10th iEMSs Conference 2020 International Environmental Modelling and Software Society

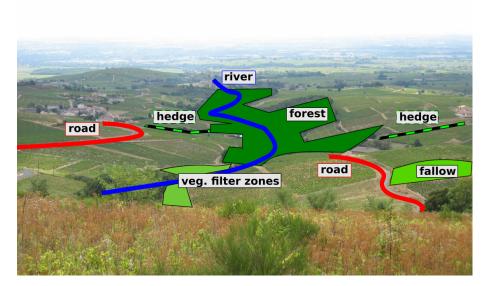
Sensitivity analysis to evaluate a new spatialized process-oriented model of water and pesticide transfers at the catchment scale

<u>Emilie Rouzies 1</u>, Claire Lauvernet ¹, Bruno Sudret ³, Clémentine Prieur ⁴, Robert Faivre ⁵, Arthur Vidard ²

¹INRAE, UR RiverLy, Villeurbanne, France

²INRIA, Grenoble, France

³ETH Zürich, Institute of Structural Engineering, Zürich


⁴UGA, LJK, Inria Airsea, Grenoble, France

⁵INRAE, UR MIAT, Toulouse, France

Context

Context

Emilie Rouzies (INRAE, France)

Context

How to tackle pesticide transfers and fate on small agricultural catchments with modelling tools ?

 $\checkmark~$ Integrating landscape elements diversity

Context

How to tackle pesticide transfers and fate on small agricultural catchments with modelling tools ?

 $\checkmark~$ Integrating landscape elements diversity

✓ Exploring landscape management scenarios

Context

How to tackle pesticide transfers and fate on small agricultural catchments with modelling tools ?

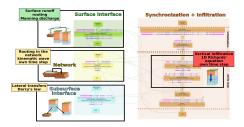
 $\checkmark~$ Integrating landscape elements diversity

✓ Exploring landscape management scenarios

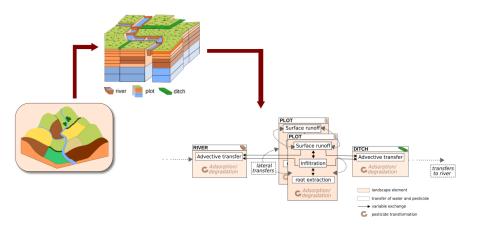
 \Rightarrow Development of the **PESHMELBA** model (Rouzies et al. 2019)

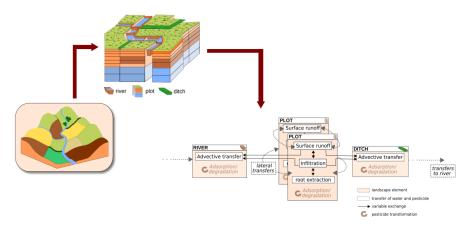
✓ Simulation of heterogenous landscapes composed of plots, vegetative filter zones, hedges, ditches and rivers

- ✓ Simulation of heterogenous landscapes composed of plots, vegetative filter zones, hedges, ditches and rivers
- ✓ Water transfers on surface and subsurface



- ✓ Simulation of heterogenous landscapes composed of plots, vegetative filter zones, hedges, ditches and rivers
- ✓ Water transfers on surface and subsurface
- $\checkmark~$ Solute advection, adsorption and degradation




- ✓ Simulation of heterogenous landscapes composed of plots, vegetative filter zones, hedges, ditches and rivers
- ✓ Water transfers on surface and subsurface
- ✓ Solute advection, adsorption and degradation
- ✓ One module ≡ one process or ensemble of processes on a landscape element
- ✓ Coupling of modules within the OpenPALM coupler (Fouilloux and Piacentini 1999) turning the structure flexible

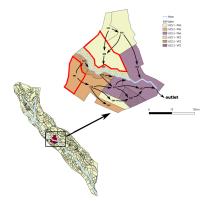
Emilie Rouzies (INRAE, France)

⇒Complex structure may lead to additionnal difficulties to diagnose model behavior!

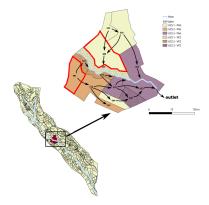
Objectives

Necessary to quantify and reduce the uncertainty associated to the model output variables, particularly for decision-making. Global Sensitivity Analysis (GSA) is a necessary step.

