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Can fixation-point and key-point coincide on cultural heritage
colour paintings?

Hermine Chatoux, Noël Richard, François Lecellier and Chrisitne Fernandez-Maloigne

Abstract
This article compares the key-point extracted with a colour key-point detector and the

location of fixation point thanks to an eye-tracking experiment. We hypothesize the first
fixation points should correspond to key-points with the most significant gradients. The
colour detector is based on Harris and Stephens corner detector extended to colour. The
eye-tracking experiment was realised on medieval art work. We compare the location of
both the detected key-points and the fixation points observed. Between 30% to 50% of the
key-points coincide with fixation points. A second analysis display the number of matching
key-points over the number of fixation points at a given time. The ratio decreases with the
observation time which concur our initial hypothesis. Overall, several of the first fixation
points correlate with high response key-points detected with our method.

1 Introduction

Several eye-tracking experiment have been conducted to estimate saliency maps. [Borji and Itti(2012)]
offered a wide survey of the different methods used to compare an estimated saliency map. The es-
timation can focused on top-down analysis (task related) or bottom-up exploration (pre-attentive
step). [Borji et al.(2011)Borji, Sihite, and Itti] proposed classification tasks to extract top-down
saliency maps. On the contrary [Le Meur(2005)] used low-level features to perform bottom-up
saliency maps. These maps are based on the location of fixation points: a point focused by a
human eye for sufficiently long time.

It is important to define what represent a key-point: it is a point or an area allowing to
characterize the analysed image. Two major family extract key-point, the corner point detection
and the blob detection. The most used detector is the Difference of Gaussian (DoG) presented by
[Lowe(1999)] belongs the the blob family. It is based on the second derivative and extract uniform
areas. [Bay et al.(2008)Bay, Ess, Tuytelaars, and Van Gool] proposed an adaptation that was
computationally faster. The corner detection family can be decomposed in two group: one based
on the first derivative and based on pixel comparison. The derivative based group was introduced
by [Moravec(1980)] and generalized by [Harris and Stephens(1988)]. They rely on the spatial
auto-correlation matrix and study the eigenvalue to determine which pixels are key-points. The
second group compares a value set as the centre with values at a given radius from the centrer.
It was introduced by [Smith and Brady(1997)]. [Rosten and Drummond(2006)] accelerated the
computation with the FAST detector which is often used.

In this article, we wonder about a possible relation between detected key-points and salient
fixation point. Key-point detection is based on low-level features. Therefore we expect a better
match between key-points and fixation point in the pre-attentive phase. The rest of the observa-
tion is linked to the brain analysis reading of the image. So, low-level features are not the main
criteria. However, our goal is not to prove both detected key-points and fixation point coincide.
But we are interested in estimating what matching we can expect.

The next section will present the two colour key-point detectors used in the comparison.
Section 3 presents the eye-tracking experiment: device, images and observers group. The fourth
section compares the detected key-points with the fixation points obtained during the experiment.
We conclude in the last section.
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2 Colour key-point detector

This vector-key-point detector is based on the same steps as the [Harris and Stephens(1988)]
corner detector. The figure 1 presents these steps which are separated in three phases. First,
the gradient needs to be measured, then the corner informations are extracted and finally the
key-point decision is made.

G
ra
di
en
t
ex
tr
ac
ti
on

Sh
ap

in
g

D
ec
is
io
n

cr
it
er
ia

Image

Multi-scale
derivative filters

Auto-correlation matrix:
MSC(

∂xT1 G∂x1 ∂xT1 G∂x2
∂xT1 G∂x2 ∂xT2 G∂x2

)

Gradient rate extraction

det(MSC)

tr(MSC)

Local maxima extraction

Key-point relocation

{
Key-point

}

Figure 1: Steps to obtain full-vector key-point

2.1 Gradient extraction

As an image contains corners at different scale, we used multi-scale derivatives filters. [Mikolajczyk and Schmid(2001)]
proposed multi-scale binomial derivative filter. To be more generic, we construct our filter with
a Gaussian and its derivative. Equation (1) illustrates these filters:

∂Filter

∂xi
=


x

y

×


x
y


T

. (1)

The Gaussian function is centred, the spatial filter size (SF ) depends only on the standard
deviation σ selected:

SF = (6σ + 1)× (6σ + 1).

We selected eight following scales form σ = 1 to 8. Usually, the scales are selected with a constant
size ratio. We chose a constant six pixels difference between each scale. It allows a redundancy
in certain key-point location. The more scale detected at a key-point, the stronger it is.

