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Statistics of long-crested extreme waves 
in single and mixed sea states

Lei Wang1,2, Jinxuan Li1, Shuxue Liu1, Guillaume Ducrozet2

Most of the studies on extreme waves are focused on the systems with single-peak wave spectra. However, according to the

statistics of occurrence, the bimodal spectral system is also frequent in real sea conditions. In order to summarize the statistics of

extreme waves, irregular wave trains under single-peak and bimodal spectra for long durations are simulated in this paper, based

on a two-dimensional High Order Spectral (HOS) numerical wave tank. A large number of configurations have been tested under

unimodal and bimodal spectra. The investigation on the wave trains under single-peak spectrum indicates that although in

conditions often referred as deep water (kph > π), the relative water depth has a significant influence on the probabilities of

occurrence of extreme waves. A detailed analysis of the combined effect of Benjamin-Feir Index (BFI) and relative water depth is

provided. However, the situation is more complex in real sea conditions, which may exhibit multimodal spectra. We focus in this

study on long-crested bimodal spectra characterized by the same significant wave heightHs and mean zero-crossing period Tz of

the sea states as the single-peak spectrum. The wave conditions under bimodal spectrum present milder extreme wave statistics

than those under single-peak spectrum. In addition, mixed ocean systems with equivalent energy distribution (i.e., Sea-Swell

Energy Ratio (SSER) is close to 1.0) and larger separation between partitions (i.e., Intermodal Distance (ID) > 0.10) are the less

prominent to extreme waves appearance. The comparison of the mixed sea states and the corresponding single independent

systems demonstrates that the complexity of the underlying physics of a given sea state (for instance the presence of modulational

instability or other nonlinear process) cannot be deduced by an analysis limited to the statistical content of the combined sea state.

The wave energy being distributed among frequencies plays a major role. Additionally, Gram-Charlier distribution can accu-

rately predict the probability of large waves (1.5 <H/Hs < 2.0) compared to the MER distribution, but it underestimates the

statistics of the wave height distribution when H/Hs is larger than 2.0 for both single-peak and bimodal states.

Keywords Bimodal spectrum, Long-crested extreme waves, Kurtosis, Wave height distribution, HOS numerical wave tank

1 Introduction

As frequent human activities (such as the exploration and

development of marine resources) move towards the deep

ocean, the probability to encounter extreme waves (also

known as rogue or freak waves) is becoming larger. The anal-

ysis and understanding of the formation of such events is of

great practical significance and has attracted more and more

attention recently. Extensive studies have been performed in

the past decades, focused mainly on the evaluation of the

probability distribution of the wave elevation and height and

hence to investigate the statistics of extreme waves in a large

number of random waves from both theoretical and applica-

tive points of view (reviewed by Forristall 1984, 2000; Tayfun

1990, 2006).

Great progress in probabilistic characteristics of wave

trains under single-peak spectrum have been made. In a sta-

tionary, Gaussian and extremely narrow-banded process, the

wave height may be regarded as twice the envelop amplitude

and that these are distributed according a Rayleigh probability

distribution (Longuet-Higgins 1952). Naess (1985) derived a

model for the crest-to-trough wave height in a wide-band pro-

cess, which has received wide popularity. In practice, the be-

havior of real sea waves is usually nonlinear and broad
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banded. Thus, the linear model becomes invalid, especially for

large wave height distribution (Tayfun 1981; Stansell 2004).

Several studies based on theoretical developments as well as

physical experiments have shown that the third-order interac-

tions, also known as modulation instability, plays an impor-

tant role in the appearance of large steepness waves (Janssen

2003; Onorato et al. 2004; Mori and Janssen 2006). Janssen

(2003) has proposed a parameter known as the Benjamin-Feir

Index (BFI), which is the ratio between the wave steepness ε

and the relative spectral bandwidth Δf/fp, as a measure of the

strength of those third-order interactions in random wave

trains. Onorato et al. (2004) have investigated the evolution

of irregular sea states considering various BFI values in a large

wave flume. Their results have shown that for a small value of

BFI, the Rayleigh distribution predicts the experimental data

rather well. However, for a large value of BFI, the Rayleigh

distribution underestimates the tail of the probability density

functions of free surface elevation and wave heights.

The third-order interactions can change the statistical prop-

erties of surface waves under specific conditions. These ef-

fects are mainly represented by the variation of the statistical

parameter known as the kurtosis, the fourth-order moment of

the probability density function of the free surface elevation.

The kurtosis is considered a statistical parameter that can give

an indication of the presence of extreme events in the time

series, being a measure of the importance of the tail of the

distributions (Janssen 2003). Mori and Yasuda (2002),

followed by Mori and Janssen (2006), have discussed the

formal relation between the kurtosis and the exceedance prob-

ability for wave heights. The kurtosis enters the distribution

function as a correction to the Rayleigh distribution. When the

kurtosis is 3.0, the distribution function is close to the

Rayleigh distribution for narrow-banded wave fields.

Considering the effect of the kurtosis, Mori and Janssen

(2006) developed a distribution called a modified

Edgeworth-Rayleigh distribution (MER) under the assump-

tion of weak nonlinearity, narrow spectrum, and wave height

twice of wave amplitude. Mori et al. (2007) have confirmed

that the nonlinear correction to the maximum wave height

depends on the kurtosis. Moreover, the tail of the wave height

distribution increases along with the increase of the kurtosis.

