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Abstract
Several colour descriptors are presented each year. The ex-

isting protocols to evaluate and compare these descriptors are re-
stricted to the use of image databases without information about
the spatio-chromatic content. In this article, we present a first an-
swer to calibrate a colour texture descriptor. By calibration, we
intend evaluate the capacity of the descriptor to discriminate the
non-uniform aspect according to different scales of samples. In
order to assess all the possibilities in term of spatial frequencies
and colour content, we propose to use reference images based on
a fractal vector colour model. Three texture features are com-
pared from this protocol allowing to express the interest of the
proposed calibration sequence.

Introduction
To compare descriptors discriminative capacity, Mikolajczk

et al. [1,2] proposed a comparative method for detectors and de-
scriptors. In these articles, the authors introduced a new database
with ground truth to geometric transformation between a series
of images. They count the number of correct matching. Other
comparative studies exist for dedicated task: Gauglitz et al. [3]
follow objects, Mandal et al. [4] focus on facial recognition and
Hietanen et al. [5] classify objects. Several evaluation articles
focus on colour images and compare colour descriptors perfor-
mance [6–8]. Nevertheless, it is not possible to extrapolate the
obtained performances from these results. Indeed the databases
are not defined by the scale of theirs spatio-chromatic content.

Our problematic is not to compare a pair {descriptor, sim-
ilarity measure} but to propose a database and protocol that ob-
jectively evaluate the pair. The comparison is the next step. We
focus on texture1 features. The non-uniform aspect is defined
by a specific spatio-chromatic distribution. Therefore, we ex-
pect a database capable of exploring the full range of spatial fre-
quencies and colour distributions. A real image database cannot
reach such a requirement. Each real image database covers a
part, overlapping or not, of the spatio-chromatic content. To cre-
ate texture, we need to link the colour and spatial distributions. A
simple coloured noise, will be perceived as noise and not consid-
ered a texture. To answer our problematic, we propose a protocol
based on the use of fractal colour vector models. Fractal models
were already used to evaluate complexity perception as proposed
in [9].

Experimental Protocol
To calibrate a descriptor, we first need a completely scale

of samples to verify the feature’s ability. With several samples
for one reference and different scales, our objective is to find the
reference associated to the sample. The calibration will allows
to measure the feature ability to assign the sample to the right
reference. This is a classification task allowing to assess the res-
olution in the discrimination between spatio-chromatic contents.

1The CIE prefers the term non-uniform aspect. In this article, both
are used as synonyms.

These samples scales cannot be physically obtained for the
moment. This can be achieved only with a synthetic database
based on a mathematical model. As we are interested in texture
features, the model must be related to non-uniform aspect which
is defined according to Julesz [10] by the first and second or-
der statistics. That’s why we oriented our choice to an isotropic
fractal colour model. The fractal model is more important and
generic than the database, that can be reproduced by everyone
according to the selected scales of study.

In this protocol, we will briefly introduce the fractal model
and the scales of references, then we will present the colour
spaces used for the experiment. Finally, we present the evalu-
ation criteria.

Synthetic Database
The heart of this proposition is the use of a colour fractional

Brownian motion (fBm). The interest of fractal model is first to
insure a known energy level at any spatial frequency thanks to a
complexity parameter: the Hurst coefficient. The spectral power
density of the model follows the law

F( f ) ∝
1

f 2H+1 , (1)

where f is the frequency and H the Hurst coefficient. The colour
and vector construction is obtained using a quaternionic Fourier
transformation from the CIELAB colour space. An alternative
solution is to create the colour content directly in the spatial do-
main using the colour midpoint displacement approach [11].

Secondly, the random generation allows to control the chro-
matic content of each generated image. Therefore the whole
spatio-chromatic space can be explored.

The fractal synthetic database has different parameter for
the generation:

• µ: the target mean value of the colour distribution;
• Σ: the covariance matrix responsible for the correlation be-

tween channels i.e. the shape of the colour distribution;
• H: the Hurst coefficient linked to the relative image com-

plexity and of the Spectral Power Density.

To change µ implies a variation on the colour average, but
not on the distribution shape distribution. The smaller H Hurst
coefficient is, the more complex the image is (images appear
sharper whith a small H, with more small local variations). Σ

influences both the first and second order statistics. It is respon-
sible for the shape of the colour distribution and therefore the
probability to find a colour next to another. The Table 1 summa-
rize the parameters.

