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ABSTRACT

This paper introduces a computationally efficient technique
for estimating high-resolution Doppler blood flow from an ul-
trafast ultrasound image sequence. More precisely, it consists
in a new fast alternating minimization algorithm that imple-
ments a blind deconvolution method based on robust princi-
pal component analysis. Numerical investigation carried out
on in vivo data shows the efficiency of the proposed approach
in comparison with state-of-the-art methods.

Index Terms— ultrafast ultrasound, Doppler, blood flow,
clutter suppression, robust PCA, blind deconvolution.

1. INTRODUCTION

Estimating high-sensitivity and high-resolution blood flow
from an ultrafast ultrasound (US) sequence has received a
great attention from the medical imaging community over
the last few years. The main objective is to provide a clear
and accurate 3D visualization of vascular networks inside
the human body and consequently lead to a better prognosis
and treatment of many related diseases such as brain gliomas
(tumors) or peri-tumoral infiltration. To this end, the spatio-
temporal singular value decomposition (SVD) of the dataset
Casorati matrix, able to suppress temporally clutter signals
originating from quasi-static tissues from blood flow, is the
most widespread method [1]. Unfortunately, the manual
choice of the correlation thresholds for separating the blood
space from the tissue and noise subspaces partially mitigates
the applicability of this method. To overcome this drawback,
many efforts have been made in the literature, among which
the most popular relies on the robust principal component
analysis (RPCA) [2], or its variants, e.g, [3]. Moreover, to
account for the loss of spatial resolution of the Doppler data
caused by the system point spread function (PSF), recently a
deconvolution step was embedded in RPCA-based methods,
allowing high-resolution and high-sensitivity blood flow esti-
mation [4]. This method requires the knowledge of the PSF,
that can be experimentally measured or estimated jointly with
the blood flow, as suggested by the recent blind deconvolution
(BD) approach, called BD-RPCA in [5]. Despite its accuracy,
BD-RPCA suffers from a high computational cost.

In this paper, we propose a new computationally efficient
algorithm in which the nuclear norm term related to the BD-
RPCA model is replaced by a fixed rank constraint, followed
by a fast partial SVD-based alternating algorithm. The re-
mainder of the paper is organized as follows. The background
about the model and related works is given in Section 2. The
proposed fast blind algorithm of blood flow estimation is de-
tailed in Section 3. Finally, numerical results on in vivo ultra-
fast US data are regrouped in Section 4, showing the improve-
ment achieved by the proposed approach over some existing
techniques.

2. BACKGROUND

2.1. Model formulation

Let us consider a temporal in-phase and quadrature (IQ)
Doppler ultrafast US sequence, composed of Nt frames of
sizeNx×Nz , with depthNz , probe widthNx and acquisition
timeNt. S ∈ CNzNx×Nt denotes the related Casorati matrix.
The tissue-blood flow model is written as follows [1]:

S = T +B +N , (1)
where T ,B,N ∈ CNzNx×Nt are the tissue, blood and ad-
ditive noise matrices, respectively. To avoid further nota-
tions, the vectorized counterparts of these matrices are, when
needed, considered hereafter and defined using the same no-
tations. In most practical applications, the blood flowB is as-
sumed to be sparse, conventionally promoted by the l1-norm,
while the tissue T possesses a slight change over time, mod-
elled by the nuclear norm ||.||∗. Also, N is assumed to be an
additive Gaussian noise. The main objective of this work is to
recover B and T from S based on building an optimization
problem imposing appropriate constraints on these matrices.

2.2. Blind deconvolved RPCA

An appealing method, called blind deconvolved robust prin-
cipal component analysis (BD-RPCA), has been recently pro-
posed in [5]. It aims at reconstructing a high resolution blood
flow X simultaneously with the tissue component T and the
system PSF He from the acquired US Doppler data. The as-
sociated optimization problem is formulated as follows:



[X̂, Ĥe, T̂ ] = arg min
X,He,T

{
||S −He ~X − T ||2F

+ λ||X||1+ρ||T ||∗} , s.t. |F (He)|= H̃, (2)
where ~ denotes the 2D convolution, .̂ the estimated vari-
ables, ||.||2F the Frobenius norm and λ, ρ > 0 two hyper-
parameters balancing the trade-off between the sparsity of the
blood and the low-rankness of the tissue [2, 3]. H̃ is the mag-
nitude of the 2D Fourier transform (F ) of the PSF that can be
straightforwardly computed from S− T̂ using homomorphic
filtering [6]. For computational efficiency, the above 2D con-
volution, supposed circulant, is rewritten as an element-wise
multiplication in the Fourier domain. To solve (2), a two-step
alternating algorithm was proposed in [5], resumed hereafter.

i) For fixed X and T and using spatio-temporally invariant
assumption on PSF He, (2) can be reformulated as:

[Ĥe
(k+1)

] = arg min
He

{
||
∑
Nt

(
S − T (k+1)