Most of the previous studies are limited to sea states defined

with a unimodal spectrum. However, 15–25% of the ocean state

at different locations around the world is observed as a bimodal

spectrum with wind-sea and the swell systems mixed (Guedes

Soares 1984, 1991). Several studies have been performed on the

two coexisting systems in crossing sea states. Onorato et al.

(2006) have theoretically investigated the crossing seas through

coupled nonlinear Schrödinger (CNLS) equations, and have

found larger regions of instability and larger growth rate for

coupled systems compared to single systems. Regev et al.

(2008) have pointed out that a wind-sea and a weak swell at right

angle can give rise to wave modulations, leading to increased

occurrence of freak waves. Similarly, Gramstad and Trulsen

(2010) have computed the modification of the probability of

freak waves in a wind-sea perturbed by a weak swell oriented

at various angles to the wind-sea. They have found that the swell

can enhance the occurrence of freakwaves in thewind-sea slight-

ly. Based on the investigation of Toffoli et al. (2011), the kurtosis

is concluded to be increased for two systems with an interaction

angle between 40° and 60°.

Contrary to the investigation in crossing sea states, the

statistics of the unidirectional co-propagating mixed sea states

have not yet been fully summarized. Some studies exist with

sea states of equal significant wave height (Petrova and

Guedes Soares 2009, 2011) or with the same wind-sea spec-

trum (Støle-Hentschel et al. 2020). Petrova and Guedes Soares

(2009, 2011) only investigated the effects of the relative en-

ergy ratio (not considering the peak frequency separation be-

tween the low- and high-frequency wave fields on the wave

height distribution) and had found that for swell-dominated

seas, the kurtosis is lower than that in wind-sea-dominated

seas. Støle-Hentschel et al. (2020) had noted that the mixed

sea has milder extreme wave statistics than the pure wind-sea.

They suggest the necessity to partition wind-sea and swell to

better interpret the combined extreme wave statistics.

Real sea states are known to exhibit directional properties

that have a significant influence on the wave statistics

(Onorato et al. 2009). However, it is common practice in

ocean engineering to consider only long-crested seas. In the

design of structures at sea, this simplification enables the use

of simplified numerical procedure in the evaluation of wave

loads for instance. As a result, the unidirectional configuration

is still the subject of many investigations, including the pres-

ent one. In addition, the definition of the metocean conditions

often describe the energy content of the sea states by simple

integral parameters such as the significant wave height (Hs) or

the mean zero-crossing period (Tz). The possible limitations

inherent to the latter choice are investigated through the use of

bimodal spectra (compared to unimodal ones).

However, the extensive study of the extremewave occurrence

in this simple physical context is not yet available. The objective

of the present work is consequently to bridge this gap in order to

providemore comprehensive understanding of the extremewave

statistics in different ocean environments. The first part intro-

duces the different sea states studied during the analysis. It is

followed by a second section dedicated to the presentation of

the numerical wave tank and data analysis method at use in the

study. Then, unidirectional single-peak spectra are investigated in

detail, summarizing the main effects of BFI and relative water

depth on the statistical properties of sea states. Finally, the case of

the bimodal seas is studied extensively, assuming the wave field

is described with a given set of integral parameters (the signifi-

cant wave heightHs and themean zero-crossing period of the sea

states Tz) but different values of Sea-Swell Energy Ratio (SSER)

and Intermodal Distance (ID).

2



2 Irregular sea state conditions

2.1 Bimodal wave spectrum

In the following analysis, for the frequency spectrum S(ω), the

six-parameter spectrum proposed by Ochi and Hubble (1976)

is employed to represent both the single-peak spectrum and

the bimodal spectrum:

S ωð Þ ¼ 1

4
∑
j

4λ jþ1

4

� �λ j

Γ λ j

� � ωp j

ω

� �4λ j H s j
2

ω
exp −

4λ j þ 1

4

ωp j

ω

� �4
� �

j ¼ 1; 2

ð1Þ

Γ is the gamma function, and j = 1, 2 represent the low-

frequency and high-frequency parts, respectively, which in turn

correspond to the swell and wind-sea in the mixed sea system,

respectively. Each part has three parameters, respectively, viz. the

significant wave height Hs, the spectral peak angular frequency

ωp (=2πfp), and the peak enhancement factor λ.

According to the Rice theory (Rice 1944), the significant

wave height Hs of the mixed waves can be determined by the

method of the energy superposition

H s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H s1

2 þ H s2
2

p
ð2Þ

whereHs1 andHs2 stand for the significant wave heights of the

low-frequency and high-frequency parts, respectively.

2.2 Relative spectral bandwidth

Irrespective of the peak frequency, the value of the relative

spectral bandwidth Δf/fp (here Δf is defined as half-width at

half-spectrum height) becomes static once the value of the

peak enhancement factor λ in the Ochi-Hubble spectrum is

defined. For reference, the relationship between the enhance-

ment factor γ in the widely used single-peak JONSWAP spec-

trum and the present parameter λ in bimodal spectrum is cal-

culated and listed in Table 1.

