization is performed with N = 4 fidelity levels.

CFD SOLVERS

CFD simulations for the NACA hydrofoil and the DTMB 5415 are performed with the Navier-Stokes solver ISIS-CFD developed at ECN -CNRS [START_REF] Queutey | An Interface Capturing Method for Free-Surface Hydrodynamic Flows[END_REF], available in the FINE™/Marine computing suite from NUMECA Int. The hydrodynamics performance of the RoPax is assessed by the unsteady RANS code χnavis developed at CNR-INM [START_REF] Di Mascio | On the Application of the One-Phase Level Set Method for Naval Hydrodynamic Flows[END_REF][START_REF] Di Mascio | Prediction of hydrodynamic coefficients of ship hulls by high-order Godunov-type methods[END_REF][START_REF] Broglia | Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method[END_REF].

ISIS-CFD

ISIS-CFD is an incompressible unstructured finitevolume solver for multifluid flow. The velocity field is obtained from the momentum conservation equations and the pressure field is extracted from the mass conservation constraint transformed into a pressure equation. These equations are similar to the Rhie and Chow SIMPLE method [START_REF] Rhie | A numerical Study of the Turbulent Flow Past an Isolated Airfoil With Trailing Edge Separation[END_REF], but have been adapted for flows with discontinuous density fields. Free-surface flow is simulated with a conservation equation for the volume fraction of water, discretized with specific compressive discretization schemes. The method features sophisticated turbulence models, such as an anisotropic EASM model and DES models.

The unstructured discretization is face-based. While all unknown state variables are cell-centered, the systems of equations used in the implicit time stepping procedure are constructed face by face. Therefore, cells with an arbitrary number of arbitrarily-shaped constitutive faces are accepted. The code is fully parallel using the message passing interface (MPI) protocol. A detailed description of the solver is given by [START_REF] Queutey | An Interface Capturing Method for Free-Surface Hydrodynamic Flows[END_REF]. Information on the interface-capturing scheme can also be found in [START_REF] Wackers | Free-surface viscous flow solution methods for ship hydrodynamics[END_REF].

Computational grids are created through adaptive grid refinement [START_REF] Wackers | Combined refinement criteria for anisotropic grid refinement in free-surface flow simulation[END_REF][START_REF] Wackers | Can adaptive grid refinement produce grid-independent solutions for incompressible flows?[END_REF], to optimize the efficiency of the solver and to simplify the automatic creation of suitable grids. The adaptive grid refinement method adjusts the computational grid locally, during the computation, by dividing the cells of an original coarse grid. The decision where to refine comes from a refinement criterion, a tensor field C(x, y, z) computed from the flow. The tensor is based on the water surface position and on second derivatives of pressure and velocity, which gives a crude indication of the local truncation errors. The grid is refined until the dimensions d p,j (j = 1, 2, 3) of each hexahedral cell p satisfy

C p d p,j = T r . ( 24 
)
The refinement criterion based on the second derivatives of the flow is not very sensitive to grid refinement [START_REF] Wackers | Can adaptive grid refinement produce grid-independent solutions for incompressible flows?[END_REF], so the cell sizes everywhere are proportional to the constant threshold T r .

For the MF optimization, grid adaptation is used to take into account the need for several fidelities. The interest of this procedure is that different fidelity results can be obtained by running the same simulations and simply changing the threshold T r . Thus, it is straightforward to automate the MF simulations. χnavis χnavis is a general purpose unsteady RANS solver based on a finite volume scheme, with variables co-located at cell centers. Turbulent stresses are taken into account by the Boussinesq hypothesis; several turbulence models (both algebraic and differential) are implemented. The free surface is taken into account through a single-phase level set algorithm [START_REF] Di Mascio | On the Application of the One-Phase Level Set Method for Naval Hydrodynamic Flows[END_REF][START_REF] Broglia | Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method[END_REF].

In order to treat complex geometries or bodies in relative motion, the numerical algorithm is discretized on a block-structured grid with partial overlap, possibly in relative motion [START_REF] Di Mascio | An Overlapping Grids Approach for Moving Bodies Problems[END_REF][START_REF] Zaghi | Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine[END_REF]. This approach makes domain discretization and quality control of the computational grid much easier than with similar discretization techniques implemented on structured grids with adjacent blocks. Unlike standard multi-block approaches, grid connections and overlaps are not trivial and have to be calculated in the preprocessing phase. The coarse/fine grain parallelization of the RANS code is obtained by distributing the structured blocks among available distributed and/or shared memory processors (nodes); shared memory capability (threads) is used mainly for do-loop parallelization. Preprocessing tools, which allow an automatic subdivision of structured blocks and their distribution among the processors, are used for load balancing. The communication between the processors for the coarse grain parallelization is obtained using the standard MPI library, whereas the fine grain parallelization (shared memory) is achieved through the open message passing library. The efficiency of the parallel code has been examined in earlier research, showing satisfactory results in terms of acceleration for different test cases [START_REF] Broglia | Enabling hydrodynamics solver for efficient parallel simulations[END_REF].

