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Nonlinear deterministic sea wave prediction using instantaneous 
velocity profiles 

Marion Huchet *, Aurélien Babarit , Guillaume Ducrozet , Jean-Christophe Gilloteaux , Pierre Ferrant 
LHEEA, Centrale Nantes, 1 Rue de la Noë, 44 321, Nantes, CEDEX 3, France   

Optimizing the production of wave energy converters using Model Predictive Control (MPC) requires a real-time, 
deterministic prediction of the waves arriving at the device. This study presents a new method for deterministic 
sea wave prediction, using the horizontal velocity profile over the water column as a boundary condition for a 
dedicated nonlinear wave model. However, direct measurement of the horizontal velocity component over the 
whole vertical column is hardly achievable at sea. A method to reconstruct this profile from measurement devices 
currently at use, such as ADCPs, is thus presented and evaluated. The performance of the prediction method itself 
is then tested using synthetic numerical data. First, the reconstruction of the horizontal velocity profile as a 
boundary condition is evaluated. Then, the whole prediction procedure is assessed. In both these stages, the 
simulations are based on synthetic numerical data and the outcomes are compared with numerical reference 
solutions. The results show that the method is promising enough to justify further investigation through wave 
tank experiments.   

1. Introduction

While stochastic wave models such as WAM (The WAMDI Group,
1988), WAWEWATCH III (Tolman, 2009) or SWAN (Booij et al., 1999) 
are widely used today, e.g. in weather forecast or marine operation 
planning, they only provide statistical quantities on the sea state, such as 
significant wave height (Hs), peak period (Tp) or mean wave direction. 
Phase-resolved wave models, on the other hand, can offer a description 
of the actual shape of the sea surface. Such information, if available in 
real-time, would greatly benefit to a range of marine applications such 
as aircraft take-off and landing, ship dynamic positioning, or the 
development of control strategies for wave energy converters. For this 
latter application in particular, Model Predictive Control (MPC) appears 
to be a very promising method (Richter et al., 2013) that could increase 
the energy harvested by the device by up to 80% compared to regular 
Proportional Integral (PI) control (Nguyen et al., 2016). To be effective, 
a MPC strategy requires prior knowledge of the waves arriving at the 
device around 20 s ahead, advocating the need for an efficient, 
real-time, deterministic sea wave prediction tool. 

Although they provide a detailed description of the sea surface, the 
high computational costs of phase-resolved wave models have long 

restricted their use to small time-space simulation domains. But recent 
progress in computational resources has revived interest in their 
development and they have emerged as a credible alternative for ac-
curate, short-term wave prediction in the past 20 years (Morris et al., 
1998). These deterministic wave models can classically be divided into 
linear and nonlinear methods. As frequently pointed out (Köllisch et al., 
2018; Klein et al., 2020; Law et al., 2020), linear models benefit from a 
shorter computation time, a critical feature for real-time prediction, and 
are thus often preferred for operational purposes (Morris et al., 1998; 
Belmont et al., 2006; Naaijen and Huijsmans, 2008; Naaijen et al., 2009; 
Abusedra and Belmont, 2011; Kosleck, 2013; Naaijen et al., 2014b). 
They offer rather satisfying results for moderate sea states and short 
propagation distances, or for prediction requiring information on 
quiescent periods only (Belmont et al., 2014). 

However, with increasing steepness of the sea state, nonlinear effects 
become significant and linear models fail to capture correctly the evo-
lution of waves (Toffoli et al., 2008, 2010; Bonnefoy et al., 2010; Zhang 
et al., 2017). Following the early work of Zhang et al. (1999) who used a 
model truncated at second order in wave steepness, other weakly 
nonlinear approaches have then been developed for deterministic wave 
prediction. Accounting for nonlinearities up to the third order with a 
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narrow-band approximation, the Nonlinear Schrödinger equation 
(NLSE) framework is able to reproduce some nonlinear effects (Trulsen 
and Stansberg, 2001; Adcock et al., 2012; Simanesew et al., 2017). 
Trulsen (2005) conducted experimental validations of the NLSE method 
against laboratory measurements, for (among others) long-crested, 
irregular waves. Results showed that while the regular version of the 
NLSE brings little to no benefits compared to the linear theory, the 
modified version of the equation (MNLSE, enhanced with exact linear 
dispersion), on the other hand, greatly improves the wave modelling. 
Additionally, Simanesew et al. (2017) compared various versions of the 
Schrödinger Equation with linear models and provided an analysis on 
short-crested waves prediction. They stressed out that when too little 
information is available on the directionality of incoming waves, 
nonlinear models do not perform better than linear ones and the lack of 
reliable input data represents a more constraining blocking point than 
the propagation step itself. 

Among higher-order models, the HOS method (Wu et al., 2000; Wu, 
2004; Blondel et al., 2010; Blondel-Couprie et al., 2013; Köllisch et al., 
2018; Klein et al., 2019) has proved to be particularly promising for 
nonlinear wave prediction on large space-time domains (Wu, 2004; 
Blondel et al., 2010) thanks to its high numerical efficiency and accu-
racy, even for short-crested waves, and has thus been chosen for this 
study. 

When using a HOS method with operational applications in mind, 
the main difficulty does not lie in the propagation step itself, but in 
initializing the model from field measurements (Köllisch et al., 2018; 
Fucile et al., 2018). Most of the computational time is actually spent in 
processing the wave data collected with the technology available at sea, 
in order to provide a valid initial condition: this pre-processing step 
today represents the main obstacle to real-time prediction (Blondel 
et al., 2010; Köllisch et al., 2018). Much of the work conducted to 
overcome this challenge has focused on extracting wave information 
from sea surface elevation data, either through the use of wave buoys or 
radar imaging (Blondel et al., 2010; Naaijen et al., 2014b). However, to 
properly initialize a conventional HOS model, a snapshot of the sea 
surface elevation is not sufficient and additional independent informa-
tion is required: classically, the velocity potential at the free surface. 

As this is not a piece of information easily retrievable from field 
measurements, this quantity can either be approximated at first order 
(Klein et al., 2019) or computed with a data assimilation scheme (Aragh 
and Nwogu, 2008; Blondel-Couprie and Naaijen, 2012; Yoon et al., 
2016; Köllisch et al., 2018), none of these methods being fully satisfying 
because of the approximations or additional computational cost 
induced. 