2.3 Definition of Benjamin-Feir Index

There are different possible definitions for Benjamin-Feir

Index (BFI), depending on the context of the study. Here,

BFI is defined as the ratio between the wave steepness ε =

kpHs/2 and the relative spectral bandwidth Δf/fp for deep-

water waves (Onorato et al. 2004):

BFI ¼
ffiffiffi
2

p
ε

2Δ f = f p
ð3Þ

Complementary, the extension to shallower water

depth can be achieved by means of a modified

Benjamin Feir Index, namely BS, expressed as a

function of the deep-water BFI (Janssen and Onorato

2007; Janssen and Bidlot 2009):

B2
S ¼ −BFI2 � cg

c0

	 
2
gX nl

kpωpω
0 0
p

ð4Þ

where cg and c0 are the group and phase velocities,

respectively. ω
0 0
p is the second derivative of angular fre-

quency ωp with respect to wavenumber kp. Xnl is inter-

action coefficient. The specific expressions can be ref-

erenced to Janssen and Onorato (2007) and Janssen and

Bidlot (2009). Note that in the real deep water (i.e., kph

tends to infinity), the second part of the expression for

BS
2 becomes − 1 and the modified Benjamin Feir Index

BS reduces to the deep-water definition BFI.

2.4 Definition of the different sea states

To investigate the statistical properties of the irregular wave

trains and enhance the understanding of the extreme wave

occurrence, different sea states under single-peak and bimodal

spectra are simulated and analyzed in this study. The different

conditions tested are detailed hereafter.

2.4.1 Single-peak spectrum

A significant number of studies have been dedicated to char-

acterizing the features of the wave trains under single-peak

spectrum. As an example, nonlinear simulations, experiments,

and theoretical works have been conducted to try to predict the

evolution of kurtosis in different contexts (Onorato et al. 2004,

2005, 2006; Toffoli et al. 2009; Shemer and Sergeeva 2009;

Fernandez et al. 2014, 2016; Janssen 2003; Janssen and Bidlot

2009; Fedele 2015). However, as far as we know, existing

works in a fully nonlinear context only consider one influenc-

ing factor, either BFI (Onorato et al. 2004, 2005, 2006;

Shemer and Sergeeva 2009) or relative water depth kph

(Toffoli et al. 2009; Fernandez et al. 2014, 2016), and exhibit

a limited range of variations. There is consequently a need in

providing a thorough study of the effects of both parameters

over a large range for unidirectional irregular sea states.

Five cases listed in Table 2 are designed to study the oc-

currence probability of the irregular wave trains under single-

peak spectrum. Among them, Case 1, Case 2, and Case 3 are

with the same peak enhancement factor but different peak

frequencies (i.e., relative water depth kph), whereas Case 2,

Case 4, and Case 5 have the same peak frequency but different

peak enhancement factors. In each case, there are five differ-

ent values of BFI, viz. 0.2, 0.4, 0.6, 0.8, and 1.0. Detailed

parameters of various cases under the single-peak spectrum

are listed in Table 2.

As an example, Fig. 1 displays the input amplitude spectra

of different cases listed in Table 2. Figure 1a compares the
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Table 2 Detailed parameters of

various cases under single-peak

spectrum

Case fp

(Hz)

kp

(m−1)

h/Lp kph Hs

(m)