)
− He ~

∑
Nt

(X(k+1))||2F

}
, s.t.|F (He)|= H̃, (3)

where
∑
Nt

(Z) stands for the temporal average of a 2D ma-

trix Z obtained by taking the mean along the time dimen-
sion of the 3D version of this matrix. Then, (3) can be
solved by the blind deconvolution (BD) technique [7].

ii) For a fixed He, (2) reads as:

[X̂
(k+1)

, T̂
(k+1)

] = argmin
X,T

{
||S −H(k+1)

e ~X − T ||2F

+ λ||X||1+ρ||T ||∗} . (4)

To solve (4), the alternating direction method of multipliers
(ADMM) was used [4, 8]. It consists in performing, at each
iteration (k + 1), the five following main steps:

T̂
(k+1)

= argmin
T
{ρ||T ||∗

+
µ

2
||T − (S −H(k+1)

e ~X(k) +
1

µ
ν(k))||2F

}
,

ẑ(k+1) = argmin
z

{
λ||z||1+

µ

2
||z − (X(k) +

1

µ
w(k))||2F

}
,

(5)

(6)

X̂
(k+1)

= argmin
X

{µ
2
||S −H(k+1)

e ~X − T (k+1)

+
1

µ
ν(k))||2F+

µ

2
||X − z(k+1) +

1

µ
w(k)||2F

}
,

ν̂(k+1) = νk + µ(S −H(k+1)
e ~X(k+1) − T (k+1)),

ŵ(k+1) = ν(k) + µ(X(k+1) − z(k+1)),

(7)

(8)

(9)

where z is an auxiliary variable equal toX , ν the Lagrange
multiplier and µ the Lagrangian penalty parameter.

Although BD-RPCA has been shown to be an efficient
method for estimating high-resolution blood flow together

with the tissue and the PSF, it is not computationally attrac-

tive. Indeed, the estimation of T̂
(k+1)

in (5), is a convex
problem that has an analytical solution corresponding to a
singular value thresholding (SVT) [9]. This step is computa-
tionally expensive since it requires a full SVD decomposition
of a large filtered matrix, of the size of the acquired spatio-
temporal data.

3. PROPOSED FAST BD-RPCA METHOD
The main aim of the proposed algorithm is to reduce the com-
putational time of BD-RPCA by introducing a fast variant of
(4) and subsequently combining it with BD as explained in
subsection 2.2. More precisely, instead of imposing the nu-
clear norm relaxation in (4), the rank is itself constrained as
follows:

[X̂
(k+1)

, T̂
(k+1)

] = argmin
X,T

{
||S −H(k+1)

e ~X − T ||2F

+ λ||X||1} s.t. rank(T ) = rf , (10)

where H(k+1)
e is assumed to be known from the previous it-

eration and rf is a rank hyperparameter that needs to be tuned.
Interestingly, the reference value of rf can be efficiently esti-
mated using a two-step algorithm called Rank Estimation de-
veloped for low-rank matrix completion problem in [10]. The
idea behind this technique is to find the index i corresponding
to the rank value that minimizes the following cost function:

R(i) =
σi+1 + σ1

√
i
ζ

σi
, (11)

where ζ =
|CS |√

NzNx×Nt
with |CS | and σi respectively the car-

dinality, and the singular values of the acquired Casorati ma-
trix.

To solve (10), we propose herein a two-step alternating
minimization algorithm as follows:

T̂
(k+1)

= argmin
T

{
||
(
S −H(k+1)

e ~X(k)
)
− T ||2F

}
s.t. rank(T ) = rf ,

X̂
(k+1)

= argmin
X

{
||
(
S − T (k+1)

)
−H(k+1)

e ~X||2F

+ λ||X||1} .

(12)

(13)

Subproblem (12) can be rapidly solved based on computing
a partial SVD decomposition with only the first rf compo-
nents of S−H(k+1)

e ~X(k) [11]. In particular, for small rf ,
this decomposition can be performed consistently faster when
using the Lanczos bidiagonalization algorithm with partial re-
orthogonalization through lansvd routine from PROPACK li-
brary [12, 13]. Subproblem (13) consisting in a well-known
l1 regularized least absolute shrinkage and selection opera-
tor (LASSO) regression can be simply solved efficiently by
means of an ADMM-based algorithm [8].

The pseudo algorithm associated with the proposed
method, called fast BD-RPCA, is reported in Algorithm
1. The initial values of the blood and tissue are guessed using
SVD for a more efficient convergence of the algorithm [5].