The present article thus proposes a different, innovative approach, 
based on wave-induced fluid velocity data instead of sea surface eleva-
tion data. Information on the incoming sea state is collected in the form 
of instantaneous vertical profiles of the horizontal velocity over the 
whole water column, at one fixed location upstream the point of interest. 
This data is used as a boundary condition in a propagation model, which 
then provides a wave prediction at the point of interest. The propagation 
model used is the open-source, nonlinear potential code HOS-NWT. It is 
based on the pseudo-spectral High-Order Spectral (HOS) method 
(Dommermuth and Yue, 1987; West et al., 1987) and has been devel-
oped at Centrale Nantes (Ducrozet et al., 2006, 2012). The HOS-NWT 
model was designed to model a numerical wave tank and was slightly 
adapted here to fit for ocean wave prediction purposes. The core of the 
propagation method remains unchanged with regards to the original 
HOS methods, but the boundary and initial conditions differ, allowing 
nonlinear wave prediction without depending on the initialization of the 
spatial free surface quantities, which are difficult to retrieve from field 
data. As the HOS-NWT model itself is already widely validated (Bon-
nefoy et al., 2010; Ducrozet et al., 2006, 2012), the propagation part of 
the prediction procedure does not raise any particular difficulty, as long 
as the underlying hypotheses are met. Hence, the challenge lies in 
determining a suitable boundary condition from the velocity data 

collected upstream, in the water column. 
As it turns out, direct access to instantaneous, horizontal velocity 

profiles is not achievable with the measurement technologies currently 
available. However, reconstructing such information from measure-
ments acquired with an ADCP (Acoustic Doppler Current Profiler) seems 
within reach (Huchet et al., 2018). 

This paper presents a numerical assessment of this new prediction 
method. The ability to produce a good quality boundary condition from 
velocity data retrievable with the available measurement technologies is 
evaluated, as well as the quality of the wave prediction obtained. The 
numerical verification is conducted on uni-directional irregular waves, 
using synthetic measurement data. 

2. Propagation - prediction method

2.1. Hypotheses 

This study is carried out in 2D (uni-directional waves only), ignoring 
wind forcing, with a finite, constant water depth h and with no ambient 
currents. The considered space domain D has horizontal bounds set at 
x = x0 and x = x0 + Lx and vertical bounds delimited by the flat bottom 
at z = −h and the free surface position at z = η(x,t). It is associated with 
a Cartesian coordinate system (O,x,z). Its origin O is set at one corner of 
the domain, with (Ox) representing the horizontal axis (waves propa-
gating towards x > 0) and (Oz) the vertical one, oriented upwards, with 
z = 0 set at the mean water level at rest (see Fig. 1). 

We assume that the hypotheses underlying the use of potential flow 
theory are valid: the fluid is considered inviscid and incompressible and 
the flow is irrotational. Wave breaking is not accounted for here and z =

η(x, t) describes the free surface position in the space-time domain. 
Finally, this work was conducted using synthetic numerical data, 

meaning that the results discussed in section 3 do not take into account 
measurement errors such as instrument bias or noise. In the following 
sections, if encountered the term “measurements” will thus refer to 
synthetic data generated with a reference numerical model. 

2.2. General outline 

The method developed here aims at providing an accurate wave 
prediction over a horizon of a few wave periods (30–60 s), using a fixed 
velocity measurement device located upstream the area of interest. The 
adopted approach, illustrated in Fig. 1, consists in measuring the 
instantaneous wave-induced velocity in the water column, at a fixed 
position x0. The collected data is used to recover the profile of the 
horizontal component of fluid velocity at x0: U(x0, z, t). This horizontal 
velocity profile is then passed on as a boundary condition in the deter-
ministic wave model HOS-NWT, which generates and propagates the 
corresponding waves downstream, to the area of interest. The proposed 
prediction methodology considers the fluid at rest as initial conditions, 
the waves being generated from the boundary condition at x = x0. The 
method then runs in two steps: first, the reconstruction of the sea state, 
then the prediction itself.  

• The reconstruction phase, of duration T and arbitrarily set in the past
in this study, relies on continuously updated velocity measurements.
For − T ≤ t ≤ 0, the velocity data collected at coordinate x0 in the
water column is used by the HOS-NWT model, via its boundary
condition, to generate and propagate the corresponding waves
downstream, as illustrated in Fig. 1a.

• In the second step (t > 0) illustrated in Fig. 1b, data on the incident
waves at x0 is not updated anymore and the boundary condition is set
to zero in HOS-NWT. Therefore, the model only propagates infor-
mation collected before t = 0. This marks the beginning of the pre-
diction phase itself.

This method allows to model nonlinear, irregular sea states
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accurately. More importantly, contrary to many other wave models, it 
does not rely on any data assimilation step to provide the surfacic initial 
conditions usually required, resulting in a substantial improvement in 
computation time. The particular steps of reconstructing the boundary 
condition and propagating the waves are detailed below, as well as the 
need to define correctly the region where an accurate prediction is 
theoretically available. 

2.3. Theoretical prediction zone 

As the information collected on the incoming sea state is limited in 
time and space, so is the region where a reliable deterministic wave 
prediction can be achieved. The predictable zone D x,t is then defined as 
the space-time domain accessible to deterministic sea wave prediction 
from the available measurements. Several publications have already 
extensively addressed the definition of this predictable zone for various 
measurement configurations (Wu, 2004; Naaijen et al., 2014a; Qi et al., 
2018b; Fucile et al., 2018), hence only the broad lines for our simplified 
uni-directional case are reminded here. 

A 2D (uni-directional), irregular wave field being continuously 
measured by a fixed-point device located at x = x0 can be represented by 
its wave power spectral density, as in Fig. 2. a. Assuming that the energy 
content of this spectrum is negligible outside some frequency bounds fmin 
and fmax judiciously set, the sea surface elevation at a given point (x1, t1)
can be correctly predicted only if all relevant frequency components 

(between fmin and fmax):  

• were measured at x0 between t = −T and t = 0;
• were propagated to x1 between t = −T and t = t1.

The predictable zone is then bounded by the propagation of both the
slowest component, measured at t = − T, and the fastest component, 
measured at t = 0, as illustrated in Fig. 2b. 

These bounds translate into limiting group velocities Cgmin and Cgmax , 
which are evaluated here using the linear dispersion relation: although 
the waves considered in this article are nonlinear, studies have shown 
that the predictable region defined assuming a linear sea state is actually 
more restrictive than when taking nonlinearities into account, so the 
linear definition gives a minimal estimation of the prediction zone (Wu, 
2004; Blondel-Couprie, 2009; Qi et al., 2018a). Cgmin and Cgmax in turn 
depend on the choice of the frequency bounds fmin and fmax, which must 
represent the wave spectrum as accurately as possible while assuring a 
sufficient prediction horizon. Here, following Blondel et al. (2010) (but 
unlike Wu (2004)), fmin and fmax are defined so as to retain only com-
ponents with an energy density which is at least 5% of the one at the 
peak of the wave spectrum, as illustrated in Fig. 2a. 