ε = kpHs/

2

λ Δf/fp BFI

Case 1 Case 1_a 0.6 1.44 0.92 5.80 0.0278 0.0201 16 0.071 0.2

Case 1_b 0.0556 0.0403 0.4

Case 1_c 0.0834 0.0604 0.6

Case 1_d 0.1112 0.0805 0.8

Case 1_e 0.1390 0.1007 1.0

Case 2 Case 2_a 0.8 2.58 1.64 10.30 0.0156 0.0201 16 0.071 0.2

Case 2_b 0.0313 0.0403 0.4

Case 2_c 0.0469 0.0604 0.6

Case 2_d 0.0625 0.0805 0.8

Case 2_e 0.0782 0.1007 1.0

Case 3 Case 3_a 1.0 4.02 2.56 16.10 0.010 0.0201 16 0.071 0.2

Case 3_b 0.020 0.0403 0.4

Case 3_c 0.030 0.0604 0.6

Case 3_d 0.040 0.0805 0.8

Case 3_e 0.050 0.1007 1.0

Case 4 Case 4_a 0.8 2.58 1.64 10.30 0.0187 0.0240 12 0.085 0.2

Case 4_b 0.0373 0.0481 0.4

Case 4_c 0.0560 0.0721 0.6

Case 4_d 0.0747 0.0962 0.8

Case 4_e 0.0934 0.1202 1.0

Case 5 Case 5_a 0.8 2.58 1.64 10.30 0.0227 0.0292 8 0.103 0.2

Case 5_b 0.0454 0.0585 0.4

Case 5_c 0.0681 0.0877 0.6

Case 5_d 0.0908 0.1169 0.8

Case 5_e 0.1135 0.1462 1.0

Table 1 The relationship

between γ in JONSWAP

spectrum and λ in bimodal

spectrum

Bimodal spectrum

λ

JONSWAP

γ

Δf/fp Bimodal spectrum

λ

JONSWAP

γ

Δf/fp

1.0 1.0 0.2900 9.0 3.1 0.0983

1.5 1.2 0.2375 9.3 3.3 0.0967

2.0 1.4 0.2054 9.5 3.4 0.0958

2.5 1.5 0.1825 10.0 3.5 0.0933

3.0 1.6 0.1683 10.5 3.6 0.0917

3.5 1.7 0.1558 11.0 3.9 0.0892

4.0 1.8 0.1475 11.5 4.1 0.0867

4.5 1.9 0.1383 12.0 4.3 0.0850

5.0 2.1 0.1308 12.5 4.4 0.0842

5.5 2.2 0.1258 13.0 4.6 0.0825

6.0 2.3 0.1200 13.5 4.9 0.0800

6.5 2.4 0.1150 14.0 5.1 0.0792

7.0 2.5 0.1108 14.5 5.6 0.0768

7.5 2.7 0.1075 15.0 5.7 0.0767

8.0 2.9 0.1033 15.5 6.3 0.0737

8.5 3.0 0.1008 16.0 7.0 0.0712
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cases with the same peak enhancement factor (λ) and BFI

value (BFI = 0.6), but different peak frequencies. Figure 1b

compares the cases with the same peak frequency and BFI

value (BFI = 0.6), but various peak enhancement factors.

2.4.2 Bimodal spectrum

Although different studies under bimodal spectrum already

exist in the literature as mentioned in the introduction, most

of them take place in a more complex configuration with

different crossing directional sea states at various angles.

However, as a special case, the unidirectional co-

propagation mixed sea state with different peak frequencies

may be the representative case for the wave properties and the

nonlinear phenomena in unidirectional waves are obviously

stronger. Further, extreme waves can bemore easily generated

in unidirectional wave trains. It is more reasonable to use

unidirectional irregular waves as incident waves in practical

engineering design. Therefore, an extensive study in a simpli-

fied unidirectional context with different parameters is worthy

of analyzing in more details. By assuming that the significant

wave height Hs and the mean zero-crossing period Tz of the

sea states are fixed with that under single-peak spectrum, the

present study is focused on investigating the effects of the type

of wave spectra, ranging from single-peak spectrum to bimod-

al spectrum, for a given sea state parameter. Irregular sea states

are often characterized by those integral parameters (for in-

stance during the design of the structures at sea). The distri-

bution of energy content is most of the time not taken into

account. This study intends to investigate the influence of this

feature on wave statistics, which is essential in the context of

design for instance. It is different from and complementary to

the purpose of the recent work of Støle-Hentschel et al.

(2020), focused on the influence of the presence of the swell

on a fixed wind-sea partition.

With respect to the study of the irregular wave trains de-

fined by bimodal spectrum, two dimensionless parameters are

commonly used to describe the characteristics of the mixed

wave system. One is the Sea-Swell Energy Ratio (SSER)

(Rodriguez et al. 2002), which can be defined as the ratio

between the zero-order spectrum moment (m0) of the wind-

sea frequency band (high-frequency part) to that of the swell

wave field (low-frequency part), given as:

SSER ¼ m0wind−sea

m0swell

ð5Þ

Equivalently, this is the ratio of the significant wave

heights squared. The value of SSER describes the energy dis-

tribution in the mixed wave system. Wave fields with SSER

value smaller than 1.0 represent swell-dominated sea state,

and wave conditions with SSER value greater than 1.0 repre-

sent wind-sea-dominated sea state. The value of SSER close

to 1.0 corresponds to the sea-swell energy equivalent sea state.

Another parameter to describe the frequency separation

between the spectral frequency peaks corresponding to the

swell and wind-sea system is termed as Intermodal Distance

(ID) (Rodriguez et al. 2002), and can be expressed as:

ID ¼
f p2− f p1
f p1 þ f p2

ð6Þ

One wave condition with the parameter value of ID being

close to 0 represents a sea state with swell and wind-sea peak

frequencies in proximity. A wave condition with ID value

being close to 0.10 or larger corresponds to a sea state with

swell and wind-sea system located in different frequency

zones and well separated.

Case 3_c in Table 2, with moderate value of BFI and deep-

water depth kph = 16.10, is taken as a reference for a compar-

ison with the results obtained from a single-peak spectrum.

The adopted test cases under bimodal spectrum with the same

Fig. 1 Initial amplitude spectra for different cases under single-peak spectrum (BFI = 0.6). a Different peak frequencies b Different peak enhancement

factors
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water depth (h = 4.0 m) and peak enhancement factor (λ = 16)

with that under single-peak spectrum are listed in Table 3, in

which different cases with various SSER and ID values are

considered. For Cases A–J, the values of SSER are fixed as

1.0, and ID values are changed from 0.02 to 0.35. While for

Cases AA–AE, AF–AJ, AK–AO, and AP–AT, the values of

ID are fixed as 0.06, 0.08, 0.10, and 0.20, respectively, and

SSER values are changed.

With fixed significant wave height of the sea states Hs and

the value of SSER, once the significant wave height of one

partitionHs1 (or Hs2) is given, the other valueHs2 (or Hs1) can

be determined according to the relation in Eqs. (2) and (5).

The mean zero-crossing period Tz, i.e., the characteristic

period of the mixed system based on the method of energy

weighting, can be expressed as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

s1 þ H2
s2

H2
s1=T

2
z1 þ H2

s2=T
2
z2

s

¼ T z ð7Þ

T z1 ¼ 2π

ffiffiffiffiffiffiffiffi
m01

m21

r
T z2 ¼ 2π

ffiffiffiffiffiffiffiffi
m02

m22

r
ð8Þ

where m0 and m2 are the zero- and second-order spectrum

moment, respectively.

