
HAL Id: hal-03124458
https://hal.science/hal-03124458

Submitted on 28 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Amortized bivariate multi-point evaluation
Joris van der Hoeven, Grégoire Lecerf

To cite this version:
Joris van der Hoeven, Grégoire Lecerf. Amortized bivariate multi-point evaluation. International
Symposium on Symbolic and Algebraic Computation 2021, Jul 2021, Saint Petersbourg, Russia.
�10.1145/3452143.3465531�. �hal-03124458�

https://hal.science/hal-03124458
https://hal.archives-ouvertes.fr

Amortized bivariate multi-point evaluation∗†

JORIS VAN DER HOEVENab, GRÉGOIRE LECERFac

a. CNRS, École polytechnique, Institut Polytechnique de Paris
Laboratoire d'informatique de l'École polytechnique (LIX, UMR 7161)

1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
b. Email: vdhoeven@lix.polytechnique.fr

c. Email: lecerf@lix.polytechnique.fr

Preliminary version of January 28, 2021

The evaluation of a polynomial at several points is called the problem of multi-point
evaluation. Sometimes, the set of evaluation points is fixed and several polynomials
need to be evaluated at this set of points. Efficient algorithms for this kind of “amor-
tized” multi-point evaluation were recently developed for the special case when the
set of evaluation points is sufficiently generic. In this paper, we design a new algo-
rithm for arbitrary sets of points, while restricting ourselves to bivariate polynomials.

1. INTRODUCTION

Let 𝕂 be an effective field, so that we have algorithms for the field operations. Given
a polynomial P∈𝕂[x1, . . . ,xD] and a tuple 𝜶=(𝛼1, . . . , 𝛼n)∈(𝕂D)n of points, the compu-
tation of P(𝜶)=(P(𝛼1),.. .,P(𝛼n))∈𝕂n is called the problem of multi-point evaluation. The
converse problem is called interpolation and takes a candidate support of P as input.

These problems naturally occur in several areas of applied algebra. When solving
a polynomial system, multi-point evaluation can for instance be used to check whether
all points in a given set are indeed solutions of the system. In [12], we have shown that
fast algorithms for multi-point evaluation actually lead to efficient algorithms for poly-
nomial system solving. The more specific problem of bivariate multi-point evaluation
appears for example in the computation of generator matrices of algebraic geometry
error correcting codes [15].

The general problem of multivariate multi-point evaluation is notoriously hard. If
𝕂=ℚ or 𝕂 is a field of finite characteristic, then theoretical algorithms with quasi-
optimal bit complexity exponent are due to Kedlaya and Umans [14]. Unfortunately,
to our best knowledge, these algorithms do not seem suitable for practical purposes [11,
Conclusion]. We also mention [17] for a general algorithm in the bivariate case and [13]
for an efficient algorithm in the case of special sets of points 𝜶.

Last year, new softly linear algorithms have been proposed for multi-point evalu-
ation and interpolation in the case when 𝜶 is a fixed generic tuple of points [10, 16].
These algorithms are amortized in the sense that potentially expensive precomputations
as a function of 𝜶 are allowed. The algorithms from [10] work in arbitrary dimension,
whereas [16] is restricted to the bivariate case.

∗. This paper is part of a project that has received funding from the French “Agence de l'innovation de défense”.
†. This article has been written using GNU TEXMACS [8].

1

In the present paper, we turn our attention to arbitrary (i.e. possibly non-generic)
tuples of evaluation points 𝜶, while restricting ourselves to the bivariate case D=2. Com-
bining ideas from [10] and [16], we present a new softly linear algorithm for amortized
multi-point evaluation. We have not optimized all constant factors involved in the cost
analysis of our new algorithm, so our complexity bound is mostly of theoretical interest
for the moment. The opposite task of interpolation is more subtle: since interpolants
of total degree O(n√) do not necessarily exist, the very problem needs to be stated
with additional care. For this reason, we do not investigate multi-point interpolation
in this paper.

2. WEIGHTED BIVARIATE POLYNOMIALS

Our bivariate multi-point evaluation makes use of polynomial arithmetic with respect to
weighted graded monomial orderings. This section is devoted to the costs of products
and divisions in this context.

2.1. Complexity model
For complexity analyses, we will only consider algebraic complexity models like compu-
tation trees [2], for which elements in 𝕂 are freely at our disposal. The time complexity
simply measures the number of arithmetic operations and zero-tests in 𝕂.

We denote by M(d) the time that is needed to compute a product P Q of two poly-
nomials P, Q ∈𝕂[x] of degree <d. We make the usual assumptions that M(d)/d is
non-decreasing as a function of d and that M(k d)= O(k M(d)) whenever k = O(d).
Using a variant of the Schönhage–Strassen algorithm [3], it is well known that M(d)=
O(d log d log log d). If we restrict our attention to fields 𝕂 of positive characteristic, then
we may even take M(d)=O�d log d4log

∗d� [5].