The solver uses a full multi grid-full approximation scheme (FMG-FAS), with an arbitrary number of grid levels. In the FMG-FAS approximation procedure, the solution is computed on the coarsest grid level first. Secondly, it is approximated on the next finer grid and the solution is iterated by exploiting all the coarser grid levels available with a V-Cycle. The process is re- 

PROBLEM SETUPS

The setups for each CFD-based design optimization problem are described in the following subsections.

NACA Hydrofoil

The computational domain runs from 11c in front of the leading edge to 16c behind the hydrofoil and from -10c to 10c vertically. Dirichlet conditions on the velocity are imposed, except on the outflow side which has an imposed pressure. The hydrofoil surface is treated with a wall law and y + = 60 for the first layer. Turbulence is modeled with the standard kω SST model [START_REF] Menter | Two-equation eddy-viscosity turbulence models for engineering applications[END_REF]. To obtain the same lift for all geometries (see Eq. 16), the angle of incidence α for the hydrofoil is adjusted dynamically during the simulations. Up to three fidelity levels are used. The initial computational grid has 2,654 cells, the refinement threshold value T r is set equal to 0.1, 0.2, and 0.4 from highest-to lowest-fidelity. This results in a cell size ratio of 4 : 1 between the refined fine and coarse grids. The final grids (G) have about 12.8k, 5.7k, and 3.7k cells, respectively (see Figure 6). Highest-to lowest-fidelity simulations require about 17, 9, and 5 minutes, respectively, of wall-clock time to converge. The resulting computational cost ratios are about β 2 = 0.5 and β 3 = 0.3.

DTMB 5415 Model

Simulations of the DTMB 5415 are performed on half geometries. The domain runs from 1.5L pp in front of the bow to 3L pp behind the stern, up to 2L pp laterally, and from -1.5L pp to 0.5L pp vertically. Dirichlet conditions on the velocity are imposed on the inflow and side faces, pressure is imposed on the top, bottom, and outflow side. The hull is treated with a wall law and y + = 60 for the first layer. Turbulence is modelled with kω SST.

The grids for the simulation of different geometries are obtained through grid deformation. Each simulation starts from the same original grid (see Figure 7a). The grid is divided in layers around the hull. For each geometry g(ξ, x), the displacement of the hull faces with respect to g 0 (ξ) is propagated through these layers [START_REF] Durand | Light and flexible Fluid/Structure Interaction, application to sailing boats[END_REF]. The displacements are multiplied with a weighting factor which goes from 1 on the hull to 0 on the outer boundaries, so that the latter are not deformed (see Figure 7b). The original grid is coarse, since de- forming these is easier and safer than for fine grids. The final grid, including all the refinement at the free surface, is created using adaptive refinement (see Figure 7c).

The initial grid has 130k cells. The thresholds for the simulations with different fidelities are T r = 0.0145, 0.0072, and 0.0036 from coarse to fine. This implies a 4 : 1 cell size ratio between the coarsest and finest grids and results in approximately 240k, 860k, and 3.4M cells respectively. On a 20-core workstation the computations take about 1.2 hours, 4 hours, and 19 hours each. The resulting computational cost ratios are about β 2 = 0.21 and β 3 = 0.06.

RoPax Ferry

The computational grid is composed of 54 blocks, for a total of about 5.4M cells (only half of the domain is discretized); the domain extends to 2L pp in front of the hull, 3L pp behind, and 1.5L pp on the side; a depth of 2L pp is imposed.

The Spalart-Allmaras turbulence model is used [START_REF] Spalart | A One-Equation Turbulence Model for Aerodynamic Flows[END_REF]. Wall-functions are not adopted, therefore y + ≤ 1 is ensured at the wall. On solid walls, the velocity is set equal to zero and a zero normal gradient is enforced on the pressure field; at the (fictitious) inflow boundary, the velocity is set to the undisturbed flow value and the pressure is extrapolated from the inside; the dynamic pressure is set to zero at the outflow, whereas the velocity is extrapolated from inner points. On the top boundary, which remains always in the air region, fluid dynamic quantities are extrapolated from inside.

Four grid levels are used (see Figure 8, from coarser to finer: G4, G3, G2, and G1), each obtained from the next finer grid with a refinement ratio equal to 2, resulting in β 2 = 0.125, β 3 = 0.0156, and β 4 = 0.002.

NUMERICAL RESULTS

The following subsections present the results for the analytical test problem and the CFD-based design optimization problems. The optimization results are assessed by the metamodel prediction uncertainty (see Eq. 5) associated with the predicted minimum and the prediction error of the minimum defined as

E p = f f min -1, ( 25 
)
where fmin is the minimum predicted by the metamodel and f min its verification (function evaluation in the predicted minimum position). Furthermore, if a reference optimum f min is available, the optimization validation error is computed as

E v = f f min -1. ( 26 
)
For the analytical test and the NACA hydrofoil problems, the single-fidelity metamodel is based on the highest-fidelity level available, the two-fidelity metamodel is based on the highest-and the lowest-fidelities, whereas an intermediate-fidelity level is added for the three-fidelity metamodel. For the SBDO problems, the results are provided with normalized design variables (i.e. x ∈ [0, 1]). Finally, the metamodel uncertainty associated with the predicted minimum is always normalized by the range of the highest-fidelity function (R 1 ).