Similarly, with fixed mean zero-crossing period Tz and the

value of ID, once the peak frequency of one partition fp1 (or

fp2) is given, the other value fp2 (or fp1) can be determined

according to the relation in Eqs. (7), (8), and (6). Detailed

parameters are listed in Table 3.

Figure 2 illustrates the initial amplitude spectra for

different cases under bimodal spectra compared with

the single-peak spectrum. In Fig. 2a, SSER is fixed as

1.0 and ID is varying from 0.02 to 0.20. From the

amplitude spectra, it can be observed that for smaller

ID (narrower peak frequency width), there is no obvious

bimodal phenomenon, but only an apparently wider

spectral bandwidth. When ID is greater than 0.10 cor-

responding to Cases F–J, the two peaks of the low- and

high-frequency part are completely unaffected by the

other one and the spectra appear as the double-peak

form, while in Fig. 2b, ID is fixed as 0.20 and SSER

is various in each case.

3 Numerical setup and data analysis

3.1 Numerical model

High Order Spectral (HOS) method was proposed by

Dommermuth and Yue (1987) and West et al. (1987). It was

initially developed to solve the time evolution of a wave field

specified throughout the domain η (x, t = 0) andΦ (x, z = η t = 0),

assuming an infinite homogeneous spatial domain. Ducrozet

Table 3 Detailed parameters for different cases under bimodal

spectrum (h = 4.0 m, λ = 16)

Case fp (Hz) Hs (m) ε = kpHs/

2

SSER ID

Single 1.0 0.03 0.0604 – –

Case A 0.98

1.02

0.0212

0.0212

0.0410

0.0444

1.00 0.02

Case B 0.96

1.04

0.0212

0.0212

0.0393

0.0461

1.00 0.04

Case C 0.94

1.06

0.0212

0.0212

0.0376

0.0478

1.00 0.06

Case D 0.92

1.08

0.0212

0.0212

0.0359

0.0495

1.00 0.08

Case E 0.90

1.09

0.0212

0.0212

0.0342

0.0512

1.00 0.10

Case F 0.84

1.14

0.0212

0.0212

0.0302

0.0552

1.00 0.15

Case G 0.78

1.18

0.0212

0.0212

0.0262

0.0592

1.00 0.20

Case H 0.73

1.21

0.0212

0.0212

0.0228

0.0627

1.00 0.25

Case I 0.67

1.25

0.0212

0.0212

0.0192

0.0662

1.00 0.30

Case J 0.62

1.27

0.0212

0.0212

0.0163

0.0691

1.00 0.35

Case AA 0.98

1.11

0.0276

0.0117

0.0534

0.0287

0.18 0.06

Case AB 0.96

1.08

0.0249

0.0168

0.0461

0.0396

0.46 0.06

Case AC 0.94

1.06

0.0212

0.0212

0.0375

0.0479

1.00 0.06

Case AD 0.92

1.04

0.0173

0.0245

0.0294

0.0531

2.06 0.06

Case AE 0.90

1.01

0.0111

0.0279

0.0181

0.0578

6.46 0.06

Case AF 0.98

1.15

0.0283

0.0099

0.0548

0.0264

0.12 0.08

Case AG 0.95

1.12

0.0254

0.0160

0.0461

0.0402

0.40 0.08

Case AH 0.92

1.08

0.0212

0.0212

0.0359

0.0495

1.00 0.08

Case AI 0.90

1.06

0.0185

0.0236

0.0301

0.0531

1.68 0.08

Case AJ 0.88

1.03

0.0144

0.0263

0.0224

0.0566

3.44 0.08

Case AK 0.98

1.20

0.0287

0.0087

0.0555

0.0250

0.09 0.10

Case AL 0.94

1.15

0.0257

0.0155

0.0457

0.0412

0.37 0.10

Case AM 0.90

1.10

0.0212

0.0212

0.0344

0.0511

1.00 0.10

Case AN 0.88

1.08

0.0192

0.0231

0.0300

0.0537

1.49 0.10

Case AO 0.85

1.04

0.0141

0.0265

0.0206

0.0575

3.66 0.10

Case AP 0.95

1.43

0.0287

0.0088

0.0521

0.0361

0.09 0.20

Case AQ 0.88

1.32

0.0263

0.0145

0.0410

0.0508

0.31 0.20

Case AR 0.79

1.18

0.0212

0.0212

0.0264

0.0591

1.00 0.20

Case AS 0.75

1.13

0.0184

0.0237

0.0209

0.0603

1.66 0.20

Case AT 0.70

1.05

0.0123

0.0274

0.0121

0.0608

4.99 0.20
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et al. (2012) and Li and Liu (2015) have enhanced this model to

represent a water wave tank, including a wave-maker and an

absorbing beach. In these models, the initial conditions represent

the fluid at rest and the waves are generated with a time-varying

boundary condition (representing the wave-maker). The wave

tank is of constant water depth h and horizontal length Lx. The

numerical solution is achieved with the velocity potential being

split into the sum of a free surface spectral potential component

Φf and a prescribed non-periodic component Φw.