2.2. Monomial orderings
General monomial orderings, that are suitable for Gröbner basis computations, have
been classified in [18]. For the purpose of this paper, we focus on the following specific
family of bivariate monomial orderings.

DEFINITION 1. Let k∈ℕ∖{0}. We define the k-degree of a monomial xa yb with a,b∈ℕ by

degk(xa yb) ≔ a+kb.

We define the k-ordering to be the monomial ordering ≺k such that

xa yb≺k xuyv ⇔ {{{{{{{{{{{{{{{{{{{{ a+ kb<u+kv or
a+ kb=u+kv and b<v.

Let us mention that the idea of using such kinds of families of monomial orderings
in the design of fast algorithms for bivariate polynomials previously appeared in [9].

2.3. Multiplication
Consider the product C=A B of two non-zero bivariate polynomials A,B∈𝕂[x, y] and
the obvious bound

s ≔ (degx A+degx B+1)(degy A+degy B+1)

for the number of terms of C. Then it is well known that Kronecker substitution allows for
the computation of the product C using O(M(s)) operations in 𝕂; see [4, Corollary 8.27],
for instance.

2 AMORTIZED BIVARIATE MULTI-POINT EVALUATION

Writing valx A for the valuation of A in x, the number of non-zero terms of C is more
accurately bounded by

s̃ ≔ (degx A+degx B−valx A−valx B+1)(degy A+degy B+1).

Via the appropriate multiplications and divisions by powers of x, we observe that C can
be computed using O(M(s̃)) operations in 𝕂.

Let us next show that a similar bound holds for slices of polynomials that are dense
with respect to the k-ordering. More precisely, let valk A denote the minimum of i+ k j
over the monomials xi y j occurring in A. By convention we set valk 0≔+∞. From the
monomial identity

xi (xk y)j = xi+kj y j

we observe that the monomials of k-degree d are in one-to-one correspondence with the
monomials of degree d in x and degree in y in {0,...,⌊d/k⌋}. It also follows that the number
of terms of a non-zero polynomial A is bounded by

(degk A−valk A+1)(degy A+1),
and that

valx(A(x,xk y)) = valk A
degx(A(x,xk y)) = degk A.

Then, the number of non-zero terms in the product C=AB is bounded by

sk ≔ (degk A+degk B−valk A−valk B+1)(degy A+degy B+1).

LEMMA 2. The above product C=AB can be computed with O(M(sk)) operations in 𝕂.

Proof. It suffices to compute C using

C(x,xk y) = A(x,xk y)B(x,xk y)

and to apply the cost bound from above to this computation. □

2.4. Division
Let B be a polynomial in 𝕂[x, y] of k-degree 𝛿 and of leading monomial written x𝛼 y𝛽.
Without loss of generality we may assume that the coefficient of this monomial is 1. We
examine the cost of the division of A of k-degree d by B with respect to ≺k:

A = QB+R, (1)

where Q and R are in 𝕂[x,y], and such that no monomial in R is divisible by x𝛼y𝛽. Such
a division does exist: this is a usual fact from the theory of Gröbner bases. In this context,
a polynomial A is said to be reduced with respect to B when none of its terms is divisible
by x𝛼y𝛽.

If A= Q̃B+ R̃ for polynomials Q̃ and R̃ such that R̃ is reduced with respect to B, then
(Q − Q̃)B= R̃ − R, so Q̃=Q and R̃=R. In other words, Q and R are unique, so we may
write quok(A,B) for the quotient Q of A by B with respect to ≺k.

In the remainder of this section, we assume that k has been fixed once and for all.
Given A=∑(i, j)∈ℕ2 Ai, j xi y j∈𝕂[x,y], we define

A[a] ≔ �
i+kj=a

Ai, j xi y j, A(a,b] ≔ �
a<i+kj⩽b

Ai, j xi y j.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 3

The naive division algorithm proceeds as follows: if A has a term Ai, jxiy j that is divisible
by x𝛼y𝛽, then we pick a maximal such term for ≺k and compute

Ã ≔ A−Ai, j xi−𝛼y j−𝛽B.

Then degk Ã⩽degk A and the largest term of Ã that is divisible by x𝛼 y𝛽 is strictly less
than xi y j for ≺k. This division step is repeated for Ã and for its successive reductions,
until Q and R are found.