Algorithm 1: fast BD-RPCA
Input: Casorati matrix S
Initialize: ε = 10−6, [X(0),T (0)] = SVD(S)
while ||X(k+1) −X(k)||F> ε do

1. compute temporal average: M (k+1)
ST =

∑
Nt

(
S − T (k)

)
2. estimate PSF: H(k+1)

e = BD
(
M

(k+1)
ST

)
, u. sing Eq. (3)

3. update [X(k+1),T (k+1)] using new fast procedure:

(a) compute a partial SVD and T (k+1):
[U,∆, V ] = SVD

(
S −H(k+1)

e ~X(k), rf

)
,

T (k+1) = U∆V T

(b) estimateX(k+1) = LASSO
(
S − T (k+1),H(k+1)

e

)
using Eq. (13)

end
Output: X(k+1), T (k+1) and H(k+1)

e

4. NUMERICAL RESULTS

This section regroups numerical results on in vivo US data to
demonstrate the improvement achieved by the proposed ap-
proach over other existing methods including SVD [1], ran-
domized low-rank & sparse matrix decomposition (GoDec)
[14] and BD-RPCA [5]. All the experiments were con-
ducted using MATLAB R2019b on a computer with Intel(R)
Core(TM) i5-8500 CPU @3.00 GHz and 16GB RAM. 1

4.1. Data acquisition
The ultrafast Doppler data was acquired in Regional Univer-
sity Hospital Bretonneaux of Tours – Department of Neuro-
surgery from a patient undergoing brain surgery with open
skull whose dura mater had been removed. The AixplorerTM
(Supersonic Imagine) ultrasound scanner with the SL10-2
probe (192 elements) was used for US acquisition. The
research package (SonicLab V12) was used to obtain a par-
ticular US sequence of 1000 frames, compounded angles
[−5o, 0o,+5o] with pulse repetition frequency PRF=3KHz,
frame rate 1KHz, imaging depth [1mm-40mm]. The resultant
dataset size was 260× 192× 1000 pixels.

Table 1. Optimal hyperparameter setting
SVD Tc = 100, Tb = 150

GoDec rG = 41, τG = 5× 103

BD-RPCA λB = 0.0051, µB = 0.0403, ρB = 1

fast BD-RPCA λf = 8× 10−5, rf = 41

4.2. Performance comparison
To ensure fair comparison, the hyperparameters correspond-
ing to each tested method were tuned by cross-validation to

1The Matlab scripts implementing the method and generating all figures
are available at github.com/phamduonghung/fast_BDRPCA

the best possible values. Table 1 regroups the optimal hyper-
parameters associated with SVD, GoDec, BD-RPCA, and fast
BD-RPCA. Moreover, for visualization purpose, the Power
Doppler image (in dB) was used and defined from the esti-
mated blood flowX , for a given position (x, z), as follows:

IPD(x, z) = 10 log 10

(
1

Nt

Nt∑
k=1

X(x, z, k)2

)
.

In Fig. 1, we depict the Power Doppler image results
obtained by the four methods carried out on peritumoral data.
Visually examining these plots, one may remark that the
Power Doppler images estimated by both SVD and GoDec
are very noisy and blurred while those given by BD-RPCA
and fast BD-RPCA, overall, provide clear and similar pictures
of vessel structures with high resolution. To quantitatively
compare these methods, contrast ratio (CR) was used [15]:

CR[dB] = 20 log 10

(
µR2

µR1

)
,

where µR1
(resp. µR2

) is the mean value of intensities in the
white (resp. green) rectangular patch R1 (resp. R2) character-
izing the background (resp. the blood signal). Furthermore,
for each Power Doppler image, R1 is kept fixed as a reference
patch while R2 is moved around in a such way that it occupies
all non-overlapping positions of the image (more details the
reader refers to [5]). The resulting CR values are represented
by a boxplot as in Fig. 2. From this boxplot, one can notice
that the fast proposed algorithm exhibits an equivalent result
to BD-RPCA, and outperforms SVD and GoDec.

Moreover, Table 2 shows the running time corresponding
to each studied method on the peritumoral dataset. It is no-
ticeable that as expected, the computational times obtained by
both SVD and GoDec are the lowest while the one given by
the fast proposed algorithm is significantly lower than BD-
RPCA. A much lower computational time of SVD or GoDec
stems from the fact the the blind deconvolution approach is
at the expense of much more running time because of the al-
gorithmic complexity, but ensures considerably higher reso-
lution results.

To conclude, the above numerical in vivo results plead in
favour of using fast BD-RPCA, not requiring PSF measure-
ments and well balancing the trade-off between the low com-
putational cost and the high quality blood flow reconstruction,
compared to the other studied methods.

Table 2. Running times in s for each method
SVD GoDec BD-RPCA fast BD-RPCA
10.38 3.7 219.9 89.2

5. CONCLUSION
In this paper, we introduced a novel fast algorithm for estimat-
ing the blood flow and the tissue from an ultrafast sequence of
US images, based on improving the model of BD-RPCA. The
proposed technique not only enabled to handle the limitation
related to the high computational cost of the latter but also
providing similar recovery performances. Numerical simu-
lations carried out on in vivo peritumoral data showed the

github.com/phamduonghung/fast_BDRPCA
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Fig. 1. Power Doppler images obtained by (a): SVD; (b): GoDec; (c) BD-RPCA; (d): fast BD-RPCA.
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Fig. 2. CR measurements for the different tested methods.

the benefits of using the proposed algorithm. Future work
could be devoted, for instance, to evaluate the clinical contri-
bution of the proposed method in the prognosis and treatment
of blood-related diseases, or to extend the proposed method
to a spatio-temporally invariant PSF model.
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