The free surface spectral potential component Φf satisfies

the Laplace equation, the free surface boundary conditions,

and the bottom condition. This velocity potential is expressed

on a set of specific basis functions and described with a given

number of modes Nx (the number of points along the horizon-

tal x direction). It can be solved using the traditional HOS

method proposed by Dommermuth and Yue (1987), in which

the velocity potential is written in a perturbation series up to an

arbitrary order M. The free surface boundary conditions are

modified with the non-periodic component acting as forcing

terms. This additional velocity potential Φw satisfies the

Laplace equation, the wave-maker boundary condition, and

the bottom condition. This velocity potential is expressed on

another set of specific basis functions with regard to a given

number of modes Nz (the number of points along the vertical

dimension, necessary to describe the wave-maker’s motion).

The numerical problem can be solved with reference to

Bonnefoy et al. (2010). For more details of the present imple-

mentation, the reader is referred to Li and Liu (2015).

3.2 Numerical setup

In a wave tank configuration, it is reminded that the wave

statistics possibly evolve in space and that they are obtained

from temporal signals at each location. To ensure that the

random waves evolve over a sufficiently long extent in space,

the numerical wave tank is at least 50 times of the correspond-

ing peak wavelength for the different peak frequencies in the

numerical simulation. Therefore, the effective length of the

numerical wave tank under single-peak spectrum is 220 m,

120 m, and 100 m corresponding to the peak frequency of

0.6 Hz (Case 1), 0.8 Hz (Cases 2, 4, 5), and 1.0 Hz (Case 3)

and it is fixed to 220 m in all cases considering bimodal spec-

trum (Cases A–J and Cases AA–AT), with a water depth of

4.0 m.

Appendix A provides details on the generation of irregular

waves. In this paper, the total number of wave components,

describing the temporal wave-maker motion (Nf), is chosen as

200 in all different cases. Irrespective of the case in the fol-

lowing analysis, the frequency range (fL, fH) is chosen as

(0.2 Hz, 3.0 Hz).

With respect to the discretization in space, for cases

under single-peak spectrum listed in Table 2, the num-

ber of points per peak wavelength NLp is fixed to 30

based on the convergence analysis detailed in the

Appendix B section. For bimodal spectra, the frequency

content is distributed over a larger frequency range.

Then NLp is adopted uniformly as 30, based on the

largest peak frequency of the bimodal spectrum for all

cases. The discretization in time Tp/Δt is adopted as

100 and the order of the HOS method M is chosen as

5 in all cases, referring to the convergence analysis in

Appendix B.

To obtain sufficiently stable statistics at each fixed lo-

cation, a large number of waves should be recorded. In

order to prevent the reflection from doing too long simu-

lations, the total necessary number of waves expected (for

accurate statistics) should be split into different simula-

tions, which have random phases. The effective statistical

numerical time is around 6500 s at each location with 10

different random seeds. Then there are at least 5000 waves

in total for each configuration. Furthermore, random

phases in the same segment for different cases considering

various peak frequencies are kept the same value for pos-

sible comparison in the time domain.

Fig. 2 Initial amplitude spectra

for different cases under bimodal

spectrum compared with the

single-peak spectrum. a SSER =

1.0. b ID = 0.20
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3.3 Data analysis

3.3.1 Kurtosis prediction

As an indication of the occurrence probability of the

extreme waves, the kurtosis of the free surface elevation

is also investigated in this paper. It is defined as:

kurtosis ¼ λ4 ¼
η− ηh ið Þ4

D E

σ4
ð9Þ

where 〈·〉 represents the average over time and σ is the

standard deviation of η. In a Gaussian wave process, the

value of kurtosis is 3.0, whereas a larger value repre-

sents a larger probability of occurrence for the extreme

waves.

A theoretical solution for the steady-state kurtosis in finite

water depth λ4,NB, assuming narrow-banded wave field, is

introduced for comparison. This kurtosis λ4,NB can be written

as the sum of two terms accounting for both the dynamic

contributions λ4,NB
dyn and the static contributions λ4,NB

b . The

dynamic contributions represent the effect of resonant interac-

tions, which are expected to be significant in the present con-

figuration (Janssen and Bidlot 2009; Fedele 2015) The static

contributions correspond to the effect of bound modes, which

are the dominant process for the skewness and one of the

contributions to the kurtosis. The specific calculation

formulas can be found in Janssen and Bidlot (2009) and

Ducrozet and Gouin (2017). The expression should represent,

for unidirectional, narrow-banded and weakly nonlinear wave

field, the asymptotic value of the kurtosis of the free surface

elevation. Note that the theoretical spatial evolution can also

be defined following Fedele (2015).

3.3.2 Probability density functions: Naess, MER, and GC

The statistical analysis of random wave height is an important

parameter in the study of extreme wave characteristics.

Various theoretical and empirical models have been proposed

to characterize the wave height probability distribution.

In a stationary, Gaussian and extremely narrow-banded

process, the wave height is regarded as twice the envelope

amplitude and that these are distributed according a

Rayleigh probability distribution (Longuet-Higgins 1952). It

is given by:

E Hð Þ ¼ EXP −
H2

8

	 

ð10Þ

in which H is the non-dimensionalized wave height with the

square root of the zero-order spectral momentum (i.e.,
ffiffiffiffiffiffi
m0

p
).