During this naive division process, we note that Q(d−𝛿−l,d−𝛿] only depends on A(d−l,d]
and B(𝛿−l,𝛿], for l=0, . . . ,d−𝛿+1. When l=0 nothing needs to be computed. Let us now
describe a more efficient way to handle the case l= 1, when we need to compute the
quasi-homogeneous component of Q of maximal k-degree d−𝛿:

A[d] = Q[d−𝛿]B[𝛿]+R[d].

LEMMA 3. We may compute Q[d−𝛿] and R[d] using O(M(degy A)) operations in 𝕂.

Proof. We first decompose

A[d]=H+T, H≔ �
i+kj=d

i⩾𝛼

Ai, j xi y j, T≔ �
i+kj=d

i<𝛼

Ai, j xi y j

and note that T is reduced with respect to B. In particular, the division of A[d] by B[𝛿]
yields the same quotient as the division of H by B[𝛿], so

H = Q[d−𝛿]B[𝛿]+U (2)
R[d] = T+U,

for some quasi-homogeneous polynomial U of k-degree d with degx U<𝛼. Dehomoge-
nization of the relation (1) yields

H(1,y) = Q[d−𝛿](1,y)B[𝛿](1,y)+U(1,y),

with deg U(1, y)< 𝛽. Consequently, the computation of Q[d−𝛿](1, y) and U(1, y) takes
O(M(degy A)) operations in 𝕂, using a fast algorithm for Euclidean division in 𝕂[y];
see [4, chapter 9] or [6], for instance. □

For higher values of l, the following “divide and conquer” division algorithm is more
efficient than the naive algorithm:

Algorithm 1
Input. A,B∈𝕂[x,y] and an integer l∈{0, . . . ,d−𝛿+1}, where d≔degk A and 𝛿≔degk B.
Output. quok(A,B)(d−𝛿−l,d−𝛿].
1. If d<𝛿 or l=0 then return 0.
2. If l=1 then compute and return quok(A,B)[d−𝛿] using the method from Lemma 3.
3. Let h≔⌊l/2⌋.
4. Recursively compute Q1≔quok(A,B)(d−𝛿−h,d−𝛿].
5. Let R1≔(A(d−l,d]−Q1B(𝛿−l,𝛿])(d−l,d−h].
6. Recursively compute Q0≔quok(R1,B)(d−𝛿−l,d−𝛿−h].
7. Return Q1+Q0.

4 AMORTIZED BIVARIATE MULTI-POINT EVALUATION

PROPOSITION 4. Algorithm 1 is correct and takes O(M(ld/k) log l) operations in 𝕂.

Proof. Let us prove the correctness by induction on l. If d<𝛿, then quok(A,B)=0 and
the result of the algorithm is correct. If l=0, then quok(A,B)(d−𝛿−l,d−𝛿]=0 and the result
is also correct. The case l=1 has been treated in Lemma 3.

Now assume that l⩾2 and d⩾𝛿, so l>h⩾1. The induction hypothesis implies that
(A−Q1B)(d−h,d] is reduced with respect to B and that (R1−Q0B)(d−l,d−h] is reduced with
respect to B. After noting that

R1 = (A(d−l,d]−Q1B(𝛿−l,𝛿])(d−l,d−h]

= (A−Q1B)(d−l,d−h],

we verify that

(A−(Q1+Q0)B)(d−l,d] = (A−Q1B)(d−l,d−h]+(A−Q1B)(d−h,d]− (Q0B)(d−l,d]

= R1−(Q0B)(d−l,d]+(A−Q1B)(d−h,d]

= R1−(Q0B)(d−l,d−h]+(A−Q1B)(d−h,d]

= (R1−Q0B)(d−l,d−h]+(A−Q1B)(d−h,d].

Consequently, (A−(Q1+Q0)B)(d−l,d] is reduced with respect to B, whence

Q1+Q0 = quok(A,B)(d−𝛿−l,d−𝛿].

This completes the induction and our correctness proof.
Concerning the complexity, step 2 takes O(M(degy A))=O(M(d/k)) operations in 𝕂,

by Lemma 3. In step 5, the computation of R1 takes O(M(ldegy A))=O(M(ld/k)) oper-
ations in 𝕂, by Lemma 2.

Let T(d
˘
, l
˘
) stand for the maximum of the costs of Algorithm 1 for d⩽d

˘
and l⩽ l

˘
. We

have shown that T(d, 1)=O(M(d/k)) and that

T(d, l) ⩽ T(d,h)+T(d−h, l−h)+O(M(l d/k))
⩽ T(d,h)+T(d, l−h)+O(M(l d/k)).

Unrolling this inequality, we obtain the claimed complexity bound. □

Remark 5. The complexity bound from Proposition 4 is also a consequence of [7, The-
orem 4] by taking SM(s)≔O(M(s)) for the cost of sparse polynomial products of size s.
This cost is warranted mutatis mutandis by the observation that all sparse bivariate poly-
nomial products occurring within the algorithm underlying [7, Theorem 4] are either
univariate products or products of slices of polynomials that are dense with respect to
the k-ordering. We have seen in section 2.3 how to compute such products efficiently.