Colour Spaces
The second question is which colour space for this synthetic

database? The ideal would the physical space associated with
the scene, but this solution is not available yet. The images are
generated in CIELAB. The idea is to anticipate psycho-physical



experiments where the colour difference would need to be related
to perception, the fBm being defined by the relationship between
the standard deviation of colour differences for a given spatial
distances.

The features are estimated in 3 colour spaces, the RGBFV
colour space of the sensor (considering the sensor spectral sensi-
tivity functions), the CIERGB space which is a reference RGB
colour spaces and the CIELAB space. We are expecting the
CIELAB results to be superior to the other.

The database is constituted of 400 images per targeted mean
µi. Half of it is generated with a covariance matrix Σk, the other
half with Σl . Five images par mean µ and covariance Σ have been
generated with 10 different Hurst coefficient from 0.01 to 0.9.
The Table 1 summarize the parameters and their occurrences.

Evaluation Criteria
We classify images with a k nearest neighbour approach.

The precision is estimated for a given k:

P@k =
#T P

k
, (2)

where T P is the set of the k-first images well-classified and # is
the cardinal of the set. As each class is composed of 5 images,
we use the P@5. The average precision (AveP) considers all
images from a class. The average precision is given by:

AveP = ∑
k=Tk

P@k, (3)

where Tk is a set containing k if the item at rank k is a well-classed
image.

These two measure quantify the quality of a classification
for one image of the database. The usually studied measure are
their respective means (MP@5 and MAP) on all images from
the database.

Compared descriptors
We present in this section the 3 descriptors studied:

Colour Local Binary Pattern (LBP), Colour Contrast Occur-
rences (C2O), Relocated Colour Contrast Occurrences(RC2O).
These 3 features are probability based, therefore the Kullback-
Leibler divergence is used to measure similarity. The Table 2
summarize the different parameters of the descriptors describe
below.

Colour Local Binary Pattern
The LBP, introduced by Ojala et al. [12], presents a coherent

pair descriptors/similarity measure. It is based on the pixel value
comparison with its neighbours. It was adapted to colour in [13]
with a colour quantification to created a non sparse histogram.

Table 1 - Summary of the variables and their occurrences.

Database
H 10 values of Hurst’s coefficient
µ 4 means
Σ 2 covariance matrices

Table 2 - Summary of the descriptors parameters.

Features
C2O LBP RC2O

Colour spaces 3 3 3
Distances (d) 4 1 4

Angles (θ ) 4 ∅ 4

To increase the discrimination power of this feature, Poreb-
ski et al. [14] use a cross correlation channel approach. the cen-
tral pixel and its neighbour are compared by channel and between
channels.

The LBP are calculated with the 8 connected neighbours of
the pixel with en distance d = 1 as presented in its first version
by [12].

We use the CCMA (Cross Channel Marginal Approach) for
the CIERGB space and a simply marginal approach (Colour
Marginal Approach CMA)for the other two colour spaces
RGBFV and CIELAB which are supposed to be orthogonal.

Colour Contrast Occurrences
Martinez et al. [15] proposed the Colour Contrast Occur-

rences (C2O) inspired by the Haralick [16] co-occurrences fea-
tures. Haralick descriptor does not fit with an adapted similarity
measure, that’s why it is not developed in this article.

The C2O idea is to measure colour differences between two
pixels distant from a given vector v. It is considered as a proba-
bility:

C2O(d,θ) :


P
(

∆
(
I(x), I(x+ v)

)
) = δ

)
,

with v ∈ R2,‖v‖= d and v̂ = θ ,

and δ ∈ R3,

(4)

where P is the probability to find a colour pair with a spatial
difference of v and a colour difference of δ .

The negative point of this features is that it does not keep
any information form the initial colour distribution, therefore the
first order statistics are completely lost.

Relocated Colour Contrast Occurrences
Introduced by Jebali et al. [17], this descriptor completes

the C2O by adding the mean value of the initial colour distribu-
tion. The probability can be written as:

RC2O(d,θ) :


P
(

∆
(
I(x), I(x+ v)

)
+E(I(x)) = δ

)
,

with v ∈ R2,‖v‖= d and v̂ = θ ,

and δ ∈ R3,

(5)

where P is the probability to find a colour pair with a spatial
difference of v and a colour difference of δ . The average value
of the colour distribution is given by the expected value E(I(x)).

This descriptors contains the first and second order statistics
proposed in the first Julesz conjecture [10].

We have estimated the C2O and RC2O with four angles: 0◦,
45◦, 90◦ and 135◦; and four distances: 1, 3, 5 and 7 pixels. The
generated fractal images are supposed to be isotropic, therefore
we should have similar results with each angles and distances.
The Figure 1 presents the C2O and RC2O results for each dis-
tance and angle. The response seems very similar. For the next
results we will only consider the mean of these angles and dis-
tances.