Analytical Test Problems

The computational cost of the analytical test problems is negligible, therefore the predicted minimum is always verified with a "high-fidelity" evaluation. The performance of the method is assessed using N = 1, 2, 3 fidelities, respectively.

Figure 9 shows the convergence of the metamodel prediction uncertainty at the predicted minimum and its verification for D = 1 and 2. For D = 1, the metamodel uncertainty in the predicted minimum goes below the noise of the high-fidelity evaluations (3%R 1 ), showing the robustness of the prediction. For D = 2 only the MF optima show a metamodel-predicted uncertainty lower than the noise. For D = 2 the addition of a medium fidelity does not have a significant effect on the reduction of the predicted minimum uncertainty. Nevertheless, the results show a significant reduction in highfidelity calls, as discussed in the following.

For D = 1, all the metamodels show a similar convergence, although for N = 2 the prediction error E p is higher than for N = 1 and N = 3. Differently, for D = 2 the MF method achieves a faster convergence than using one fidelity. The results for the analytical test problems are summarized in Table 1. For D = 1, the use of more than two fidelities improves both the prediction error (from 18% to 2.8%, for N = 2, 3 respectively) and the validation error (from 2% to 0.2%, for N = 2, 3 respectively), making the one-and threefidelity level metamodel performance comparable. For D = 2 the MF method significantly reduces both prediction (from 17% to 1%) and validation (from 5% to 0%) errors compared to the single-fidelity method, achieving better overall performance.

Figure 10 shows the global metamodel prediction, along with the associated uncertainty and training sets using N = 1, 2, 3 for D = 1 at the final iteration. It is evident that the adaptive sampling method has identified the minimum basin. Figure 10a shows that using a single-fidelity metamodel (N = 1) the sampling procedure focuses only on the minimum region at the expense of domain exploration. Differently, Figures 10b and10c show that with the MF method (using N = 2 and N = 3) the sampling is not strictly performed in the minimum basin, improving the domain exploration. Furthermore, the use of more than two fidelities improves the noise filtering of the MF prediction close to the optimum. Finally, Figure 11 shows the global metamodel prediction, along with the associated uncertainty, prediction error, and training sets using N = 1, 2, 3 for D = 2 at the final iteration. The adaptive sampling method identifies the minimum location for all the cases. Using N = 2 and N = 3, the MF metamodel does not explore the corners of the domain. Therefore, the MF metamodel prediction uncertainty has higher values in the corners than using a single-fidelity metamodel (N = 1). The use of N = 3 fidelities improves the robustness of the prediction, since a lower metamodel prediction uncertainty is achieved than using N = 2. Furthermore, the MF method with N = 3 achieves the lowest prediction error overall. 

NACA Hydrofoil

Figure 12 shows the global metamodel prediction for the NACA hydrofoil optimization with D = 1, at the final iteration of the adaptive sampling procedure. The adaptive sampling method is able to identify the global minimum region for all cases (N = 1, 2, 3). Using a single-fidelity metamodel (see Figure 12a) the noise in the CFD outputs is negligible. Differently, the use of two fidelities (see Figure 12b) introduces a significant amount of noise (due to the low-fidelity CFD outputs as shown in Figure 15), negatively affecting the MF prediction. Finally, with an intermediate-fidelity level (see Figure 12c) the noise is still present, but it is filtered out effectively. The improvement of the MF metamodel prediction when adding fidelities can be associated with the different number of optimal RBF centers (see Eq. 10) used for the lowest fidelity: K * = 20 and 13, for N = 2 and 3, respec-tively. Table 2 summarizes the results for the NACA hydrofoil optimization problem. Although the lowest prediction error is achieved by the single-fidelity metamodel (N = 1), the lowest validated objective function value is achieved by the MF method.

The global metamodel prediction for the NACA hydrofoil optimization with D = 2, at the final iteration of the adaptive sampling procedure, is shown in Figure 13. The single-fidelity metamodel provides a global minimum in the neighborhood of (0.4, 0.0) with a prediction uncertainty close to 0%. The MF prediction with N = 2 identifies two minimum regions in the neighborhoods of (0.35, 0.0) and (0.65, 0.0) with about 7.2% of prediction uncertainty, whereas for N = 3 the global minimum is close to that provided by the single-fidelity metamodel. Moreover, the use of more than two fidelities reduces the prediction uncertainty in the global minimum region to 2%. (3.6k, 5.4k, 11.8k, and 36.3k cells), the dashed lines are Hexpress-only grids (14.4k, 24.5k, 37.4k, and 52.8k cells). The coarse, medium, and fine grids correspond to the fidelity 3, 2, and 1.