3. GENERAL POSITION

Let 𝜶=(𝛼1, . . . , 𝛼n)∈(𝕂2)n be a tuple of pairwise distinct points. We define the vanishing
ideal for 𝜶 by

I𝜶 ≔ {P∈𝕂[x,y] :P(𝜶)=(0, . . . , 0)}.

A monic polynomial P∈ I𝜶 is said to be axial if its leading monomial with respect to ≺1
is of the form yd. The goal of this section is to prove the existence of such a polynomial
modulo a sufficiently generic change of variables of the form

x = x̃+𝜆y. (3)

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 5

This change of variables transforms 𝜶 into a new tuple 𝜶̃∈(𝕂2)n with

𝛼i=(x,y) ⟹ 𝛼̃i=(x−𝜆y,y)

and the ideal I𝜶 into

I𝜶̃ ≔ {P̃∈𝕂[x̃,y] : P̃(𝜶̃)=(0, . . . , 0)}.

For any degree d∈ℕ, we define

𝕂[x,y]⩽d ≔ {P∈𝕂[x,y] :deg1 P⩽d}.

Given a polynomial P∈𝕂[x,y]⩽d such that deg1 P=d we may decompose

P = D+R,

where D∈𝕂[x,y] is homogeneous of degree d and R∈𝕂[x,y]⩽d−1. The change of vari-
ables (3) transforms P into

P̃(x̃,y) ≔ D̃(x̃,y)+ R̃(x̃,y),

where

R̃(x̃,y) ≔ R(x̃+𝜆y,y)∈𝕂[x̃,y]⩽d−1,
D̃(x̃,y) ≔ D(x̃+𝜆y,y).

The coefficient of the monomial yd in D̃(x̃,y) is D̃(0, 1)=D(𝜆,1).
The 𝕂-vector space I𝜶∩𝕂[x,y]⩽d is the solution set of a linear system consisting of n

equations and �d+2
2 � unknowns, that are the unknown coefficients of a polynomial in

𝕂[x,y]⩽d. Such a system admits a non-zero solution whenever �d+2
2 �>n. Now assume

that P is a non-zero element of I𝜶 of minimal total degree d and let Λ𝜶 denote the set of
roots of D(𝜆, 1) in 𝕂. Since d is minimal we have

�d+1
2 �= d (d+1)

2 ⩽n.
that implies

d⩽ 2n� . (4)

On the other hand, we have |Λ𝜶|⩽d. And if 𝜆∈𝕂∖Λ𝜶, then yd is the leading monomial
of P̃ for ≺1. Assuming that |𝕂|>n, this proves the existence of an axial polynomial P̃ of
degree d after a suitable change of variables of the form (3).

We say that 𝜶 is in general position if there exists a polynomial of minimal degree d
in I𝜶 that is axial.

4. POLYNOMIAL REDUCTION

Let 𝜶=(𝛼1, . . . , 𝛼n)∈(𝕂2)n be a tuple of points in general position, as defined in the pre-
vious section. Given a polynomial P∈𝕂[x, y], this section is devoted to a reduction
process that computes a polynomial in P+ I𝜶 whose support is “relatively smaller” than
the one of P.

4.1. Heterogeneous bases
Since 𝜶 is in general position, thanks to (4), we first precompute an axial polynomial
B0∈ I𝜶 for ≺1 of degree

𝛿0 ≔ deg1 B0 ⩽ 2n� .

6 AMORTIZED BIVARIATE MULTI-POINT EVALUATION

For i⩾1, let N(d, 2i) denote the number of monomials of 2i-degree ⩽d. We have

N(d, 2i) = d+1+(d+1−2i)+ ⋅ ⋅ ⋅ +�d+1−� d
2i�2i�.

If N(d,2i)>n, then there exists a non-zero polynomial in I𝜶 of 2i-degree ⩽d. Let Bi∈ I𝜶 be
a monic polynomial whose leading monomial is minimal for ≺2i and set

𝛿i ≔ deg2i Bi.

We may precompute Bi, e.g. by extracting it from a Gröbner basis for I𝜶 with respect
to ≺2i. By the minimality of the 2i-degree 𝛿i of Bi, we have

N(𝛿i −1,2i) ⩽ n.