These filters allows to measure, marginally, the gradient on every channel. The next step is
to combine these gradients.

Inspired form [Di Zenzo(1986), Koschan and Abidi(2005)], we proposed the full-vector gra-
dient in [Chatoux et al.(2019a)Chatoux, Richard, Lecellier, and Fernandez-Maloigne] to extract
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gradients in the sensor space. We calculate a spatial correlation matrix (MSC) depending on all
the hyper-spectral channels and their inter-correlations from the Jacobian:

MSC =

 ∥∥∥∂I(x)∂x1

∥∥∥2 〈
∂I(x)
∂x1

, ∂I(x)∂x2

〉
〈
∂I(x)
∂x1

, ∂I(x)∂x2

〉 ∥∥∥∂I(x)∂x2

∥∥∥2
 , (2)

with 〈
∂I(x)

∂x1
,
∂I(x)

∂x2

〉
=
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∂x1

T

·G · ∂I(x)
∂x2

, (3)

G =


‖s0‖22 〈s0, s1〉2 . . . 〈s0, sm〉2
〈s1, s0〉2 ‖s1‖22 . . . 〈s1, sm〉2

...
...

. . .
...

〈sm, s0〉2 . . . 〈sm, sm−1〉2 ‖sm‖22

 . (4)

The Gram matrix G uses the scalar products defined for the integrable functions. The functions
used are the Spectral Sensitivity Functions (SSF) of each channel:

〈si, sj〉2 =
∫
R
Si(λ)Sj(λ)dλ. (5)

The correlation matrix will allows us to extract key-point as presented by [Harris and Stephens(1988)].

2.2 Shaping

An intermediate step is necessary to extract the strongest gradients represented by corners. The
gradient rate extraction consist in a simple integrative filter. It is often considered as a denoising
step in other algorithms ([Harris and Stephens(1988), Mikolajczyk and Schmid(2001)]). With
the filters we proposed, the smoothing step is already realized. Yet, an integrative filter adds all
the gradients from its window. A corner area contains more edges than an edge one, therefore
after the integrative filter, the response from the corner area will be stronger than the edge one.
This step allows to increase the response on corner areas.

For the appropriate response function, we based our analysis on the principle given by
[Harris and Stephens(1988)]:

• 2 small eigenvalues represents uniform area,

• 1 strong eigenvalue represents edge,

• 2 strong eigenvalues imply a corner area.

The response proposed by [Harris and Stephens(1988)] depends on both matrix invariants: the
determinant and the trace. The proposed response function is RH(k) = det(MSC)−k tr(MSC)

2,
k being an empirical constant.

To free ourselves from the instability implied by the constant k, we propose a new response:

RFV KP =
det(MSC)

tr(MSC)
. (6)

2.3 Decision criteria

Corner areas will give high value on the response function. To select only the corner, we extract
the local maxima of high responses. These maxima are labelled corners. Once the key-point
have been selected, several informations are attached to it apart from its location: the response
value and an angle.
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The spatial direction θ of the gradient is defined by [Jin et al.(2012)Jin, Liu, Xu, and Song]
lifting the imprecision of ±π

2 from the initial Di Zenzo expression.
Another step can be added to merge key-points. A corner can be detected at several filter

sizes. It is not relevant to keep each size for the same location. Therefore, we propose two
different extractions of the key-point.

The first one is based on suppressing overlapping key-points. We keep the key-point with
the strongest response function when there is a large overlap between two key-points. It will be
called HarrisS2 on the rest of the paper.

The second detector consider the set of key-points associated to the same location with
different scales. We hypothesize that the more scale are detected the stronger the corner is. This
detector, HarrisME , will keep a key-point if it has been detected on 3 scale or more and associate
the number of detected scales as the response function. The figure 2 presents the results of both
detector on the same image. We observe that the detector HarrisME is more selective than the
other. The constraint of several scale of detection allows in this image to remove all key-point
associated to a mosaic tile.

3 Eye-tracking experiment

To compare the detectors with the human eye, we realized a psycho-visual experiment allowing
to eye-track the user during the reading of an image.

The eye-tracker An eye-tracker and its associated software analysed the fixation point of each
observer. An eye-tracker is a device that allow to follow the eye movement of a user. The device
measured the eye movement observing a screen. It is based on infra-red that will be reflected by
pupils only.