Finally, Figure 14 shows the horizontal velocity contours for the optimized NACA hydrofoil for D = 1 and D = 2, using single-(N = 1) and multi-fidelity (N = 2, 3) methods. The horizontal velocity at the leading edge significantly changes among each configuration. The reason for this is that a hydrofoil which is optimized for a single operating point, has a minimum thickness (for minimum pressure drag) combined with a leading edge camber line that is aligned with the incoming flow, and a stagnation point on the leading edge.

Small deviations from the true optimum place the stagnation point either on the upper or on the lower surface, which significantly changes the flow topology.

An analysis of the noise behavior in the simulations is given in Figure 15, which shows the evolution of the drag for a systematic variation of the foil thickness over a small range. The drag on adapted grids is compared with a systematic series of grids created directly by the Hexpress grid generator. These results confirm that for this case, the noise is mostly due to the adaptive refinement procedure, since the grids without adaptation produce a much smoother behavior. Several studies of the grids and the flows have revealed that the oscillations in the forces are related to small changes in the topology of the adapted grids (i.e. cells, especially in the boundary layers and at the leading edge, which are either refined or not depending on small changes in the hydrofoil geometry). The problem is particularly sensitive due to the dynamic adjustment of the foil angle of attack. Within the tolerances of this algorithm, the converged angle of attack depends on the history of the forces. Thus, if the history of the grid refinement is different, the converged angle of attack may vary, even if the final grid topology is the same. This makes it difficult to identify a single cause for the noise.

However, the noise is proportional to the numerical errors of the simulations: it is most pronounced on the coarsest grid and disappears rapidly as the adapted grids become finer. The second point is that, based on a rough estimation of the grid convergence for the two series, the adapted grids produce similar accuracies as nonadapted grids with four to five times more cells. This is due to the excellent capturing of the flow around the leading edge on the adapted grids (see Figure 7), that is essential to obtain the right forces for a lifting hydrofoil.

Uniformly refined grids need much more cells to obtain similar densities at the leading edge. Thus, the main benefit of the adaptive refinement here is a gain in efficiency for the CFD simulation. Finally, even in the Hexpress-only grids, jumps in the drag can be observed when the topology of the grids changes. However, these jumps are less frequent than for the adaptively refined grids and thus, much harder to predict. It may actually be preferable to have noise everywhere, which can be filtered with a procedure like the one described in this paper, rather than apparently smooth CFD results but with some unpredictable local jumps.

DTMB 5415 Model

Figure 16 shows the MF metamodel with N = 3 and the associated prediction uncertainty for the DTMB 5415 optimization problem. The adaptive sampling method identifies two minimum regions, in the neighborhood of (0.15, 0.75) and (0.65, 0.2). However, inspection of the actual highest-fidelity data reveals that the first optimum may be a numerical artefact in the metamodel. On the other hand, the sampling method correctly ignores the upper-right and lower-left corners, where the prediction uncertainty is high but the objective function value is high too. The optimization results are summarized in Table 3. The prediction error at the minimum is close to 0.2% and a resistance reduction equal to 4.5% is achieved. The optimal hull shape is compared to the original in Figure 17, whereas Figure 18 shows the original and optimized wetted area. It is worth noting that the optimized hull has a completely dry stern.

Figure 19 (on left side) compares the pressure distribution along the optimal and the original hull surfaces. The optimized hull has a stronger pressure gradient along the hull, but the low pressure zone is mostly perpendicular to the flow direction, so it has little influence on the drag. Figure 19 (on the right) shows the wave elevation of the original and optimized hull, which indicates the main reason for the resistance reduction. The optimal geometry has a bulge behind the stern which cre- ates a second bow wave, out of phase with the first one. The two waves cancel, which produces a flattened freesurface in comparison with the original hull. This indicates that the single-speed optimum shape is dependent on the Froude number F r: since the wavelengths change with F r, they do not cancel in off-design conditions.

Like for the NACA hydrofoil, a sensitivity analysis is performed to assess the noise in the CFD data for the DTMB 5415. Figure 20 shows the resistance variation for a small change in x 2 at fixed x 1 = 0 (i.e. close to the optimum), for the three fidelities used, confirming the noise presence in the CFD data. As for the hydrofoil problem, there is less noise for the medium grid than for the coarse grid. In the fine-grid solutions, the noise appears to be even less. However, the curve has a discontinuous slope at x 2 = -0.825.