For the considered space-time domain where x ≥ x0 and t ≥ − T, the 
predictable zone is then defined by the following double inequality 
(Blondel-Couprie, 2009): 

Fig. 1. General method. (a) Wave generation and propagation; (b) Wave prediction.  

Fig. 2. Definition of the theoretical zone D x,t accessible to deterministic prediction from a single fixed measuring device, set at x0 and collecting data for t ∈ [ −

T ; 0 ]. (a) fmin and fmax are defined by cutting off wave components accounting for less than 5% of wave energy density at the peak; (b) The prediction zone D x,t 
depends on measurement duration T and group speeds considered: Cgmin and Cgmax . It can be further subdivided into a hindcast zone D rec (in light grey) and a forecast 
zone D pred (in darker grey). 
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(x1, t1) ∈D x,t if
x1 − x0

Cgmin

≤ t1 ≤ T +
x1 − x0

Cgmax

(1)  

and bounded by points (xmin, tmin) and (xmax, tmax), of coordinates: 
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

xmin = x0, xmax = x0 + T
Cgmin

.Cgmax

Cgmax
− Cgmin

tmin = −T, tmax = T
Cgmin

Cgmax
− Cgmin

(2)  

tmax being the maximum time prediction horizon. It is represented in 
Fig. 2b. As already stressed in paragraph 2.2, the predictable zone D x,t is 
actually made up of two subregions: a “hindcast” zone, labelled D rec on 
Fig. 2b for t ∈ [ − T ; 0 ], and the zone where actual prediction takes 
place, labelled D pred, for t ∈ [ 0 ; tmax ]. 

Wave predictions obtained through the use of a single, fixed mea-
surement device are considered valid only within the predictable region 
defined above. Hence, when evaluating the methodology presented in 
this work, the error on the free surface elevation prediction will be 
calculated only in this zone. This restriction does not apply to the results 
of the horizontal velocity reconstruction, as this is not a prediction step. 

2.4. Reconstruction of the boundary condition from wave data 

The first requirement for wave prediction is to retrieve information 
on the incoming sea state from field measurements, to feed the propa-
gation model. In the method developed here, the data is needed in the 
form of instantaneous horizontal velocity profiles along the water col-
umn. Unfortunately, due to practical constraints, this kind of informa-
tion is not accessible today: no measuring technology is yet able to 
provide a full horizontal velocity profile with a single instrument. To 
tackle this problem and because the method was developed from the 
outset with practical applicability in mind, a benchmarking study on the 
velocity measurement technologies currently available was carried out 
(Huchet, 2017). From this work, it appeared that only one type of 
measurement device was likely to provide instantaneous data on ve-
locity in the whole water column, while limiting the number of in-
struments deployed (associated to higher costs): acoustic Doppler 
current profilers (ADCPs). These instruments rely on the Doppler effect 
to measure the velocity of small suspended particles in the water, which 
are assumed to have the same speed as the fluid itself. ADPCs are often 
installed with an up-looking, bottom-mounted configuration. They 
usually present 4 diverging beams with an angle of 20− 30◦ to the in-
strument’s axis and measure radial velocity profiles for each beam, the 
distance between the volumes of water sensed by each beam increasing 
with the distance to the instrument. Traditional post-processing 
methods reconstruct the 3D mean velocity components from these 
radial velocities, using trigonometric relations. This reconstruction is 
based on the assumption that “the statistical properties of the flow are 
horizontally homogeneous” (Lu and Lueck, 1999), meaning that at a 
given depth, the velocities measured by the four diverging beams (at 
different horizontal coordinates) present the same mean amplitude and 
direction at the time scales considered. When measuring mean currents, 
this is a reasonable hypothesis and the method has proved its worth over 
the years. In the case of deterministic wave measurements however, 
relying on the statistical horizontal homogeneity of velocities is not 
useful, because we are interested in instantaneous, single-ping velocity 
measurements rather than in time-averaged quantities. Other methods 
were specifically developed for wave measurements from ADCP data 
(Terray et al., 1999; Nortek, 2017), but they still rely on time-averaged 
quantities. Therefore, they can only provide phase-averaged informa-
tion, such as mean wave direction or significant wave height. This is not 
relevant for the present application and a new dedicated method is then 
needed to recover deterministic useable data from available ADCP 
measurements. 

Beside the classical four divergent beams, some recent ADCP models 

are also equipped with a fifth vertical one, allowing to retrieve a well- 
resolved profile of the vertical velocity component (Nortek, 2017). 
The present paragraph then proposes a method to reconstruct an 
instantaneous horizontal velocity profile using the vertical beam of two 
ADCPs (the other four beams being de-activated to avoid interference). 

With the configuration illustrated in Fig. 3, the two ADCPs are 
separated by a distance Δx in the direction of wave propagation and 
measure instantaneous vertical velocity profiles noted: W

(
x0 ±Δx

2 ,z, t
)

.
The assumption of irrotational flow previously stated in paragraph 

2.1: ∇ × v = 0 in D can also be written: 
∂zU(x, z, t)= ∂xW(x, z, t) in D , (3)  

with v = (U,W) the fluid velocity, U and W its horizontal and vertical 
components in the Cartesian coordinates system previously defined, and 
∂x and ∂z the partial derivatives with respect to x and z. At any given 
time, the instantaneous reconstructed horizontal velocity profile Û, at x0 
and at an arbitrary depth z0, can then be expressed as: 

Û(x0, z0, t)=

∫ z0

zref

∂xW(x0, z, t) dz + U
(
x0, zref , t

) (4)  

where zref is an arbitrary reference depth for which horizontal velocity 
data U(x0, zref , t) is available. Assuming vertical velocity measurements 
are available over the whole water column at x = x0 ± Δx

2 (for example 
through the use of ADCPs) and provided Δx is small enough and mea-
surements are synchronized in time, the instantaneous horizontal de-
rivative for W at given space coordinates can be estimated with: 

∂xW(x0, z0, t) =
1

Δx

[
W
(

x0 +
Δx

2
, z0, t

)
−W

(
x0 −

Δx

2
, z0, t

)]
+O

(
Δx2

)

=
ΔW(x0, z0, t)

Δx
+O

(
Δx2

) (5)  

with ΔW(x0, z0, t) = W
(

x0 + Δx
2 , z0, t

)
− W

(
x0 − Δx

2 , z0, t
)

. A classical
integration scheme with a composite trapezoidal rule leads to the 
following approximated expression for Û(x0, z0, t): 

Û(x0, z0, t) =
1

Δx

∑Nz

k=1

ΔW(x0, zk−1, t) + ΔW(x0, zk, t)

2
Δzk +U

(
x0, zref , t

)

+O
(
Δx2

)
+O

(
Δz2

) (6)  

with zk the integration grid points dividing the interval [zref ; z0] into Nz 
subintervals of respective length Δzk, with no a priori requirement for a 

Fig. 3. Reconstruction method for U, using data collected from two vertical 
velocity profiles. 
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uniform grid. Here, Δzk correspond to the sizes of the measuring cells for 
the ADCPs. 