However, the assumption of the wave height as being twice

the amplitude of the envelop amplitude is not totally exact due

to the modulated structure of a narrow-banded process and the

time lag between a crest and the adjacent trough. Naess (1985)

derived a linear distribution model for the crest-to-trough

wave height in a narrow-banded wave trains given by:

E Hð Þ ¼ EXP −
H2

4 1−ρ τ=2ð Þð Þ

� �
ð11Þ

But Naess (1985) did not define the key parameter ρ(τ/2) in

his distribution exactly. Its asymptotic approximation was giv-

en by Boccotti (2000), that ρ(τ/2) represents the value of the

normalized autocorrelation function of the sea surface eleva-

tion at the time when it attains its first minimum.

In nature, most of the wave fields are nonlinear. For stron-

ger nonlinear waves, using Rayleigh or Naess distribution will

sometimes produce great deviation. Hence, the Rayleigh or

Naess distribution is no longer applicable. Considering the

effect of nonlinear interaction, Mori and Janssen (2006) de-

veloped a distribution called a modified Edgeworth-Rayleigh

distribution (MER) under the assumption of weak nonlinear-

ity, narrow spectrum, and wave height twice of wave ampli-

tude. It is expressed as:

E Hð Þ ¼ EXP −
H2

8

	 

1þ πffiffiffi

3
p BFI2

	 

H2

384
H2−16
� �� �

ð12Þ

where BFI is chosen as the deep-water BFI in this study.

And then, scholars found that the third-order nonlinearity

of the wave surface elevation has a great influence on the

statistical characteristics of random wave trains and mean-

while the fourth-order moment of wave surface elevation is

directly related to the third-order nonlinearity from the per-

spective of statistical analysis. Taking kurtosis up to the third

order into account, Tayfun and Fedele (2007) and Fedele et al.

(2016) have proposed a Gram-Charlier (GC) distribution

model, given as:

E Hð Þ ¼ EXP −
H2

8

	 

1þ Λ

1024
H2 H2−16

� �� �
ð13Þ

Λ ¼ λ40 þ 2λ22 þ λ04 ð14Þ

λmn ¼ ηmbη
nD E

=σmþn þ −1ð Þm=2 m−1ð Þ n−1ð Þ; mþ n ¼ 4 ð15Þ

where bη is the Hilbert transform of the free surface elevation.

Note that the difference between MER and GC model is that

in MERmodel the influence of third-order nonlinearity on wave

surface elevation is obtained by theoretical analysis and can be

directly calculated by the given BFI values of the wave trains.

However, in GC model, although Eq. (13) is also derived by

theoretical consideration, the nonlinear effect is based on the

parameter Λ, which should be statistically determined from the

analyzed wave series according to Eqs. (14) and (15). So, the

latter slightly changeswith thewave propagation and can only be

used as a reference model for the wave height distribution anal-

ysis at some specific position for bimodal waves.
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MER and GC nonlinear model will be used as a reference

distribution for the following wave height distribution analysis.

4 Numerical results and discussions

This section is dedicated to the analysis of the different sea

states presented in Section 2.4. Unidirectional single-peak

spectra are investigated in detail, summarizing the main ef-

fects of BFI and relative water depth. Then, the cases defined

by bimodal spectra, assuming the wave field is described with

a given set of integral parameters (Hs and Tz) but different

SSER and ID, are studied to investigate the effects of the

distribution of the energy content in bimodal spectra on sta-

tistical properties.

4.1 Single-peak spectrum

Figure 3 presents the evolution of the kurtosis along the wave

flume for the different cases with various BFI values in the

numerical investigations, in which the horizontal axis repre-

sents the distance away from the wave-maker normalized by

the corresponding peak wavelength. For the case with smaller

BFI (BFI = 0.2), the kurtosis is almost constant along the wave

flume. However, for the cases with larger BFI, the values of

kurtosis obviously grow along the wave flume and deviate

from the Gaussian value of 3.0. The cases with larger BFI

have faster growth rates and larger maximum values. When

the value of BFI is 1.0, the maximum value of kurtosis can

reach up to 4.75. These phenomena have been observed in

different physical experiments (Onorato et al. 2004; Shemer

and Sergeeva 2009), theoretical analyses (Janssen 2003;

Janssen and Bidlot 2009; Fedele 2015), and fully nonlinear

numerical simulations (Onorato et al. 2006; Regev et al. 2008;

Gramstad and Trulsen 2010). They had proposed that these

phenomena are caused by modulation instability that depends

on the wave steepness and spectral bandwidth (BFI).

Although the evolution of kurtosis is strongly dependent on

BFI value of the sea states, it can be observed from Fig. 3 that

the maxima of the kurtosis as well as its asymptotic value are

different from each other for the cases with the same BFI

value. Consequently, the evolutions of kurtosis along the

wave flume for different relative water depths and peak en-

hancement factors with the same BFI values are compared in

Fig. 4, in which a theoretical solution for the steady-state

kurtosis in finite water depth λ4, NB is introduced as dash-

dotted lines for comparison. From Fig. 4, it can be clearly seen

that these theoretical values are significantly smaller than the

numerical results from the fully nonlinear numerical model,

especially for the cases with larger BFI value and deeper water

depth. It indicates that the physics of the process requires to be

taken into account higher dispersive and nonlinear effects than

this simple theoretical model.