Moreover, for this more complex case, while the noise is still related to topology changes in the adapted grids, it is possible to identify distinct sources for the noise. For the lowest-fidelity data, the noise is mostly associated with modifications in the position and the smearing of the wave system. For example, Figure 21a shows random fluctuations in the thickness and the position of the volume fraction discontinuity in the first trough and the shoulder wave. Since the amount of wetted surface has a large influence on the drag, these changes in the waves explain the oscillations in the forces. Figures 21b and21c show that this perturbation behaves like the noise for the hydrofoil: the finer the grid, the smaller the oscillations. The stern wave crest in Figure 22 shows similar oscillations. Also the gradient change in the fine grid solutions is explained by the stern wave (see Figure 22c): a topology change occurs at x 2 = -0.825 close to the stern, where a double wave ridge with a small wetted patch on the transom is replaced by a single, shallower ridge with less wetting. On the coarse grid, this effect is absent (see Figure 22a). The transom is oriented normal to the flow, so even a small change in wetted surface here has a large influence on the resistance. This may imply that the optimum for this case is located around the transition from partially wetted to dry transom flow -just like the optimum for the NACA hydrofoil occurs when the incoming flow is aligned with the camber line. However, the effect likely depends on the choice of the optimization problem: for a higher Froude number, the transom would remain dry for all geometries. This topology change in the highest-fidelity simulations, which probably occurs in a more or less chaotic way depending on small changes in the mesh, is an explanation of why the ACAS sampling requests a large number of highest-fidelity data points close to the optimum. While this may seem wasteful, it is required to filter the noise in the highest-fidelity data, so this behavior indicates that the algorithm adapts itself to the requirements of the data. 

RoPax Ferry

Figure 23 shows the MF metamodel (with N = 4) and the associated prediction uncertainty. The adaptive sampling method identifies two minimum regions in the neighborhood of (1.0, 1.0) and (0.9, 0.75). The sampling is strictly focused on the global minimum region and the overall metamodel prediction uncertainty is low. Table 4 summarizes the results of the SBDO procedure.

The MF metamodel provides a prediction error at the minimum close to 10% and an objective function improvement equal to 12.7%. The original and the optimized hull stations are compared in Figure 24: the optimized hull is characterized by a reduction of the submergence of the stern region and a less pronounced bulbous bow. As a consequence, surface pressure fields and wave patterns of the ship advancing straight ahead are significantly different in comparison to the original. In particular, the optimized hull shows a dry stern vault, with a reduction of the wetted area as a consequence (see Figure 25). Furthermore, the wave pattern of the optimized shape highlights a less pronounced wave throat and a stronger rooster tail, as shown in Figure 26. The bow wave of the optimized hull is similar to the original, with the crest for the optimized shape slightly higher and retarded due to the re-duced length and the increased height of the bulbous bow (see Figure 24).

CONCLUSIONS AND FUTURE WORK

A generalized multi-fidelity metamodel, using an arbitrary number of fidelity levels with regression, has been presented for design-and operational-space exploration with a limited budget of function evaluations. Designed to deal with data affected by noise, the machine learning method used is based on stochastic radial basis functions with least squares regression and in-the-loop optimization of the metamodel parameters. The metamodel is dynamically updated by an adaptive sampling procedure, based on the minimization of an aggregate function of the optimization objective and the metamodel prediction uncertainty. The method has been tested on an analytical test problem, a NACA hydrofoil optimization, the DTMB 5415 hull-shape optimization, and the hull-shape optimization of a RoPax ferry.

The assessment of the MF metamodel performance has been performed, based on its ability to identify the optimum, the associated metamodel prediction uncertainty, the error between the predicted objective value and its verification (through a highest-fidelity evaluation), and the error between the verified minimum and the real global optimum (when available).

The following conclusions can be drawn:

1. The metamodel prediction uncertainty associated with the predicted minimum is generally low: on average it is close to 2.2% for the analytical tests and 2.1% for the CFD-based design optimization problems, respectively. In particular, for the analytical tests the MF prediction uncertainty of the optimum is always lower than the noise of the highest-fidelity function (see Figure 9), indicating the robustness of the optima achieved.

2. Using the multilevel MF metamodel provides better performance than both a single-fidelity and a two-level metamodel, in terms of metamodel prediction and optimization validation. Considering the analytical tests and the NACA hydrofoil problem an average prediction error of 4.4, 5.1, and 1.6% (for N = 1, 2, and 3, respectively) is achieved, whereas the average optimization validation error is equal to 1.3, 0.8, and 0.1% (for N = 1, 2, and 3, respectively). These re-sults underline that the single-fidelity and the MF with N = 2 are almost comparable, whereas adding an intermediate-fidelity level has improved the MF metamodel performance from the optimization viewpoint. The reason for this is that the extra fidelity levels add robustness, providing more reliable noise filtering. A further increase of the number of fidelities may leads to further improvements of the method performance, based on a trade-off between the correlation among the fidelity levels and their computational cost. Indeed, cheaper models may lead to significant computational cost reduction but may be uncorrelated with higher-fidelity levels, thus being misleading to the MF method. Differently, fidelity levels with a better correlation may have a comparable computational cost, thus not producing significant reduction of the computational cost.

3. The MF metamodel, in combination with the aggregate-criteria adaptive sampling method, has allowed for a wider exploration of the designvariable space compared to the single-fidelity. This is because, in general, the lower the fidelity, the higher the associated noise (see e.g. Figures 15 and20). Therefore, the metamodel prediction uncertainty associated with the lowest fidelities is higher and distributed over a wider region of the design-variables space. For this reason, even if the ACAS tends to focus on the global minimum basin, its combination with the MF method has provided a better approximation of the whole design-variable space than using a single-fidelity metamodel (see Figures 10 and12).