For deep water applications and assuming the vertical velocity pro-
file W is measured until velocity is negligible, U(x0, zref ) can be set to 
zero. In intermediate water depth, a local measuring device should be 
added, to provide a reference horizontal velocity. In this study, we as-
sume that the vertical velocity profiles are measured in the whole water 
column and that the reference velocity U(x0,−h) is known. 

With this procedure, which presently assumes perfect measurements 
(no bias, no noise, etc.), the quality of the reconstruction depends mainly 
on: i) the quality of the approximation made for the partial derivative 
∂xW, with a theoretical accuracy in O(Δx2); ii) the vertical discretization 
of vertical velocity profiles, responsible for the integration error on z 
varying in O(Δz2); and iii) the accurate knowledge of the horizontal 
velocity at z = zref . As the method relies on instantaneous data, the 
quality of the reconstruction does not depend on the time discretization 
of vertical velocity data. 

It should be noted that this reconstruction method, here written for 
uni-directional sea states, can be extended to short-crested waves con-
figurations: additional measurement devices located at 

(
x0, y0 ±Δy

2
)

could provide an estimation of ∂yW(x0, y0, z, t), allowing to deduce the 
horizontal velocity along y: V(x0,y0,z, t). It is also worth mentioning in 
this critical assessment that the method is expected to be less accurate in 
the case of a flow with vorticity as well as in the presence of currents, 
because the underlying equation ∇× v = 0 is not valid anymore. 

2.5. Wave propagation model: HOS-NWT 

The second part of the prediction method concerns the propagation 
of the kinematics known at a fixed location. Once the incoming sea state 
has been measured at x0, it is used as a boundary condition to generate 
and propagate the waves along (Ox) thanks to the open-source HOS- 
NWT model,1 a nonlinear, deterministic Numerical Wave Tank based on 
the HOS method. It was chosen because of its capabilities to model a 
wavemaker and the induced wave generation and propagation accu-
rately and efficiently (Ducrozet et al., 2012) and has been slightly 
adapted to fit our prediction purpose. The generation of waves through a 
wavemaker is indeed very similar to the target application of generating 
waves by imposing a velocity profile at a fixed location. The very good 
numerical performance of the model and its high level of accuracy make 
it a particularly suitable tool for predicting complex, nonlinear sea states 
while retaining the possibility of real-time applications. 

The present section summarizes the main features of the model and 
the minor changes made for the purposes of this study. It is adapted from 
Ducrozet et al. (2006) and additional information on the original 
HOS-NWT model may be found there. Here, we consider the fluid 
domain D previously defined, with horizontal dimension Lx and finite 
depth h. The section x = x0 originally corresponds to the wavemaker’s 
rest position while the section x = x0 + Lx represents a perfectly 
reflective wall. Under the potential flow hypotheses introduced in 
paragraph 2.1, the continuity equation: divV→= 0 leads to the Laplace 
equation for the velocity potential φ: Δφ = 0 in the fluid domain D . The 
bottom boundary condition is expressed in the form of a no-flow con-
dition: ∂zφ = 0 at z = − h. Then, following Zakharov (1968), the free 
surface boundary conditions are written in a fully-nonlinear form and 
using surface quantities, namely the free surface elevation η and the 
surface potential φS(x, t) = φ(x, z = η, t): 

∂tη=
(

1+
⃒⃒
∇η|2

)
∂zφ −∇φS.∇η (7)  

∂tφ
S = − gη−

1

2

⃒⃒
⃒⃒∇φS

⃒⃒
⃒⃒

2

+
1

2

(
1+

⃒⃒
∇η|2

)
(∂zφ)

2 (8)  

on z = η(x, t). With this formulation, the only remaining non-surfacic 
quantity is the vertical velocity at the free surface: W = ∂zφ(x, z = η,

t). This term is evaluated using the order-consistent High-Order Spectral 
(HOS) method of West et al. (1987), which allows a rapid and accurate 
resolution of the free surface equations at an arbitrary order of nonlin-
earity M. This primary expression of the free surface boundary condi-
tions is common to both the original HOS formulation, developed for 
open domains (Dommermuth and Yue, 1987; West et al., 1987; Ducrozet 
et al., 2007; Bonnefoy et al., 2010), and to its adapted version for nu-
merical wave tanks used in this article. 

The main difference between the original and the NWT formulations 
results from the lateral boundary conditions: instead of imposing peri-
odic conditions on x = x0 and x = x0 + Lx, in the HOS-NWT model these 
boundary conditions are expressed as homogeneous Neumann condi-
tions (no-flow conditions). The basis functions used for the spectral 
representation of the velocity potential are modified accordingly and 
become the natural modes of the closed wave tank. 

Originally in the HOS-NWT model, the boundary reflecting the 
presence of the wavemaker (x = x0 at rest) is modelled by a no-flow 
condition, imposed between z = −h and z = 0 at the position X of the 
wavemaker: 
∂xφ(x, z, t) = ∂tX(z, t)+ (∂zX(z, t)).(∂zφ(x, z, t)) at x=X(z, t). (9) 

As this boundary condition is not directly taken into account by the 
spectral formulation, further developments are necessary to be able to 
impose the exact wavemaker boundary condition. The potential φ, so-
lution of the total problem, is then separated into two components, 
following Agnon and Bingham (1999): φ = φspec + φadd, where φspec is the 
spectral potential describing the evolution of the free surface in a 
fixed-geometry tank (with a no-flow condition on x = x0) and φadd is the 
additional potential accounting for the presence of the wavemaker and 
satisfying Equation (9).More details may be found in Bonnefoy et al. 
(2010) and Ducrozet et al. (2012). 