Comparing Signature’s Length
Each studied descriptors has a particular signature length.

The LBP extracts a 256 bin histogram for each comparison (3
channels and 6 cross channels). The signature length is 3 or 9
joined histograms. Those histograms are 1D. They cannot be
modelled to diminish their size. The features for C2O and RC2O
are histograms of colour differences (b bins per channel). Their
size is 3× b. Nevertheless, these histograms are dense and can
be modelled by a Gaussian law as we do it. The signature’s size
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Figure 1. C2O and RC2O variation depending on distances and angles.

The four angles are centred around the distance (1, 3, 3, 7) with ascending

order (0◦, 45◦, 90◦, 135◦).

becomes 9+3 for the C2O and 9+3+3 for the RC2O. Nine pa-
rameters are needed for the covariance matrix and 3 for the mean
of the difference distribution (null if the texture is stationary).
For the RC2O we add the mean value of the colour distribution.
The C2O and RC2O signature size are significantly smaller than
the LBP.

Results and Discussion
The database is to be considered as a set of scales with sev-

eral samples for a reference. We focus on classifying image from
one scale at a time to evaluate the discriminative properties of the
descriptors. In this study, no images are identical. At best they
are similar with the same parameters for the random generation.

Different classification are processed. First, we evaluate
classification regarding the mean value of a class image leaving
other parameters fixed (changing the position of the distribution).
Then, we aim te recognize the images thanks to their covariance
matrix (the distribution shape varies). The following experiment
is focused on the fractal dimension classification (changing the
relation to the neighbours). The last classification allows all pa-
rameters to vary and measure the classification properties of the
colour textures features proposed.

Discrimination over the Colour Average
In this experiment, the Hurst coefficient and the covariance

matrix is fixed. The objective is to evaluate the classification
properties with a variation of only the mean value.

The Table 3 presents the classification results. The descrip-

Table 3 - Classification with only µ varying.

MP@5 MAP

C2O
CIELAB 97.3 % 98.7 %
RGBFV 97.2 % 98.6 %

CIERGB 97.2 % 98.6 %

LBP
CMA-CIELAB 79.9 % 88.9 %
CMA-RGBFV 69.2 % 81.7 %
CCMA-RGB 100 % 100 %

RC2O
CIELAB 100 % 100 %
RGBFV 100 % 100 %

CIERGB 100 % 100 %

Table 4 - Classification with only Σ varying.

MP@5 MAP

C2O
CIELAB 86.9 % 94.9 %
RGBFV 90.2 % 95.1 %

CIERGB 90.2 % 95.1 %

LBP
CMA-CIELAB 65.9 % 79.8 %
CMA-RGBFV 63.5 % 77.9 %
CCMA-RGB 76.2 % 86.4 %

RC2O
CIELAB 68.7 % 81.5 %
RGBFV 70.4 % 82.9 %

CIERGB 70.4 % 82.9 %

tors RC2O and CCMA-LBP gives a 100% good classification.
The pair C2O/Kullback-Leibler divergence does not consider the
mean in its feature. It explains the weak classification results of
this descriptor. For the next two test, the mean will be fixed and
the C2O weakness will disappear.

If the question seems easy, it brings back to the method
to measure similarity between two coloured surfaces. Should
the texture and colour be considered jointly or separately? If it
is considered separately, how can we combined both similarity
measure to keep the metrological validity? The RC2O is built
to naturally integrate both texture and colour jointly leaving only
one similarity measure. Both C2O and LBP does not consider the
mean value of the texture. Nonetheless, the LBP, estimated with
the cross channel information, has a small access the mean by
comparing values between channels. A larger number of means
and images should be used to show the limits of this approach.

Discrimination over the Colour Distribution
Shape

This test compares images with the same colour average and
Hurst coefficient. The objective is to measure the discrimina-
tive properties of the textures features over the colour distribution
shape, so the images covariance.

The Table 4 presents the classification results. The best clas-
sification rate (MP@5= 90.6% and MAP= 95.3%) are obtained
with the C2O feature proving so its discriminative power when
the colour mean value is not an issue. In another manner, the
RC2O, that consider the colour average in addition to the C2O,
obtains weaker results.

The marginal LBP feature on orthogonal spaces fails at dis-
tinguishing the different colour distribution shapes. It’s the same
for the CCMA-LBP, comparing between similar and different
channels. But the cross-channel approach gives better results
than the marginal one.