4. The adaptive sampling method has clustered the training points, especially in the most noisy regions of the design-variable space (see e.g. Figures 10 and 16). This behavior is due to the use of regression with aggregate criteria for the adaptive sampling (see Eq. 6), as the prediction uncertainty does not vanish at the training points when noise is present. Thus, it may be needed to reconsider the definition of the metamodel prediction uncertainty in the presence of noise.

5. Even if the adaptive grid refinement and the multigrid resolution methods cannot be directly compared, they perfectly fit the MF method philosophy and formulation. They represent a good example of simulation methods that naturally produce results spanning a range of fidelity levels and therefore represent a natural fit for MF machine learning methods. research is focusing on the capability of the proposed MF method to identify the noise associated with each fidelity level. As an example, considering the analytical test problem with D = 1 and N = 3, Figure 27 shows the convergence of the NRMSE between the metamodel prediction of the function for each level l and the corresponding training set, along with the training set sizes J l . The lowest-fidelity metamodel (l = 3) converges towards the nominal standard deviation (σ) of the input noise, whereas the metamodels l = 1 and l = 2 are still far from convergence. This is due to the training set size, too small for these fidelity levels. The present result shows how the method can be used to estimate the noise associated to CFD outputs, provided that a large-enough training set is available. The lowest-fidelity metamodel (l = 3) starts to converge towards the nominal standard deviation with a training set size of about 25 samples. This means that such approach would be effective in identifying the noise standard deviation in the lowfidelity training sets for the SBDO problems presented in this work.

Future work includes the assessment of different adaptive sampling methods and the comparison with exact interpolation for SBDO and UQ problems. The MF method will be compared with Gaussian process [START_REF] Wackers | Adaptive N-Fidelity Metamodels for Noisy CFD Data[END_REF] and multi-index stochastic collocation [START_REF] Piazzola | Uncertainty Quantification of Ship Resistance via Multi-Index Stochastic Collocation and Radial Basis Function Surrogates: A Comparison[END_REF] methods. A different definition of the metamodel prediction uncertainty will be investigated, in order to address both the presence of the noise and the prediction uncertainty associated to regression.

Finally, the possibility of selecting RBF centers will be addressed using clustering metrics such as the withincluster sums of squares [START_REF] Ketchen | The application of cluster analysis in strategic management research: an analysis and critique[END_REF] and the silhouette [START_REF] Rousseeuw | Silhouettes: A graphical aid to the interpretation and validation of cluster analysis[END_REF] in combination with the leave-one-out cross-validation.

Question 1: In the 5415 results, the minimum in the finegrid results at x1=0, x2 = -0.825 is considered related with a genuine change of the transom flow, while the opposite trend of the coarse grid and the unclear trend of the intermediate grid are qualified as scatter. But the difference between fine and intermediate grid here is almost within the uncertainty of the metamodel and comparable with its prediction error. So, how to decide what is a trend and what is not?

Question 2: The RoPax test case shows a quite large uncertainty of the MF metamodel (Table 4). What happens here? Clearly, the steps in number of grid cells are very large here. Does this indicate that the results at different levels are insufficiently correlated?

Question 3: The adaptive sampling methods help keeping the number of function evaluations small. But in this case, conclusion 3 mentions that adaptive sampling tends to insufficiently explore the entire design space, but the noise in the data helps. . . Should not this ACAS process then only be started after running at least a reasonablysized DoE to first get a global picture?
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Answer 1: It is not easy here to distinguish between physical effects and numerical scatter. Inspection of different simulations throughout the design space shows that the topology bifurcation on the fine grid is systematic (the wetted and dry transom occur in separate parts of the design space), while the bow wave variations on the coarser grids have a random behavior everywhere. However, close to the bifurcation boundary, even the transom flow variation should be considered as numerical scatter, since the bifurcation may be triggered by small variations in the grid, etc. Thus, the variation in the fine-grid results of Figure 20 is at least partially due to scatter.

The significance for metamodelling is that, in the proximity of such a physical bifurcation, small changes in the numerics may provoke large modifications of the simulation result. And moreover, such modifications may not diminish as the grid is refined (which is the case here). This implies that the metamodel noise canceling must be able to detect and handle the case where the high-fidelity data are noisy; thus the importance of noise canceling in all (LF and multi-fidelity error) metamodels.

Answer 2: There are several reasons for the large uncertainty associated to the metamodel prediction at the optimum point. On the one hand, it is true that toocoarse meshes may increase the prediction uncertainty. On the other hand, the training sets for the highest fidelities are quite sparse, which is desirable but can also cause larger prediction uncertainties. It may be noted that using MF approaches introduces additional degrees of freedom in the form of procedural parameters with the underlying aim of optimizing the optimization procedure itself for two objectives: reducing the computational cost and increase the model/optimization accuracy. Ideally, this produces a Pareto set of approaches where the proper trade off between cost and accuracy is sought after. This is problem and solver dependent and should be assessed on a case-by-case basis. To answer the question, we may say that for the RoPax case our procedure was likely unbalanced towards reducing the computational cost.