In the modified version of the model implemented here, the 
decomposition into φspec and φadd remains but the no-flow condition at 
the wavemaker’s position is simplified into a horizontal velocity profile, 
corresponding to the wave-induced kinematics, directly imposed at x0: 
∂xφ(x, z, t) =U(x, z, t) at x= x0, (10)  

with U being the instantaneous, full-depth horizontal velocity profile 
that could be obtained via on-site measurements. Compared to the 
original version of HOS-NWT, this modification has the advantage of 
applying the last boundary condition directly at x = x0 and of removing 
the difficulties to account for a moving boundary, since the potential 
gradient ∂xφ is directly available. 

Finally, it can be noted that the reflective wall at x = x0 + Lx is 
preceded by an absorbing zone in the numerical model, reproducing the 
beach present near the end wall of most physical wave tanks to absorb 
the incoming energy. Its implementation in the model is done through a 
local modification of the free-surface dynamic boundary condition and 
is not detailed here, but can be found in Bonnefoy et al. (2006). This is 
useful to our application as well, as it prevents wave reflections, pro-
vided the simulation domain is set long enough (i.e., Lx must be large 
enough) for the absorbing zone not to overlap with the prediction area. 

Compared to conventional HOS methods based on periodic open 
boundaries, this new version adapted from a numerical wave tank is 
particularly interesting for prediction applications. Indeed, here the 
model does not require any initialization step based on the knowledge of 
two independent spatial quantities: η and φS, the latter being hardly 
deducible from field data. Instead, the waves are continuously generated 
through the boundary condition at x0 using velocity data, which should 
be more easily available with existing measurement techniques. The 1 Code available at: https://github.com/LHEEA/HOS-NWT. 
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associated wave prediction is expected to be accurate even for nonlinear 
sea states. The following section aims at evaluating this statement 
through numerical experiments. 

3. Numerical assessment using 2D synthetic wave fields

In this section, we present the process followed to numerically assess
the potential of the prediction method previously developed. First, the 
reconstruction of the boundary condition using vertical velocity profiles 
is evaluated, then the wave generation and prediction phase is also 
tested. In both steps, we use synthetic numerical data as a reference for 
comparison, meaning that measurement errors are not taken into ac-
count in the final prediction error. 

3.1. Wave cases studied and reference data 

The wave cases studied were chosen with the same characteristics as 
in Wu (2004), in order to allow comparison on prediction performances. 
Generated in infinite water depth, they are characterized by a 
uni-directional JONSWAP spectrum with a peak enhancement factor γ =

3.3 and a peak period Tp = 12s, from which the peak wavelength λp is 
deduced by the dispersion relation. For each wave case, the significant 
wave height and its corresponding wave steepness, defined as εc = Hs/
λp, are reported in Table 1. 

The synthetic sea states used as reference data were generated using 
another open-source nonlinear wave model, HOS-ocean2 (Ducrozet 
et al., 2016). This reference model is based on the original, open-sea 
HOS method with periodic horizontal boundary conditions. The 
method is widely used to study large-scale and long-time propagation of 
nonlinear sea states and is assumed to be an accurate representation of 
the real sea conditions (Ducrozet et al., 2007; Toffoli et al., 2010; Xiao 
et al., 2013; Sergeeva and Slunyaev, 2013). 

The numerical parameters for the simulations were selected in order 
to ensure converged results: kmax/kp ≈ 16 and the tolerance threshold 
was 10−7 for the time-stepping process. To be consistent with Wu’s test 
cases, the reference data sets were generated with an order of HOS 
expansion M = 4. Additionally, for each sea state considered, Nsim = 100 
different phase sets were simulated to ensure the statistical convergence 
of the results (Monte Carlo simulations). 

Each run provided 51 Tp of simulation, from which only 41Tp were 
actually available for comparison. Indeed, the simulations were initial-
ized with a linear wave field (through a JONSWAP spectrum and a set of 
random phases), which is known to create risks of numerical in-
stabilities. To avoid this, the initialization procedure described in 
Dommermuth (2000) was implemented, introducing a transition period 
of duration Ta = 10 Tp during which a relaxation scheme was applied on 
the nonlinear terms in the free surface boundary conditions (Equation 
(7) and (8)). This allowed a smooth transition from a linear initial 
condition to a fully nonlinear wave field, which could then be consid-
ered realistic. After this transition period, the remaining 41Tp of actually 
useable data were divided into:  

• 30 Tp of hindcast, for which the boundary condition provided at x0 
by the reference model was updated in time;

• 11 Tp of prediction, for which the boundary condition was set to
zero.

In addition to the surfacic information classically made available by
such models, in these reference simulations the velocities were also 
evaluated inside the fluid domain, thanks to a dedicated method 
(Ducrozet et al., 2005; Choi et al., 2017). The reference data sets hence 
provided fields of sea surface elevation: η(x,t), as well as horizontal and 
vertical velocities U(x, z, t) and W(x, z, t), available in the whole 
space-time domain. 

3.2. Reconstruction of the horizontal velocity profile 

This section is dedicated to the numerical verification of the method, 
introduced in section 2.4, to reconstruct the horizontal velocity profile 
Û(x0, z, t) used as a boundary condition in our propagation model HOS- 
NWT. Here, the synthetic numerical data described in 3.1 are used both 
as an input data base (W(x0 ±Δx /2, z, t)) to feed the reconstruction 
method and as reference results (U(x0, z, t)) for the assessment of the 
present method. 

The reconstruction of the boundary condition is needed only in the 
“hindcast” phase of the general prediction method, hence this step is 
applied only for t ∈ [ − T; 0]. The velocity reconstruction is evaluated on 
the sea states described in Table 1. It is assumed that the horizontal 
velocity at zref introduced in Equation (4), needed as additional infor-
mation, is known (here, zref = − h). The distance between the 
measuring devices is set to an ideally small value: Δx = 3.5m ≈ λp/64. 
The vertical velocity profiles are also supposedly measured along a very 
fine grid: Δz = 0.55m ≈ λp/410, in order to minimize the integration 
error. 