These results can be explained thanks to the Table 5. The
colour mean and the standard deviation of each sample have been
calculated per µ-class from the generated images. The mean ∆E
is also calculated. This value is considered in the RC2O induc-



(a) µ1 et Σ1,
µ = (45.7,3.7,−8.8),
∆E(2b,2a) = 18.0.

(b) Reference image: H = 0.9,
µ1 et Σ1,
µ = (29.3,10.2,−12.0).

(c) µ1 et Σ2,
µ = (31.3,9.0,−10.3),
∆E(2b,2c) = 2.9.

Figure 2. CIELAB generated means inconsistent with each other.

ing the uncertainty in the colour distribution shape recognition,
by opposition to the basic C2O feature. From the previous ex-
periment, we shown that the cross-channel marginal approach
(CCMA) was able to well consider the colour average. This ex-
periment shows that in fact the relative combination of the dif-
ferent channels allows to assess a part of the first-order statistics,
that cannot be considered in a marginal processing.

The Figure 2 presents two images from the same class (Fig.
2b and 2a) and one where only the covariance matrix is different
(Fig. 2c). The central image (Fig. 2b) is used as a reference in
this comparison. Under the other two images (Fig. 2a and 2c), we
give the ∆E between the colour distribution’s means of the image
and the reference image. Even if the covariance matrices used to
generate the two right images are different, the visual difference
is smaller than between the two left images belonging to the same
class. It shows the importance of integrating the mean value in
the similarity measure. But it also shows an uncertainty between
the defined colour average for the reference generation and the
obtained one.

Discrimination over the Spectral Power Density
The two first experiments were defined to assess the abil-

ity of texture features to discriminate textures according to the
first-order statistics (colour average, colour distribution shape).
This third test will consider the discrimination over the spectral
power density. By changing the Hurst coefficient of the fBm,
we are changing the distribution of energy according to the spa-
tial frequencies. The more complex are the images, the more
energy is present in the high spatial frequencies, inducing fine
details/variations. So this experiment is dedicated to the perfor-
mances according to the high-order statistics. The experiment is
designed to discriminate the samples according to the scale de-
fined by the H complexity.

The Figure 3 presents two images from the same class (Fig.
3b and 3a) and one with a different Hurst coefficient (Fig. 3c).
The central image (Fig. 3b) is used as reference for this com-

Table 5 - Mean and standard deviation verification per gener-
ated µ.

Measured mean Standard Deviation ∆E
L a b L a b

µ1 52.2 5.6 -8.6 1.8 2.1 0.7 2.8
µ2 35.1 63.4 -9.4 2.7 2.2 0.8 3.6
µ3 48.3 0.2 40.5 6.4 1.3 3.0 7.2
µ4 31.4 11.3 -13.0 3.3 3.7 4.4 6.6

Table 6 - Classification with only H varying.

MP@5 MAP

C2O
CIELAB 73.9 % 83.5 %
RGBFV 71.4 % 81.3 %

CIERGB 71.4 % 81.3 %

LBP
CMA-CIELAB 93.0 % 95.9 %
CMA-RGBFV 96.0 % 97.8 %
CCMA-RGB 68.7 % 79.0 %

RC2O
CIELAB 47.0 % 57.0 %
RGBFV 45.8 % 55.7 %

CIERGB 45.8 % 55.7 %

parison. Under the other two images (Fig. 3a et 3c), we give
the ∆E with the reference image mean. Even if the ∆E between
the image from the same class is higher than the ∆E with the
other class, the visual pairing done comparing complexity would
associate the two left images belonging to the same class. The
approaches sensitive to the first statistics (RC2O, CCMA-LBP)
will be biased due to the uncertainty between the defined and
generated average.

As expected, the obtained results for RC2O are weaker than
those from C2O and in the same manner between CCMA-LBP
and CMA-LBP. The second remark is about the difference of per-
formance between the C2O and the LBP approaches. The LBP
approaches are processed for a single distance (d = 1), when the
C2O-based approaches are averaging the response for 4 different
distances (d = 1,3,5,7) before obtaining the final feature sig-
nature. Such a combination of spatial scales is usual in texture
discrimination, but the results are expressing the induced uncer-
tainties in texture discrimination. By averaging several spatial
analysis scales, the feature looses in discrimination for the high
spatial frequencies responses.