Answer 3: Ideally, the ACAS process provides a balance between exploration and exploitation of the design space, since it combines the objective function and the uncertainty. Nevertheless, this balance is problem dependent, being affected by the nature of the objective function and, if MF approaches are used, the relationship between different fidelity levels. Here, we found that adding fidelity levels (and therefore noise) increases on average the overall prediction uncertainty and therefore causes the exploration of broader design regions. Nevertheless, ACAS is not the only option that is worth considering. For instance, a study on adaptive sampling approaches for two-fidelity optimization via CFD has been shown in Serani et al. (2019). The suggestion of varying the approach as the training proceeds is certainly very interesting. We may think of adding dynamic coefficients in the ACAS criterion to make a smooth transition from exploration-oriented to exploitation-oriented sampling.

Dr. Domenico Quagliarella, C.I.R.A., Centro Italiano Ricerche Aerospaziali, Capua, Italy d.quagliarella@cira.it

The authors introduce a conceptual framework in their work to systematically deal with multi-fidelity approaches in optimization problems of engineering interest. One of the most pressing problems in the use of multi-fidelity methods in engineering design applications is that it is often complicated to highlight the advantages of a multi-fidelity method objectively.

The proposed framework takes into account both the different precision and the different noise levels characteristic of the different analysis levels used. Also, all comparisons can be made by adequately taking into account the computational effort of each level of analysis.

The approach developed by the authors is illustrated both with a series of problems of increasing difficulty ranging from a simple analytical function to the optimization of the shape of the hull of a RoPax Ferry with RANSE unsteady 3D analysis.

The approach is original and deserves further development. In particular, it will be interesting to see how the proposed framework behaves when the number of design parameters grows. The proposed framework does not directly depend on the number of variables, so the multi-loyalty approach can be expected to continue to work. However, the number of design variables directly influences the precision and noise levels of the metamodels that can be used at lower fidelity levels or in advanced optimization algorithms and which, therefore, can influence the predictive performance of the proposed framework.
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The methodology proposed can be ideally extended to any dimension of the design space. Nevertheless, we fully agree that an assessment of the method performance varying the design-space dimensionality is highly desirable to discuss opportunities and limits of the approach proposed. It may be said that the curse of dimensionality affects not only metamodeling but also the general problem of design optimization, especially if a global optimum is desired. Furthermore, it is possible that multi-fidelity metamodels offer a larger advantage in more dimensions, since the sampling of a big design space can be performed efficiently with many lowfidelity points. Therefore we happily accept the suggestion of looking into dimensionality issues with the aim of answering the following questions: (a) how can metamodels help solving high-dimensional design optimization problems? (b) How can multi-fidelity metamodels help further reducing the computational cost of highdimensional design optimization problems? (c) What is the computational cost required for accurate metamodeling versus the design-space dimension?

Lastly, we would like to add that solving the curse of dimensionality for shape optimization problems has been one of the main research topics by the authors in the recent years. Whether metamodels are used or not, a careful assessment and dimensionality reduction of the design space offer great opportunities for tackling efficiently high-dimensional problems and alleviating the curse of dimensionality (see, e.g., [START_REF] Serani | Shape Optimization under Stochastic Conditions by Design-space Augmented Dimensionality Reduction[END_REF].
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 1 Figure 1: Example of MF metamodel with N = 2.

  as the metamodel prediction uncertainty vector, and k = maxloc(U), add the new training point to the k-th training set T k (as well as to the lower-fidelity sets from k + 1 up to k = N ). The identification of the new training points is based on the aggregate-criteria adaptive sampling (ACAS, see Figure 2) presented in Serani et al. (2019). It aims to find points with large prediction uncertainty and small objective function value. Accordingly, ACAS identifies a new training point by solving the single-objective minimization x = argmin x f (x) -U f (x) .

Figure 2 :

 2 Figure 2: Example of the adaptive sampling method using one fidelity without noise: (a) shows the initial metamodel with the associated prediction uncertainty and training set; (b) shows the position of the new training point and the new metamodel prediction and its uncertainty.
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 3 Figure 3: Example of least squares regression by stochastic RBF.
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 4 Figure 4: Analytical test problem with D = 1 and N = 3 fidelities, and associated noise bands.
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 5 Figure 5: NACA 4-digit hydrofoil.
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 6 Figure 6: NACA hydrofoil computational grids (G) for ISIS-CFD: (a) G1, 12.8k cells, (b) G2, 5.7k cells, and (c) G3, 3.6k cells.

Figure 7 :

 7 Figure 7: The different steps of the ISIS-CFD grid creation for the DTMB 5415 optimization: (a) original, (b) after deformation, and (c) after adaptive refinement.
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 8 Figure 8: RoPax Ferry grids: from left to right G1, G2, G3, and G4.

Figure 9 :

 9 Figure 9: Analytical test (top D = 1, bottom D = 2) convergence of the uncertainty associated with the predicted minimum (left) and minimum verification (right).
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 10 Figure 10: Analytical test MF metamodels for D = 1 with (a) N = 1, (b) N = 2, and (c) N = 3.