Now write 𝛿i=q2i+ r with q∈ℕ and r∈{0, . . . , 2i −1}. Then

N(𝛿i −1,2i) = (q2i+ r)+((q−1)2i+ r)+ ⋅ ⋅ ⋅ +(2i+ r)+ r
= (q+ ⋅ ⋅ ⋅ +1)2i+(q+1) r
= 1

2 (q+1)q2i+(q+1) r

= 1
2 (q+1)(q2i+2 r)

= 1
2i+1 (q2i+2i)(q2i+2 r)

= 1
2i+1 (𝛿i+2i − r) (𝛿i+ r)

⩾ 1
2i+1 𝛿i

2.

Consequently, 𝛿i
2⩽2i+1n and

𝛿i ⩽ 2i+1n� . (5)

We let ℓ be the smallest integer such that 2ℓ >n, hence

2ℓ−1 ⩽ n (6)

and ℓ ≔⌈log2(n+1)⌉. There exists a monic non-zero polynomial Q in 𝕂[x]∩ I𝜶 of min-
imal degree ⩽n. Since 2ℓ >n, we may take Bi≔Q for i⩾ ℓ. We call (Bi)i⩾0 a heterogeneous
basis for 𝜶. We further define

hi ≔ degy Bi ⩽ � 21−i n� �. (7)

Note that ℓ is the first integer such that hℓ+1=0, although degyBi=0 holds even for i= ℓ.

4.2. Elementary reductions
Given A=∑𝛼,𝛽 A𝛼,𝛽 x𝛼 y𝛽∈𝕂[x, y] and i⩾0, we may use the division procedure from
section 2.4 to reduce A with respect to Bi. This yields a relation

A = QBi+R, (8)

where deg2i R⩽deg2i A and such that none of the monomials in the support of R is divis-
ible by the leading monomial of Bi. We write 𝜌i(A)≔R and recall that 𝜌i is a 𝕂-linear
map.

We also define the projections 𝜋i and 𝜋̄i by

𝜋i(A) ≔ �
𝛼∈ℕ,𝛽⩽hi

A𝛼,𝛽x𝛼y𝛽

𝜋̄i(A) ≔ �
𝛼∈ℕ,𝛽>hi

A𝛼,𝛽x𝛼y𝛽.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7

4.3. Compound reductions
For d⩾1, we let 𝕂[x,y]d

∗ denote the set of tuples of polynomials (P0, . . . ,Pm)∈𝕂[x,y]m+1

such that
• m is the first integer such that 2m>d,

• deg2i Pi⩽ 2i d� , for i=0, . . . ,m.
Intuitively speaking, such a tuple will represent a sum P=P0+ ⋅ ⋅ ⋅ +Pm modulo I𝜶. Note
that degy Pm⩽� 2−m d� �=0, so Pm∈𝕂[x].

Given (P0, . . . ,Pm)∈𝕂[x,y]m+1, we define three new sequences of polynomials by

R0 ≔ 𝜌0(P0) Π0 ≔ 𝜋0(R0) Π̄0 ≔ 𝜋̄0(R0)
R1 ≔ 𝜌1(P1+Π0) Π1 ≔ 𝜋1(R1) Π̄1 ≔ 𝜋̄1(R1)
R2 ≔ 𝜌2(P2+Π1) Π2 ≔ 𝜋2(R2) Π̄2 ≔ 𝜋̄2(R2)

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
Rm−1 ≔ 𝜌m−1(Pm−1+Πm−2) Πm−1 ≔ 𝜋m−1(Rm−1) Π̄m−1 ≔ 𝜋̄m−1(Rm−1)
Rm ≔ 𝜌m(Pm+Πm−1).

LEMMA 6. With the above notations. Let 𝛽⩾16 and let 𝜂≔�1+ 2
𝛽� �

2
. If d⩾𝛽n, then

deg2i Ri ⩽ 2i d�

deg2i+1 Πi ⩽ 2i𝜂d�

for i=0, . . . ,m−1.

Proof. We first note that 𝜂⩽2 and

2i d� + 2i+1n� ⩽ 2i𝜂d� . (9)

Let us prove the degree bounds by induction on i=0, . . . ,m−1. For i=0, we have

deg1 R0 ⩽ deg1 P0 ⩽ d�
deg2Π0 ⩽ deg1 R0+degy Π0 ⩽ deg1 R0+h0 ⩽ d� + 2n� ⩽ 𝜂d� ,

by using (7) and (9). Assume now that 0< i⩽m−1 and that the bounds of the lemma hold
for all smaller i. Since 𝜂⩽2, the induction hypothesis yields

deg2i Ri ⩽ max(deg2i Pi,deg2i Πi−1) ⩽ 2i d� .