The Figure 4 presents the P@5 and the MAP for the 3 de-
scriptors depending on the Hurst coefficient. We note an overall
decay when H increases, which corresponds to a complexity re-
duction. The less complex is the image, the higher the scale is to
estimate a representative variation of the non-uniform aspect you
need. Yet, the LBP are only looking at the 8 closest neighbor,
the C2O and RC2O at a maximum distance of 7 pixels. In other
words, these distances are too small to evaluate weak complex-
ity. Choosing too big distances will forbid to discriminate high
complexity images. This shows the importance of integrating a
spatial multi-scale analysis for descriptors which could easily be
evaluated with a fractal database.



(a) µ1, Σ1 et H = 0.6,
µ = (39.5,67.0,−9.1),
∆E(3b,3a) = 7.1.

(b) µ1, Σ1 et H = 0.6,
µ = (34.2,62.5,−9.1).

(c) µ1, Σ1 et H = 0.9,
µ = (32.7,61.0,−8.6),
∆E(3b,3c) = 2.1.

Figure 3. CIELAB generated means inconsistent with the theoretic mean.
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Figure 4. Precision variations with the Hurst coefficient.

Classification according to all dimensions
In this last experiment, we are considering all the possible

scales of change in the texture aspect: colour average, colour
distribution shape and spectral power density. Concretely, we
are merging all the generated images for the classification task
and assess the performance in texture retrieval from this refer-
ence scales. We cannot hope for better results than the weak-
est obtained on the last three experiments. The Table 7 presents
the classification result. The LBP features present the strongest
decay (around 8%) compared to the results from the Table 6.
The RC2O decrease of 3.5% for the MP@5 and of 5.1% for the
MAP. The C2O show the smallest decay (maximum 2%).

We must note the two colour space RGB used does not show

Table 7 - Whole database classification.
MP@5 MAP

C2O
CIELAB 72.3 % 80.8 %
RGBFV 70.2 % 79.1 %

CIERGB 70.2 % 79.1 %

LBP
CMA-CIELAB 55.0 % 67.1 %
CMA-RGBFV 43.3 % 54.2 %
CCMA-RGB 60.5 % 70.2 %

RC2O
CIELAB 42.9 % 51.1 %
RGBFV 42.3 % 50.4 %

CIERGB 42.3 % 50.4 %

any difference for the C2O and RC2O approaches. These two
colour spaces CIERGB et RGBFV differ only by a linear trans-
formation which explains that a divergence measures based on
mean and covariance does not induce differences. The results in
the CIELAB colour space are better except when the goal is to
separate images with different means. This colour space varies
between −100 and 100 while RGB spaces vary between 0 and
1. the means differences are higher and therefore the divergence
measures increases strongly.

Discussion
Under the point of view of the better texture feature’s selec-

tion, the results seems divergent. Nevertheless, the selection of
the better feature was not the goal of this work. It was not either
to assess the fractal dimension of colour images using texture
features. Our purpose was to develop an objective protocol to
calibrate the discrimination ability of texture features. In order
to consider the first-order statistic (the colour distribution) and
the high-order statistics (the spectral power density), we used a
fractional Brownian motion to define our reference scales: mean-
colour variations, colour distribution shapes, spectral power den-
sities.

These first results are showing that the reference scales must
be rearranged according to their calculated colour averages, some
bias appearing during the generation process. We can imagine
that some bias exist also in the colour distribution shape gener-
ation. In [11], the relationship between the generated complex-
ity and the assessed one was demonstrated, with some limits for
the weaker complexity. So according to these limits, that can
be solved easily, the propose protocol solve the expectations in
calibrating texture features.

Concerning the required elements in the texture features, the
different experiments are showing that averaging mono-scale re-
sponses reduces the discrimination performances. Even if it was



not developed in the literature, the cross-channel marginal ap-
proaches are embedding a part of the first-order statistics.

Conclusion
In this work, we proposed a protocol to calibrate texture fea-

tures for the control quality by vision of non-uniform surfaces.
The protocol is based on several tests and reference scales de-
fined by a fractional Brownian motion. The proposed reference
scales allow to assess the features sensitivity to three dimensions:
colour average, colour distribution, and spectral power density
change.

Our objective was to present a calibration protocol and not
to present the best features with this database. Yet, the proto-
col shed light on a limit of proposed texture features: there is no
multi-scale analysis to evaluate correctly the spectral power den-
sity variation. As a future work, we wish to develop this multi-
scale approach.

The proposed tests are based on the retrieval of the closest
reference in the generated reference scales. The test is consid-
ered as a classification task, and the performances defined by
usual classification scores. The obtained results are showing the
validity of this calibration protocol, and the elements to improve
in order to reduce the bias and uncertainties. This calibration
protocol extends the images database limited spatio-chromatic
content.
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