Figure 11 :

 11 Figure 11: Analytical test with D = 2. Form top to bottom: MF metamodels, associated prediction uncertainty, and prediction error. From left to right N = 1, 2, 3.

Figure 12 :

 12 Figure 12: NACA hydrofoil MF metamodels for D = 1 with (a) N = 1, (b) N = 2, and (c) N = 3.

Figure 13 :

 13 Figure 13: NACA hydrofoil MF metamodels (top) and associated prediction uncertainty (bottom) for D = 2: from left to right N = 1, 2, 3.

Figure 14 :

 14 Figure 14: NACA hydrofoil optimal shapes along with horizontal velocity field: from left to right N = 1, 2, and 3; top D = 1, bottom D = 2.

Figure 15 :

 15 Figure15: NACA hydrofoil: drag as a function of t for c = 0.0475 and p = 0.475. The drawn lines are adapted grids (3.6k, 5.4k, 11.8k, and 36.3k cells), the dashed lines are Hexpress-only grids (14.4k, 24.5k, 37.4k, and 52.8k cells). The coarse, medium, and fine grids correspond to the fidelity 3, 2, and 1.

Figure 16 :

 16 Figure 16: DTMB 5415 MF metamodels (left) and associated prediction uncertainty (right) with N = 3.

Figure 17 :

 17 Figure 17: DTMB 5415, original (left) and optimized (right) hull shapes.

Figure 18 :

 18 Figure 18: DTMB 5415, mass-fraction on the hull-surface: (top) original, (bottom) optimized; stern detail on the right.

Figure 19 :

 19 Figure 19: DTMB 5415, hull-surface pressure (left) and wave elevation (right): (top) original, (bottom) optimized.

Figure 20 :

 20 Figure 20: DTMB 5415 resistance sensitivity to x2 variation (x1 = 0).
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 21 Figure 21: Bow wave: from top to bottom x2 = -0.85, -0.825, -0.8.

Figure 22 :

 22 Figure 22: Stern wave pattern: from top to bottom x2 = -0.85, -0.825, -0.8.
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 23 Figure 23: RoPax MF metamodel (top) and associated prediction uncertainty (bottom) with N = 4.
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 2425 Figure 24: Original (black lines) and optimized (blue lines) shapes of the RoPax ferry with the free-surface line (FS).

Figure 26 :

 26 Figure 26: RoPax ferry non-dimensional wave patterns. Colors represent non-dimensional wave elevation.

Figure 27 :

 27 Figure 27: Analytical test problem (D = 1 and N = 3). On top the training set size, on the bottom the convergence of the NRMSE between the metamodel prediction of the l-level and the corresponding training set.

Table 1 :

 1 Analytical test, summary of the results.

	D N	x1	x2	U fmin %	fmin	fmin	|Ep|% |Ev|% J1 J2 J3
	1	1	0.6666		0.09	7.5735 7.5970	0.31	0.00	29	
	1	2	0.9995		2.07	6.3524 7.7500	18.0	2.01	9		91
	1	3	0.7905		2.18	7.8280 7.6140	2.81	0.22	7	7	94
	2	1	0.3229 -0.2675	6.02	15.729 15.984	17.1	5.09	29	
	2	2	0.7855	0.5154	1.33	15.350 15.239	0.73	0.19	13		82
	2	3	0.7874	0.6749	1.83	15.404 15.210	1.28	0.00	8	9	97
						10					

Table 2 :

 2 NACA hydrofoil optimization problem, summary of the results.

	D	N	x1	x2	U fmin %	fmin	fmin	|Ep|% |Ev|% J1 J2	J3
	1	1	0.4797		0.16	7.2177E-3 7.2230E-3	0.07	0.15	45
	1	2	0.4518		3.96	7.1915E-3 7.2207E-3	0.40	0.12	14	103
	1	3	0.4162		2.79	7.1122E-3 7.2204E-3	1.50	0.12	7	10 104
	2	1	0.3799 0.0000	0.03	7.2130E-3 7.2140E-3	0.01	0.03	45
	2	2	0.6518 0.0000	7.20	7.1841E-3 7.2893E-3	1.44	1.07	6	130
	2	3	0.3615 0.0000	1.99	7.1616E-3 7.2182E-3	0.78	0.09	7	19	96
	Reference 0.3776 0.0000			7.2116E-3			

Table 3 :

 3 5415 optimization problem, summary of the results.

	D N	x1	x2	U fmin %	fmin	fmin	|Ep|% ∆f % J1 J2 J3
	2	3	0.5506 0.1330	0.22	49.4710 49.3626	0.22	-4.5	7	8	30

Table 4 :

 4 RoPax ferry optimization problem, summary of the results.

	D N	x1	x2	U fmin %	fmin	fmin	|Ep|% ∆f % J1 J2 J3 J4
	2	4	0.9158 1.0000	22.4	1.4331E-4 1.6074E-4 10.85	-12.7	8	9	10 50
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