Using (7) and (9) again, we deduce

deg2i+1Πi ⩽ deg2i Ri+2idegy Πi ⩽ deg2i Ri+hi2i ⩽ 2i d� + 2i+1n� ⩽ 2i𝜂d� . □

LEMMA 7. Under the assumptions of Lemma 6, we further have

Π̄1+ ⋅ ⋅ ⋅ +Π̄m−1+Rm = P0+ ⋅ ⋅ ⋅ +Pm+ I𝜶. (10)

Assume that 𝜃≔ 1
2�
+ 2

𝛽�
<1, let d̃≔𝜃 2d, and let m̃ be the first integer such that 2m̃> d̃. If m̃=m,

then
(Π̄1, . . . , Π̄m−1,Rm, 0)∈𝕂[x,y]d̃

∗ ;
otherwise, m̃=m−1 and

(Π̄1, . . . , Π̄m−1,Rm)∈𝕂[x,y]d̃
∗.

8 AMORTIZED BIVARIATE MULTI-POINT EVALUATION

Proof. By construction, we have

R0+ ⋅ ⋅ ⋅ +Rm ∈ P0+ ⋅ ⋅ ⋅ +Pm+Π0+ ⋅ ⋅ ⋅ +Πm−1+ I𝜶,

whence

Π̄0+ ⋅ ⋅ ⋅ +Π̄m−1+Rm = (R0−Π0)+ ⋅ ⋅ ⋅ +(Rm−1−Πm−1)+Rm

∈ P0+ ⋅ ⋅ ⋅ +Pm+ I𝜶.

Since B0 is axial, we have Π̄0=0, which entails (10). From Lemma 6 we deduce

degy Π̄i⩽
deg2i Π̄i

2i ⩽ deg2i Ri

2i ⩽ 2i d�
2i = 2−i d� . (11)

Now Ri contains no monomial that is divisible by the leading monomial of Bi for ≺2i and
degy Π̄i>degy Bi. Using (5), it follows that

degx Π̄i⩽degx Bi⩽𝛿i⩽ 2i+1n� . (12)

Consequently, for i=1,.. .,m−1, inequalities (11) and (12), combined with d⩾𝛽n, lead to

deg2i−1 Π̄i ⩽ degx Π̄i+2i−1degy Π̄i

⩽ 2i+1n� + 2i−2d�

⩽ 𝜃 2i−1d� = 2i−1 d̃� .

From d⩾𝛽n⩾16n and (6), we deduce that d⩾24×2ℓ−1=2ℓ+3, whence m⩾ℓ+4. If follows
that

degy Πm−1⩽hm−1⩽hℓ+3=0.

From degy Pm=0, we thus obtain degy Rm=0 and degx Rm<n.
Since n⩽d/16 and d<2m, we further deduce

deg2m−1 Rm = degx Rm

< 2−8d2�

⩽ 2−7×2m−1d�

⩽ 𝜃 2m−1d� = 2m−1 d̃� .

Finally d> d̃⩾d/2 and 2m−1⩽d<2m imply 2m−2⩽ d̃<d, whence m̃∈{m−1,m}. □

We call the tuple (Π̄1, . . ., Π̄m−1,Rm) the reduction of (P0, . . .,Pm) with respect to (Bi)i⩾0.

LEMMA 8. With the above notation, the reduction of (P0, . . . ,Pm) with respect to (Bi)i⩾0 takes
O(M(d) log2 d) operations in 𝕂.

Proof. Note first that (deg1 P0)2⩽d. Using Lemma 6, we also have

(deg2i(Pi+Πi−1))2/2i ⩽ � 2i d� �2/2i = d,

for i=1, . . . ,m. By Proposition 4, each evaluation of 𝜌i takes O(M(d) log d) operations
in 𝕂. The claimed bound follows from m=O(log d). □

PROPOSITION 9. Let (Pi)i⩾0∈𝕂[x,y]128n
∗ . Then a sequence (Qi)i⩾0∈𝕂[x,y]64n

∗ with∑i⩾0Qi=
∑i⩾0 Pi+ I𝜶 can be computed using O(M(n) log2 n) operations in 𝕂.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 9

Proof. We set 𝛽≔64, so that 𝜃 = 1
2�
+ 2

𝛽�
<0.958. We set �Pi

[0]�i⩾0≔(Pi)i⩾0 and define
�Pi

[k+1]�i⩾0 recursively as the reduction of �Pi
[k]�i⩾0 with respect to (Bi)i⩾0, for k⩾0. We

further define d[k]≔𝜃2k128n. The integer K≔8 is the first integer such that

𝜃2K⩽ 1
2.

We finally take (Qi)i⩾0≔�Pi
[K]�i⩾0. Lemma 7 implies that (Qi)i⩾0 belongs to 𝕂[x,y]64n

∗ .
The complexity bound follows from Lemma 8. □

5. MULTI-POINT EVALUATION

Let 𝜶∈(𝕂2)n be a tuple of pairwise distinct points and consider the problem of fast multi-
point evaluation of a polynomial P∈𝕂[x, y] of total degree < 2n� at 𝜶. For simplicity
of the exposition, it is convenient to first consider the case when n=2𝜈 is a power of two
and 𝜶 is in general position. The core of our method is based on the usual “divide and
conquer” paradigm.