The eye-tracking device used id the Tobii X-120. It allows to measure two majors eye-
movements. Firstly, there is the saccades and then fixation points. The saccades are high speed
movements (<50 ms pause between movement). There is no apparent pattern to their trajectory.
These saccades allows to create a first image that will allows the brain to extract the area of
interest that will be modelled by the fixation points. These points are obtained when the eye is
still for a sufficiently long time (>300 ms). It allows the brain to analyse the area. The fixation
points are the one we want to compare with key-points detected with the detectors.

(a) 10522 points extracted by the detector
HarrisS2

(b) 687 points extracted by the detector
HarrisME

Figure 2: Examples of key-points extracted by both detectors
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(a) Experimental settings (b) Experimental diagram

Figure 3: Experimental protocol for eye-tracking on medieval works.

The eye-tracking device needs to be calibrated to precisely localise where the observer is
looking. The Figure 3 presents the experimental diagram and a photo of the settings during the
experiment.

As the experiment was to be held in two different environments, we chose to display the
images on a 17 inches screen. The eye-tracking devices used was created for larger screens.
Therefore, observers were watching small images considering the perception distance forbidding
a great sensitivity in the details.

The images We chose to set the test duration short (12 to 15 min) in order to keep the
observers attention focused during all the experiment. We selected 20 images of medieval works.

Among these, half of it came from the Romane database created by the CESCM (Centre
d’Études Supérieur de la Civilisation Médiévale) where come most of our observers. These
images are defined as known by the observers.

Ten other images have been extracted on other medievals work databases. These are consid-
ered unknown for the “experts”.

Most of the images are wall paintings but there are also mosaics, wood paintings. . . Some of
them present a religious theme but other themes have been selected. Images are well preserved
other are very degraded. The figure 4 presents some of the used images.

Each images is presented for 30 secondes with 5 secondes of neutral grey in between to rest
the eyes. The oberver has to describe the seen image to identify the scene when possible.

Sample group One of the experiment objectives was to verify how different the analysis is
done depending on the knowledge of the observer. We have selected two groups to realise the
experiment.

The first one is constituted of students from BD to PhD, researchers specialised in the me-
dieval history. 21 observers are in this group.

The second are members of the XLIM laboratory (researchers, administrative or IT person-
nels). This sample group is unfamiliar with medieval images even if some are image processing
users. 16 persons realised the experiment in this group.

Unfortunately some users cannot be kept in the study. Indeed, glasses or moving during the
experiment prevented the eye-tracker device to measure sufficiently the eye movement. We kept
31 observers.

4 Comparing detectors key-points and saliency points

In this study, we are looking for a relation between detectors key-points and saliency points. We
have extracted key-points with the colour detectors HarrisS2 and HarrisME on some of the images
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(a) Known image of wall painting (b) Known image of deteriorated wall painting

(c) Unknown image of mosaic (d) Unknown image of wall painting

Figure 4: Examples of images used for the experiment.

experiment. To compare as close as possible from the human eye, we have transformed the images
in the LMS colour space thanks to the standard matrix CIECAM02 and used the Gram matrix
presented in [Chatoux et al.(2019b)Chatoux, Richard, Lecellier, and Fernandez-Maloigne]associated
with the LMS curves from [Shrestha(2016)].

4.1 First results and works hypothesis

The figures 5 presents results on fixation points for an observer compared to the detected key-
points for two images. On the first image (fig. 5a), points seems dispersed on the central area
(coloured apse). On this image other observers focused less on the frieze inducing larger difference
with the detector (fig. 5b). On the second observed image (fig. 5c), fixation points are focused
in the remaining painted area avoiding the degraded areas while the detectors (fig. 5d) extracts
mostly in the edges between painted and plaster areas as they present strong gradients. This
shows a first limits in the analysis of a relation between detected key-points ans salient points.
A strong gradient does not necessarily induce high saliency. The number of key-point being
superior with the other detector, the percentage of key-point on an edge painting/ plaster is
smaller hence the correlation with saliency point is better.

It is worth noting, that the saliency central bias is not considered in this study. The detected
key-points are extracted on the whole image while human looks preferably at the centre of the
image. Considering the observation duration, the observer should have time to watch the whole
image.

The table 1 gives a first results of the relation between detected key-points and fixation
points. It presents the percentage of detected key-points located near (less than 10 pixels radius)
of a fixation point. Overall 35% of the detected key-points are scrutinize by observers. It gives
us a first limits to the expected relation, even if four images are insufficient to draw a conclusion.