As the method relies only on instantaneous velocity data from 
adjacent locations, the quality of the reconstruction is independent from 
the time stepping used, provided the measurement devices are correctly 
synchronized in time. (The updating rate of the boundary condition 
could influence the quality of generation and propagation of the waves; 
but this aspect is independent of how well a single velocity profile is 
reconstructed). Hence, each reconstruction at a given time step is in-
dependent from the others and the duration of the simulation taken into 
account is the only relevant time parameter here to provide a consoli-
dated view on the results. To ensure statistical convergence, for each 
wave case the velocity reconstruction is then computed on the whole 
“hindcast” phase of duration T, for all the Nsim = 100 simulations with 
different phase sets. Performance assessment is conducted using statis-
tical indicators such as the bias on velocity amplitudes b|U|(z) and the 
normalized, root-mean-square error NRMSEU(z): 

b|U|(z)=
1

Nsim

∑Nsim

i=1

1

T

∫ 0

−T

⃒⃒
⃒⃒Û i(x0, z, t)

⃒⃒
⃒⃒− |Ui(x0, z, t)| dt (11)  

NRMSEU(z)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nsim

i=1

∫ 0

−T

[
Û i(x0, z, t) − Ui(x0, z, t)

]2

dt

∑Nsim

i=1

∫ 0

−T
Ui(x0, z, t)

2
dt

√√√√√√ (12)  

where:  

• i = 1,…,Nsim is the realization index;  
• T is the duration of the hindcast phase; here, T = 30 Tp;
• Ui is the reference horizontal velocity profile for the ith random

phase set;
• Ûi is the corresponding velocity profile reconstructed using Equation

(4).

Table 1 
Characteristics of the sea states studied. JONSWAP spectrum, Tp = 12s and γ =

3.3.  
Hs (m)  0.48 3.75 6.26 7.82 
εc = Hs/ λp 

(%)  
0.2 1.7 2.8 3.5  

2 Code available at: https://github.com/LHEEA/HOS-ocean. 
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As illustrated in Fig. 4, for all sea cases studied, the bias on ampli-
tudes is negative: the method tends to slightly under-estimate the am-
plitudes (both positive and negative) of the reconstructed velocity, 
especially near the sea surface. However, even in the worst sea case 
considered here, the bias on amplitudes remains below 1.5 cm s−1 at z =

0, representing ≈ 1.1% of the root-mean-squared velocity at this depth 
for the corresponding sea state. The bias being a dimensional quantity, 
as expected it increases with wave steepness, since for a given value of 
Tp, the velocities themselves increase with Hs. Regarding the NRMS 
error, plotted in Fig. 5, a common thread to all sea states is that its 
magnitude depends on depth and increases significantly close to the free 
surface. The figure also brings out a dependency on the sea state 
considered: for the lowest steepnesses, the error remains very low 
(under 4%) throughout the whole profile, whereas for more severe sea 
states the shape of the error profile is modified and the error near the sea 
surface undergoes a noticeable increase, up to 14% in the worst case. 
However, the NRMS error is a quadratic indicator and even a rather high 
value can correspond to quite satisfying results, as shown in Fig. 6: the 
reference and reconstructed velocity time series are plotted for z = 0. At 
this depth, these quantities do not always have a physical meaning and 
rather represent extrapolated values, because when a wave trough 
passes over x0 the fluid velocity does not exist at z = 0; but the corre-
sponding data is still needed as part of the boundary condition for HOS- 
NWT, which is defined for z ∈ [ − h;0]. The time series are plotted for a 
single realization, on a subrange of time steps for which the NRMS error 
matches the converged value: Fig. 6 then illustrates that a NRMS error of 
14% actually allows an accurate reconstruction of the velocity time 
series. 

An alternative way of visualizing the results is proposed in Fig. 7. The 
probability density function of the absolute error, normalized by the 
RMS reference velocity, is plotted at z = 0 (the same precautions as in 
Fig. 6 apply as to its physical meaning). As can be seen in the figure, the 
vast majority of errors remains below 10% for the three first sea states 
studied. The last sea state (Hs = 7.82m), exhibiting the highest degree of 
nonlinearity, shows a wider distribution curve, but the errors stay at 
very reasonable levels. 

The results presented above were obtained through a numerical 
verification, conducted for various sea states and stabilized over many 
realizations. They give a first insight into the method’s ability to 
reconstruct a suitable instantaneous horizontal velocity profile, from 
synthetic data mimicking the operation of devices that were not pri-
marily designed for deterministic wave measurements. Of course, these 
results need to be consolidated with experiments, taking into account 
more realistic measurement configurations (cell size, spacing between devices) as well as measurement errors; but these preliminary findings 

allow to extend the numerical study to wave prediction using this 
reconstructed velocity profile as a boundary condition. This is the topic 
of the next section. 

3.3. Propagation and prediction 

In this section, a numerical verification is conducted on the predic-
tion method. The wave prediction is computed using the reconstructed 
horizontal velocity profile Û(x0, z, t) as a boundary condition in the 
propagation model HOS-NWT. Although the reference data sets were 
generated in infinite water depth (as stated in section 3.1), in HOS-NWT 
depth must be set to a finite value and was thus chosen large enough for 
the velocities to be near zero at the bottom: h = 280m, when the 
dispersion relation gives λp ≈ 225m. The numerical parameters were 
selected in order to ensure convergence of the results. The kmax/kp ratio 
ranged between 25 and 32 according to the sea state considered and for 
all cases, the tolerance parameter for the time integration was set to 
10−6 and the order of nonlinearity for HOS-NWT simulations to M = 5. 

The quality of the prediction is evaluated by calculating the error on 
η(x, t), using the same indicators as in Wu (2004). A field of RMS error, 
normalized by significant wave height, is first defined as: 

Fig. 4. Bias on the amplitudes of reconstructed horizontal velocity, as a func-
tion of depth (right y-axis is depth normalized by peak wavelength). Results are 
presented for the wave steepnesses εc listed in Table 1. 

Fig. 5. NRMS error on the reconstructed horizontal velocity, as a function of 
depth (right y-axis is depth normalized by peak wavelength). Results are pre-
sented for the wave steepnesses εc listed in Table 1. 

Fig. 6. Extract of a reconstructed velocity time series at z = 0 for εc = 3.5% 
(Hs = 7.82m). The NRMS error on U computed on these 240 s is comparable to 
the converged error value. Hence, the time series is a good illustration of what 
can be expected in terms of velocity reconstruction. 
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ε(x, t)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑Nsim

i=1

[
ηi

pred(x, t) − ηi
ref (x, t)

]2

Nsim

√√√√
×

2

Hs

(13)  

with Nsim = 100 being the number of Monte Carlo simulations computed 
to ensure statistical convergence of the results, ηref the output of the 
reference simulations and ηpred the output of the prediction method. The 
corresponding maps of the normalized prediction error are presented in 
Fig. 8 for all sea states considered. 