We say that 𝜶 is in recursive general position if 𝜶 is in general position and if 𝜶1,n/2≔
(𝛼1, . . . , 𝛼n/2) and 𝜶n/2+1,n≔(𝛼n/2+1, . . . , 𝛼n) are in recursive general position. An empty
sequence is in recursive general position. With the notation of section 3 a recursive gen-
eral position is ensured if the cardinality of 𝕂 is strictly larger that 𝜆n that is recursively
defined by

𝜆n≔n+2𝜆n/2

for n⩾4 and with 𝜆2≔2. Consequently 𝜆n= n 𝜈. Whenever |𝕂| > n 𝜈, we know from
section 3 that we can reduce to the case where 𝜶 is in recursive general position. In this
case, we can compute a recursive heterogeneous basis, that is made of a heterogeneous basis
for 𝜶 and recursive heterogeneous bases for 𝜶1,n/2 and 𝜶n/2+1,n.

Algorithm 2
Input. 𝜶∈(𝕂2)n with n=2𝜈 and (Pi)i⩾0∈𝕂[x,y]128n

∗ .
Output. (∑i⩾0 Pi)(𝜶).
Precomputed. A recursive heterogeneous basis for 𝜶.
Assumption. 𝜶 is in recursive general position.
1. If 𝜈=0, then return (∑i⩾0 Pi)(𝛼1).
2. Compute the reduction (Qi)i⩾0∈𝕂[x, y]64n

∗ of (Pi)i⩾0 with respect to the heteroge-
neous basis (Bi)i⩾0 for 𝜶, via Proposition 9.

3. Recursively apply the algorithm to 𝜶1,n/2 and (Qi)i⩾0.
4. Recursively apply the algorithm to 𝜶n/2+1,n and (Qi)i⩾0.
5. Return the concatenations of the results of the recursive evaluations.

THEOREM 10. Algorithm 2 is correct and runs in time O(M(n) log3 n).

Proof. The algorithm is clearly correct if 𝜈 =0. If 𝜈 >0, then we first observe that both
𝜶1,n/2 and 𝜶n/2+1,n are in recursive general position by definition. Furthermore, Proposi-
tion 9 ensures that

((((((((((((((�i⩾0
Pi))))))))))))))(𝜶) = ((((((((((((((�i⩾0

Qi))))))))))))))(𝜶).

10 AMORTIZED BIVARIATE MULTI-POINT EVALUATION

The concatenation of the results of the recursive applications of the algorithm therefore
yields the correct result.

As to the complexity bound, the cost of step 2 is bounded by O(M(n) log2 n) according
to Proposition 9. Hence, the total execution time T(n) satisfies

T(n) ⩽ 2T�n
2�+O(M(n) log2 n).

The desired complexity bound follows by unrolling this recurrence inequality. □

COROLLARY 11. Consider an arbitrary effective field 𝕂 and 𝜶∈(𝕂2)n, where n is not necessarily
a power of two. Modulo precomputations that only depend on 𝕂 and 𝜶, we can evaluate any
polynomial in 𝕂[x,y] 2n� at 𝜶 in time O(M(n) log4 n).

Proof. Modulo the repetition of at most n−1 more points, we may assume without loss
of generality that n is a power of two 2𝜈.

If 𝕂 is finite then we build an algebraic extension 𝔼 of 𝕂 of degree e≔O(log n),
so that |𝔼|>n𝜈. Multiplying two polynomials in 𝔼[x]⩽n takes O(M(e n))=O(eM(n))=
O(M(n) log n) operations in 𝕂 thanks to our assumptions on M. Consequently, up to
introducing an extra logn factor in our complexity bounds, we may assume that |𝕂|>n𝜈.
Modulo a change of variables (3) from section 3, we may then assume without loss of
generality that 𝜶 is in recursive general position, and compute a recursive heterogeneous
basis.

Given P∈𝕂[x, y] 2n� , we claim that we may compute P̃(x̃, y)≔ P(x̃+ 𝜆 y, y) using
O(M(n) log n) operations in 𝕂. Indeed, we first decompose

P(x,y)=p0(x,y)+ ⋅ ⋅ ⋅ +pm(x,y),

where m⩽ 2n� and each pi is zero or homogenous of degree i. Computing pi(x̃+𝜆y,y)
then reduces to computing pi(x̃+𝜆,1). This corresponds in turn to a univariate Taylor
shift, which takes O(M(i) log i) operations in 𝕂; see [1, Lemma 7], for instance.