The figure 6a presents the number of fixation points over time. These curves corresponds the
visual course presents in figures 5a and 5c. With the description task given to the observer they
observed the scene with an almost constant frequency of 3 to 4 fixation points per second.
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(a) Example of an observer fixation points (b) 657 points extracted by the detector HarrisS2

(c) Example of an observer fixation points (d) 163 points extracted by the detector HarrisME

Figure 5: Examples of extracted key-points for an observer and the key-point detector.

To compare this visual course to the extracted key-points, we hypothesize the observation
order can vary from and observer to another but a similar set of fixation point is observed after a
certain duration. We need to consider the different level of perception from pre-attentive vision
to semantic driven vision. Therefore, only a part of key-point is observed by humans. We expect
a theoretical curve as presented in figure 6b.

4.2 Correlation between detected key-points and fixation points

The curves from figures 7a and 7b shows the our initial hypothesis (expected results from fig-
ure 6b) seems consistent. Nevertheless, these curves does not allow to define the pre-attentive
duration. As the detector HarrisS2 is less selective, it offers higher correspondence rate between
key-points and fixation points. Nonetheless, if some key-points are observed by several observers
some are never observed.

The figures 7c and 7d present the ratio of observed key-points over all the observers fixation
points depending on the time ordered fixation points. The curves decreases with time. The de-
crease vary in speed and tends toward zero as the number of fixation points increases indefinitely
with time while the number of key-points is finite. It reinforces our hypothesis that mainly the

Table 1: Numbers of key-points detected by our proposition. The matching percentage is the
number of key-point looked by an observer divided by the total key-point number.

HarrisME
Key-point Nb 62 164 152 163
% matching 46.7% 39.6% 32.9% 37.4%

HarrisS2

Key-point Nb 657 1961 2276 1423
% matching 40.5% 42.0% 40.0% 45.9%
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Figure 6: Preliminary results. The figure 6a presents the relation between the number of fixation
point and time. The second one (fig. 6b) presents the expected relation between key-points and
fixation point.
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(a) HarrisME
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(b) HarrisS2

20 40 60 80 100

2

4

6

Time ordered fixation points

O
bs
er
ve
d
ke
y-
po

in
ts
/A

ll
ob

se
rv
er
s
fix

at
io
n
po

in
ts

(%
)

(c) HarrisME
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Figure 7: Match between key-point and saliency depending on the detector. The figures 7a and
7b present the number of key-point observed depending on the time (fixation points number
× observers). Figures 7c and 7d present the number of key-point observed over the number of
fixation point.
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(b) HarrisS2
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Figure 8: Harmony between key-point and saliency points depending on the intensity of the point.
The figures 8a and 8b present the sum of the response function depending on the chronologically
ordered fixation point. Figures 8c and 8d present the number of observation ordered by decreasing
response function.

pre-attentive phase will match with detected key-points.
The previous figures showed the first fixation points have a higher match rate than the later

ones. We can ask ourselves, if the matching key-points corresponds to the stronger ones. The
figures 8a and 8b presents the sum of the response functions of the matching key-points depending
on the time ordered fixation points. If a relation is difficult to extract form the detector HarrisME ,
it is clear for HarrisS2 : stronger key-points are observed on the pre-attentive phase.

From another point of view, figures 8c and 8d present the number of observation of a key-
point depending on the key-point ordered by decreasing response functions. For the detector
HarrisME , the number of observation is overall constant whatever the response function. On the
contrary, for the detector HarrisS2 , the higher response functions key-point have a slightly higher
probability of being observed by humans. We cannot extract a definite tendency with these two
figures. It corroborates our initial caution when comparing key-points and fixation points, After
the pre-attentive phase, the analysis is brain driven to extract the semantic meaning that was
pronounced during the experiment.

5 Conclusion

Overall, several of the first fixation points correlate with high response key-points detected with
our method. This comparison supports our conjecture based on strong correlation between the

9



first fixation points corresponding to the pre-brain analysis and the corner key-points extracted
with our detector.

The comparison should be more developed to better understand the link between fixation
points and key-points detection. In fine, this could guide the future key-point detector to a better
harmony with the visual perception and brain analysis.

The fixation points analysed were obtained by looking the images for a long time. Moreover,
the task was to identify the scene when possible which is a top-down approach. As said in
the introduction key-points are low-level features not immediately related to these approaches.
Comparing key-points and fixation points associated to another task such as looking for details
could induce a better matching rate.

Another limit of this analysis is that the key-points are selected to be corners while fixation
points can be a corner or the centre of a uniform area. Therefore, this study should be completed
with a one comparing a blob detector and the fixation point. This can be a response on the battle
corner/blob detection: both are of interest in regard to human vision!
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