The white solid lines mark out the prediction zone as defined in 

section 2.3. The white dashed line divides it further into hindcast and 
prediction sub-areas. Here the frequency fmin and fmax, used to compute 
the relevant group velocities, were chosen so as to cut off wave fre-
quencies accounting for less than 5% of the wave energy at the spec-
trum’s peak. As can be seen in Fig. 8, the prediction zone is a good 
indicator of where the wave prediction can be considered relevant, with 
a clear error minimization in the area defined as predictable, for all sea 
states considered. In the prediction zone, the error (averaged on 100 
runs) remains below 15% even for large wave steepness and even stays 
below 10% up to a moderately high steepness of εc = 2.8%, which 
compares well with the results of Wu (2004). The figure also shows that 
the error increases with the nonlinearity of the sea states. Yet the 
propagation part of the HOS-NWT model is already well validated, even 
for highly nonlinear cases, hence this increase in error is probably due to 
an unsatisfactory implementation of the boundary condition at x0. This 
assumption is supported by the observation that the error also increases 
with x and t in the propagation direction of the waves, which is espe-
cially visible in the most energetic sea case. 

Beside the error maps, a more synthetic indicator is also used, 
averaging the previous error ε(x, t) in the prediction zone and resulting 
in a single scalar error per sea state: 

εD =

∫∫
D x,t

ε(x, t)dx dt
∫∫

D x,t
dx dt

(14)  

where D x,t stands for the theoretical prediction zone. This mean error is 
reported in Table 2, along with the errors obtained by Wu (2004) and 
Blondel et al. (2010) with the same formula.3 

The results show a similar prediction quality for Wu, Blondel and the 
new method presented here. Even the case with a wave steepness εc =
3.5% is quite satisfying, considering our reconstructed velocity presents 
a NRMS error of about 14% near the sea surface. Besides, as our pre-
diction method does not require any data assimilation to initialize the 
propagation model, these results represent a significant improvement in 
terms of computational efficiency while providing a prediction as ac-
curate as that obtained with other nonlinear methods. 

The error indicators presented above are useful to compare our re-
sults with previous attempts on deterministic prediction. However, they 
lack information on the nature of this error because they do not 
discriminate between amplitude and phase errors. Yet, the latter is 
particularly important to model predictive control for wave energy 
converters, since it is crucial to know exactly when each wave will arrive 
at the device. A complementary error quantity is thus proposed here: the 
normalized cross-correlation between the reference signal and the pre-
dicted one, allowing to evaluate the similarity between two time series. 
At a given xC coordinate, the cross-correlation factor C is expressed as a 
function of the time shift τ between the two signals: 

Fig. 7. Distribution of error on the reconstructed velocity, as a percentage of 
the RMS reference velocity, at z = 0. Results are presented for the different 
wave steepnesses εc listed in Table 1. 

Fig. 8. Error ε(x, t), calculated from Eq. (13) using 100 phase sets for each sea 
state listed in Table 1. The solid white lines materialize the bounds of the 
theoretical prediction zone D x,t . The horizontal, dotted white line divides it 
into reconstruction and prediction sub-regions. 

Table 2 
Prediction errors averaged on the whole prediction zone, for wave fields with 
varying steepness, and from: (a) Wu (2004); (b) Blondel et al. (2010); the present 
prediction method using Û.  

Hs (m)  εc (%)  εD (%)  εD (%)  εD (%)  

= Hs/λp from (a) from (b) present 

0.48 0.2 5.25 5.3 4.14 
3.75 1.7 5.53 5.7 4.87 
6.26 2.8 5.07 6.4 6.74 
7.82 3.5 8.19 8.9 9.19  

3 The numerical values for Blondel et al. (2010) were estimated from their 
Figure 13. 
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C(τ)=
1

tmax − tmin

∫ tmax

tmin

ηpred(xC, t)

σpred

×
ηref (xC, t + τ)

σref

dt (15)  

where σref = std(ηref (xC, tmin ≤ t≤ tmax) is the standard deviation of ηref 
in the prediction zone (the same applies to σpred) and tmin,max are the 
bounds of the theoretical prediction zone at the specific coordinate xC 
considered. From this cross-correlation function, the maximum value 
max(C) and its corresponding time shift Ts are extracted as indicators of 
how well the signal is reconstructed at point xC: max(C) assesses how 
well the shape and amplitude of the predicted signal match the reference 
one, and Ts indicates the time delay for which signals are best aligned 
with one another. As an example, two identical signals with no time shift 
between them will show max(C) = 1 and corresponding Ts = 0s. 

For a given sea state and phase set, these two quantities max(C) and 
Ts are calculated at each point xC of the simulation domain, assessing the 
evolution of the prediction’s quality over space. The calculations use 
data from dedicated simulations, run with a refined sampling rate to 
identify more accurately a potential phase shift. For each sea state in 
Table 1, max(C) and Ts are computed separately for 25 different phase 
sets then ensemble-averaged, allowing to present converged results. The 
results are plotted in Fig. 9 as a function of a “dimensionless fetch”, 
expressed as χ = ε2c kpx. This quantity, adapted from Trulsen and 
Stansberg (2001) (save a π multiplication factor), corresponds to the 
propagation distance scaled by the steepness squared. It allows dis-
playing results for different sea states on the same graphs and looking for 
general trends, assuming the important nonlinear physical processes at 
play scale accordingly. This applies for example to nonlinear modulation 
or nonlinear (phase) velocities. 

This Fig. 9 presents a comparison between linear and nonlinear 

prediction capabilities: starting from the same information provided by 
the velocity boundary condition Û(x0,z,t), the wave propagation part of 
the method is computed both for linear (M = 1) and nonlinear (M = 5) 
HOS-NWT simulations. The objective here is to assess the influence of 
nonlinearities during wave propagation, all procedures being strictly 
equivalent otherwise. 

Because the steepness associated to Hs = 0.48m is small, the scaled 
fetch is too, and results for this sea state are hardly readable on Fig. 9. A 
dedicated plot would show that for this case, as expected the prediction 
quality is very similar for linear and nonlinear simulations. However this 
is true only for a very small steepness (or equivalently, short dimen-
sionless fetch). 

The other sea states considered highlight diverging results between 
linear and nonlinear predictions as the scaled fetch increases. Even 
though the cross-correlation is computed in the prediction zone only, the 
quality of linear prediction deteriorates rapidly. Results show a decline 
in amplitudes similarity as well as the appearance of a phase shift. The 
most noticeable feature is that linear prediction fails to maintain correct 
phase information, even after a relatively short distance, and that the 
increase of the error is driven by the dimensionless fetch χ, as the evo-
lution of phase shift shows perfect agreement from one sea state to 
another. Discarding the influence of the different y-intercepts, this 
scaling is also relevant for the correlation factor max(C), which reaches 
low values for the largest scaled fetch considered here. This evolution 
was expected, as both nonlinear phase velocity effects and nonlinear 
amplitude modulation are known to scale with ε2c (Zakharov, 1968; 
Longuet-Higgins and Phillips, 1962; Trulsen, 2005). 