Finally, we apply Theorem 10 to (P̃, 0, . . .)∈𝕂[x̃,y]128n
∗ and 𝜶̃. □

BIBLIOGRAPHY

[1] J. Berthomieu, G. Lecerf, and G. Quintin. Polynomial root finding over local rings and application to
error correcting codes. Appl. Alg. Eng. Comm. Comp., 24(6):413–443, 2013.

[2] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, volume 315 of Grundlehren
der Mathematischen Wissenschaften. Springer-Verlag, 1997.

[3] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta
Inform., 28:693–701, 1991.

[4] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2nd edition,
2002.

[5] D. Harvey and J. van der Hoeven. Faster polynomial multiplication over finite fields using cyclotomic
coefficient rings. J. Complexity, 54:101404, 2019.

[6] J. van der Hoeven. Newton's method and FFT trading. J. Symbolic Comput., 45(8):857–878, 2010.
[7] J. van der Hoeven. On the complexity of multivariate polynomial division. In I. S. Kotsireas and

E. Martínez-Moro, editors, Applications of Computer Algebra. Kalamata, Greece, July 20–23, 2015, volume
198 of Springer Proceedings in Mathematics & Statistics, pages 447–458. Cham, 2017. Springer Inter-
national Publishing.

[8] J. van der Hoeven. The Jolly Writer. Your Guide to GNU TeXmacs. Scypress, 2020.
[9] J. van der Hoeven and R. Larrieu. Fast reduction of bivariate polynomials with respect to sufficiently

regular Gröbner bases. In C. Arreche, editor, Proceedings of the 2018 ACM International Symposium on
Symbolic and Algebraic Computation, ISSAC '18, pages 199–206. New York, NY, USA, 2018. ACM.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 11

[10] J. van der Hoeven and G. Lecerf. Fast amortized multi-point evaluation. Technical Report, HAL, 2020.
https://hal.archives-ouvertes.fr/hal-02508529.

[11] J. van der Hoeven and G. Lecerf. Fast multivariate multi-point evaluation revisited. J. Complexity,
56:101405, 2020.

[12] J. van der Hoeven and G. Lecerf. On the complexity exponent of polynomial system solving. Found.
Comput. Math., 2020. https://doi.org/10.1007/s10208-020-09453-0.

[13] J. van der Hoeven and É. Schost. Multi-point evaluation in higher dimensions. Appl. Alg. Eng. Comm.
Comp., 24(1):37–52, 2013.

[14] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM J. Comput.,
40(6):1767–1802, 2011.

[15] D. Le Brigand and J.-J. Risler. Algorithme de Brill–Noether et codes de Goppa. Bulletin de la société
mathématique de France, 116(2):231–253, 1988.

[16] V. Neiger, J. Rosenkilde, and G. Solomatov. Generic bivariate multi-point evaluation, interpolation
and modular composition with precomputation. In A. Mantzaflaris, editor, Proceedings of the 45th Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC '20, pages 388–395. New York, NY,
USA, 2020. ACM.

[17] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials. In S. Albers and
T. Radzik, editors, Algorithms – ESA 2004. 12th Annual European Symposium, Bergen, Norway, September
14-17, 2004, volume 3221 of Lect. Notes Comput. Sci., pages 544–555. Springer Berlin Heidelberg, 2004.

[18] L. Robbiano. Term orderings on the polynomial ring. In B. F. Caviness, editor, EUROCAL '85. European
Conference on Computer Algebra. Linz, Austria, April 1-3, 1985. Proceedings. Volume 2: Research Contribu-
tions, volume 204 of Lect. Notes Comput. Sci., pages 513–517. Springer-Verlag Berlin Heidelberg, 1985.

12 AMORTIZED BIVARIATE MULTI-POINT EVALUATION

https://hal.archives-ouvertes.fr/hal-02508529
https://hal.archives-ouvertes.fr/hal-02508529
https://hal.archives-ouvertes.fr/hal-02508529
https://hal.archives-ouvertes.fr/hal-02508529
https://hal.archives-ouvertes.fr/hal-02508529
https://hal.archives-ouvertes.fr/hal-02508529
https://hal.archives-ouvertes.fr/hal-02508529
https://hal.archives-ouvertes.fr/hal-02508529
https://hal.archives-ouvertes.fr/hal-02508529
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0
https://doi.org/10.1007/s10208-020-09453-0

	1. Introduction
	2. Weighted bivariate polynomials
	2.1. Complexity model
	2.2. Monomial orderings
	2.3. Multiplication
	2.4. Division

	3. General position
	4. Polynomial reduction
	4.1. Heterogeneous bases
	4.2. Elementary reductions
	4.3. Compound reductions

	5. Multi-point evaluation
	Bibliography