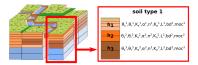
- ? Which tools to address the question of GSA in a modular, spatialized model of pesticide transfers?
- ? How can GSA be a tool to assess physical processes representation in PESHMELBA model ?


Study case

La Morcille catchment (France)


Study case

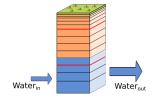
La Morcille catchment (France)



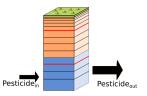
Study case

La Morcille catchment (France)

3 soil types : 15 horizons



Soil	Plots/VFZ	River	Vegetation	Pesticide
thetas	hpond	hpond	manning	Kfoc
thetar	adsorpthick	di	Zr	DT50
Ks		Ks	F10	
alpha		manning	LAImax	
n				
Ko				
L				
bd				ĺ
moc				


 \Rightarrow 145 parameters to be sampled but simulations computationally costly : limited to Latin Hypercube Sample of 4,000 points

Target output

✓ Cumulated water lateral flow (saturated flow only)

✓ Cumulated pesticide lateral flow (advection/saturated flow only)

GSA methods

✓ Variance-based Sobol method (Sobol 1993)

Decomposition of the output variance in conditional variances. $\underline{\land}$ Sobol method requires a very large sample that cannot be computed \Rightarrow Use of **Polynomial Chaos Expansion** (PCE) : surrogate method that provides Sobol indices

GSA methods

✓ Variance-based Sobol method (Sobol 1993)

Decomposition of the output variance in conditional variances. $\underline{\land}$ Sobol method requires a very large sample that cannot be computed \Rightarrow Use of **Polynomial Chaos Expansion** (PCE) : surrogate method that provides Sobol indices

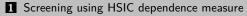
✓ **HSIC dependence measure** (Da Veiga 2015) Describes similarity between P_Y and $P_{Y|X}$ using a dependence measure *d*:

$$S_i^d = \mathbb{E}_{X_i}(d(P_Y, P_{Y|X_i}))$$

 \Rightarrow dependence measure d: Hilbert-Schmidt independence criterion **(HSIC)**: generalizes notion of **covariance** between two random variables

GSA methods

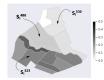
✓ Variance-based Sobol method (Sobol 1993)

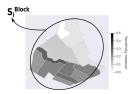

Decomposition of the output variance in conditional variances. $\underline{\land}$ Sobol method requires a very large sample that cannot be computed \Rightarrow Use of **Polynomial Chaos Expansion** (PCE) : surrogate method that provides Sobol indices

✓ **HSIC dependence measure** (Da Veiga 2015) Describes similarity between P_Y and $P_{Y|X}$ using a dependence measure *d*:

$$S_i^d = \mathbb{E}_{X_i}(d(P_Y, P_{Y|X_i}))$$

 \Rightarrow dependence measure d: Hilbert-Schmidt independence criterion (HSIC) : generalizes notion of **covariance** between two random variables


Strategy :


- 2 Ranking using Sobol method
- 3 Comparison with ranking from HSIC dependence measure

No.

 $2\ distinct\ ways\ to\ scrutinized\ spatialized\ output\ variables\ sensitivity$:

1. Site sensitivity indices: as many analysis as spatial locations

2. Block sensitivity indices: Single analysis with respect to the whole spatial domain, aggregated indices

Reminder: 145 parameters initially sampled

Soil	Plots/VFZ	River	Vegetation	Pesticide
thetas	hpond	hpond	manning	Kfoc
thetar	adsorpthick	di	Zr	DT50
Ks		Ks	F10	
alpha		manning	LAImax	
n				
Ko				
L				
bd				
moc				

Reminder: 145 parameters initially sampled

Soil	Plots/VFZ	River	Vegetation	Pesticide
thetas	hpond	hpond	manning	Kfoc
thetar	adsorpthick	di	Zr	DT50
Ks		Ks	F10	
alpha		manning	LAImax	
n				
Ko				
L				
bd				
moc				

After screening (statistical hypothesis tests based on HSIC measure (De Lozzo and Marrel 2014)):

- ✓ Cumulated Water Lateral Flow : 84 remaining parameters
- ✓ Cumulated Pesticide Lateral Flow : 80 remaining parameters

Results

Sobol - Water lateral flow

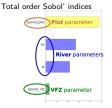
1.Block sensitivity

Results

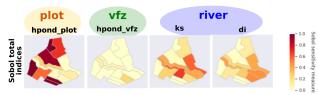
Sobol - Water lateral flow

1.Block sensitivity

High influence of **river parameters** and **ponding height** on plots and VFZs but...no interactions captured by PCE ?!?