Nonlinear prediction, on the other hand, offers a good prediction 
quality both in terms of correlation magnitude and of phase shift. The 
nonlinear method shows a decrease in the correlation coefficient for 
short scaled fetch. With increasing propagation distance, it stabilizes at 
different values depending on the sea states, the worst-case level being 
around 0.9 for the highest steepness considered. This is a far more 
satisfying result than their linear equivalent and a good performance in 
itself, as will be seen shortly with Fig. 10. The method also proves able to 
deliver a reliable phase information for all cases considered. The 
different curves do not overlap as much as for the linear predictions, but 
their evolutions are similar and altogether the phase shift remains 
within less than 5% of Tp. 

The common behaviour observed for linear simulations of different 
sea states confirms that when nonlinearity is not taken into account, the 
error evolves with the steepness squared. The disappearance of this 

Fig. 9. Correlation results plotted against the fetch scaled by the square of the 
steepness: χ = ε2

c kpx. (a). Correlation factor. (b) Phase shift. Dotted lines 
correspond to linear predictions, solid lines of the same thickness to their 
equivalents in nonlinear prediction with M = 5. 

Fig. 10. Sea surface elevation time series, normalized by Hs, at x = x0 + 6λp for 
εc = 3.5% (χ = 0.5). 
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scaling in the nonlinear results confirms that the predominant nonlinear 
effects are well taken into account by the HOS method, as expected. The 
remaining dispersion of the results according to the steepness consid-
ered, however, suggest that other sources of error should be looked for. 
Higher-order nonlinear effects in the wave propagation are a first pos-
sibility. The error made on the boundary condition at x0 is also a likely 
candidate here, as it was shown in section 3.2 that the quality of the 
reconstructed velocity depended on the steepness considered. 

The very good performance of the nonlinear method in maintaining 
the phase information over long distances is finally illustrated in Fig. 10. 

It displays time series of η, for both linear and nonlinear predictions, 
at χ = 0.5. This corresponds to the sea state with the largest steepness 
(εc = 3.5%, Hs = 7.82m) captured at x = 6λp from the “measurement” 

point at x0. The error εD associated to this specific realization (hence, 
“averaged” on 1 run only) is 10.8%, a value slightly superior to the error 
averaged on 100 runs reported in Table 2 and the corresponding cor-
relation factor is 0.95, a little better than the mean value in Fig. 9. Fig. 10 
highlights the difference in prediction quality between linear and 
nonlinear wave propagation, as well as the ability of the proposed 
method to deliver a suitable prediction tens of seconds ahead, even for 
highly nonlinear sea states. As this improvement is mainly due to a 
correct calculation of the phase velocity, which takes non-linearities into 
account, it would be worth investigating the performance of other 
methods such as weakly nonlinear wave models: they could be faster 
than HOS while retaining a correct phase velocity. The “Choppy Wave” 

Model (Nouguier et al., 2009) would be an interesting candidate, 
especially its improved second-order formulation proposed by Desmars 
et al. (2018) which introduces corrections for the phase and group ve-
locities accounting for some nonlinearities. 

4. Conclusion

A new deterministic wave prediction method was proposed in this
article, using instantaneous velocity profile measurements as input data 
for a wave propagation model based on a HOS method. This allows to 
model even highly nonlinear sea states accurately, a feature which is non 
negligible in the time and space scales considered here. An important 
aspect of the method is the reconstruction, from field data, of the hori-
zontal velocity profile used as a boundary condition in the propagation 
model. A pre-processing step was developed to ensure the recovery of 
useable information from the type of in situ velocity measurements 
actually available nowadays: here, ADCP data were judged the most 
suitable candidate. The velocity reconstruction, then the wave predic-
tion process were evaluated numerically, using uni-directional synthetic 
sea states and assuming an ideal measurement configuration: no mea-
surement error, a small distance between the instruments and a very 
large number of measurement points in the water column. 

The reconstructed velocity profiles were compared to reference time 
series and the method proved able to provide a reliable boundary con-
dition to the propagation model, even though for the steepest wave case, 
the quality of the reconstruction is slightly less satisfying close to the free 
surface. The whole prediction process was then evaluated numerically. 
We used the same test cases and error indicators as previous studies on 
deterministic wave prediction based on the HOS method, to compare 
our results with the state of the art. Our approach provided a similar 
prediction quality while dispensing with the step of data assimilation 
necessary for other methods, which should greatly reduce the required 
computing time. The interest of using a nonlinear propagation model 
was confirmed using cross-correlation indicators, to compare the 
amplitude and phase errors between linear and nonlinear predictions. It 
showed evidence that for the space and time scales considered, our 
method provides far superior results than one based on a linear propa-
gation model. Presenting the evolution of error along a propagation 
distance scaled by the steepness squared highlighted some common 
behaviours for linear predictions, and further quality deterioration with 

increasing distance or steepness can be extrapolated for these simula-
tions. On the contrary, nonlinear prediction results do not scale with this 
parameter while retaining some variability from one steepness to 
another. As the propagation method used is known to correctly manage 
the third-order nonlinear effects at play with the ε2c scaling, the 
remaining differences could be attributed to higher order effects in the 
propagation and to errors in the reconstruction of the boundary condi-
tion at x0. Generalization to any arbitrary sea state remains risky, but 
from the available results one could expect the method to maintain 
satisfying phase information for any steepness considered, while the 
amplitude and shape accuracy (given by the correlation factor) is likely 
to deteriorate with increasing steepness. 

Finally, as stated above, in this article the velocity reconstruction 
was computed assuming an ideal “measurement” configuration. Addi-
tional tests, not presented here, have analyzed the sensitivity of this 
reconstruction to measurement configuration; several measurement 
parameters were modified, such as the spacing between instruments, the 
ADCP cell size or the availability of data close to the free surface. As 
could be expected, this sensitivity study showed a loss of quality for the 
velocity reconstruction when numerical tests mimicked a more realistic 
measurement configuration. However, the prediction obtained from this 
less accurate boundary condition remained good enough to justify 
conducting an experimental validation of the method in the wave basin 
of Centrale Nantes. The results will be presented in a future paper. 
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Bonnefoy, F., Ducrozet, G., Le Touzé, D., Ferrant, P., 2010. Time domain simulation of 
nonlinear water waves using spectral methods. In: Advances in Numerical 
Simulation of Nonlinear Water Waves. Vol. 11 of Advances in Coastal and Ocean 
Engineering. World Scientific, pp. 129–164. URL. https://www.worldscientific. 
com/doi/abs/10.1142/9789812836502_0004. 
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