Results

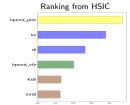
Sobol - Water lateral flow


1.Block sensitivity

High influence of **river parameters** and **ponding height** on plots and VFZs but...no interactions captured by PCE ?!?

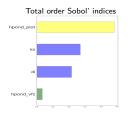
2.Site sensitivity

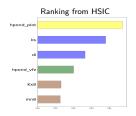
 \implies Spatial heterogeneities in influential parameters



Results HSIC - Water lateral flow

1.Block sensitivity



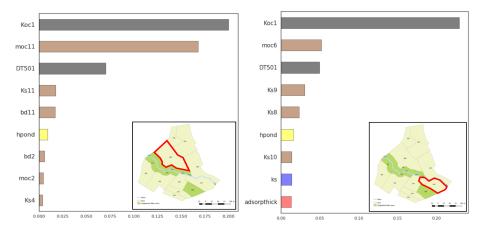


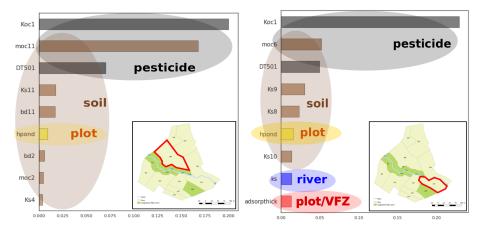
Results HSIC - Water lateral flow

1.Block sensitivity

2.Site sensitivity

 \implies Good match between HSIC and Sobol ranking




Results HSIC - Pesticide lateral flow

Results HSIC - Pesticide lateral flow

Conclusion

 $\checkmark\,$ GSA on a complex spatialized model with different methods

Conclusion

- $\checkmark\,$ GSA on a complex spatialized model with different methods
- ✓ Sobol' indices hard to estimate on PESHMELBA model

- $\checkmark\,$ GSA on a complex spatialized model with different methods
- $\checkmark\,$ Sobol' indices hard to estimate on PESHMELBA model
- $\checkmark\,$ HSIC measure as a consistent alternative for sensitivity measure

methods

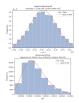
 \checkmark

Conclusion

model

GSA on a complex spatialized model with different

- ✓ HSIC measure as a consistent alternative for sensitivity measure
- ✓ A few parameters are identified as influential but spatially heterogeneous



Conclusion

- $\checkmark\,$ GSA on a complex spatialized model with different methods
- $\checkmark\,$ Sobol' indices hard to estimate on PESHMELBA model
- $\checkmark~$ HSIC measure as a consistent alternative for sensitivity measure
- ✓ A few parameters are identified as influential but spatially heterogeneous
- ✓ LHS also informs about output variables distribution : mainly gaussian or lognormal
 ⇒ Valuable information for next step : uncertainty reduction using data assimilation

Thanks for your attention ! Questions ?

emilie.rouzies@inrae.fr

References

- Da Veiga, Sebastien (2015). "Global sensitivity analysis with dependence measures". In: Journal of Statistical Computation and Simulation 85.7, pp. 1283–1305. eprint: https: //doi.org/10.1080/00949655.2014.945932.
- De Lozzo, Matthias and Amandine Marrel (Dec. 2014). "New improvements in the use of dependence measures for sensitivity analysis and screening". In: Journal of Statistical Computation and Simulation.
- Fouilloux, A. and A. Piacentini (1999). "The PALM Project: MPMD Paradigm for an Oceanic Data Assimilation Software". In: Euro-Parâ99 Parallel Processing: 5th International Euro-Par Conference Toulouse, France, A Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 1423–1430.
- Rouzies, Emilie et al. (2019). "From agricultural catchment to management scenarios: A modular tool to assess effects of landscape features on water and pesticide behavior".
 In: Science of The Total Environment 671, pp. 1144–1160.
- Saint-Geours, Nathalie (2012). "Analyse de sensibilité de modèles spatialisés : application à l'analyse coût-bénéfice de projets de prévention du risque d'inondation". PhD thesis. Montpellier 2.
- Sobol, Ilya M (1993). "Sensitivity estimates for nonlinear mathematical models". In: Mathematical modelling and computational experiments 1.4, pp. 407–414.