More detailed analysis is presented in Fig. 4, where the sea

states with the same BFI are studied, but with varying other

parameters. Figure 4a, c, and e investigate the influence of the

relative water depth kph on the spatial evolution of the kurto-

sis, while Fig. 4b, d, and f study the effect of the wave steep-

ness ε (or eq. Δf/fp, since BFI is fixed) on the same spatial

evolution. It can be noted that, for Fig. 4b, d, and f with

constant BFI value and the same water depth, the horizontal

axis is normalized by Lp/ε
2.

From the observation, it can be found that, with constant BFI

value, the influence of relative water depth is significant, even

for values of kph > 5.8, often considered deep-water regime,

while the influence of the wave steepness (or Δf/fp) appears

limited to the growth rate of the kurtosis, the asymptotic values

being nearly identical. It is found that for a fixed BFI and kph, a

steeper and narrower sea state has a faster growth rate. This is

associated with the higher-order dispersion and nonlinear ef-

fects than the theoretical prediction available (Fedele 2015).

The latter is indeed based on narrow-banded third-order solu-

tion of the problem that does not predict such behavior, the

evolution being only a function of BFI and kph.

Considering that the modified Benjamin Feir Index BS in-

cludes the influence of finite water depth, to investigate the

influence factors on the variation of the kurtosis under single-

peak spectrum, it is more relevant to take into account these two

independent factors: the deep-water BFI and the relative water

depth kph. Therefore, a series of simulations with a fixed peak

frequency fp = 0.8 Hz for deep-water BFI = 0.6, 0.8, and 1.0 are

carried out. Several water depths are tested with h = 4 m, 3 m,

2m, 1.5m, 1.2 m, 1m, 0.8m, and 0.6 m, respectively. It should

be noted that as the water depth becomes shallower, the wave-

number kp becomes larger due to the dispersion equation in-

volved the influence of water depth. Then the relative water

depth corresponds to kph = 10.32, 7.74, 5.16, 3.87, 3.10, 2.60,

2.12, and 1.66, respectively. At the same time, in order to keep

the deep-water BFI fixed at 0.6, 0.8, and 1, the significant wave

height needs to be adjusted accordingly. Subsequently, the sta-

tistics of the maximum kurtosis along the numerical wave

flume in each condition are analyzed. The contour plot of the

maximum kurtosis with respect to different initial deep-water

BFI and 1/(kph) is illustrated in Fig. 5, where cubic interpolation

is used to plot the contour. Figure 5 a gives the numerical result

simulated byHOSmethod and Fig. 5b gives the narrow-banded

weakly nonlinear theoretical values obtained from Janssen and

Bidlot (2009) and Ducrozet and Gouin (2017). It should be

pointed out that the effect of finite water depth has been con-

sidered in the theoretical predictions above (i.e., in the calcula-

tion of the theoretical value, the modified Benjamin Feir index

BS replaces the deep-water BFI). In Fig. 5, the dotted black line

level represents the classical limit of the deep-water conditions

corresponding to kph = π. We note that large variations of the

maximum kurtosis are observed in this deep-water regime

(kph > π, below the dotted line).
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Even though the value of deep-water BFI is fixed, the max-

imum values of the kurtosis are different owing to the different

relative water depths. It is observed that the deeper the water

depth is, the smaller the influence on the maximum kurtosis is.

However, it is worth mentioning that at the classical deep-

water limit (kph = π), the deviation from Gaussian sea state

(a.k.a. kurtosis enhancement, λ4–3) is approximately 25%

smaller than the deep-water solution (that is reached at a far

larger relative water depth kph). The kurtosis becomes smaller

with a shallower water depth. This implies that the shallower

water depth can depress the wave instability and larger wave

development. It is due to the fact that the reduced water depth

decreases the effects of modulation instability (Janssen and

Onorato 2007). Hence, the values of kurtosis are different

from each other in the so-called deep-water conditions, as

defined with the peak frequency and the same value of deep-

water BFI.

The effect of the water depth on the wave dynamics has

been studied extensively in the literature. Modulational insta-

bility vanishes as the depth decreases below the critical value

corresponding to kph ≈ 1.363 and this can be interpreted by a

stability analysis of the Nonlinear Schrödinger (NLS) equa-

tion (Slunyaev 2005). Analyzing the coefficients of this equa-

tion tells us that the modulational instability is inexistent be-

low this threshold. However, for larger kph values, and for

instance the ones we study here, the coefficient is not constant.

As a result, the modulational instability is still influenced by

the water depth, so are the wave statistics.

Comparing the numerical results with the theoretical values

in Fig. 5, these two have similar trends, but the theoretical

Fig. 3 The comparisons of the evolution of kurtosis for various BFI values under single-peak spectrum. a Case 1 (kph = 5.80, λ = 16). b Case 2 (kph =

10.30, λ = 16). c Case 3 (kph = 16.10, λ = 16). d Case 4 (kph = 10.30, λ = 12). e Case 5 (kph = 10.30, λ = 8)
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values underestimate the actual fully nonlinear numerical sim-

ulation results. The maximum kurtosis can reach more than

4.0 for larger deep-water BFI, much larger than the theoretical

values. This implies that it is quite necessary to adopt a fully

nonlinear numerical model to simulate sea state waves with

high-order nonlinearity and to predict accurately the occur-

rence of large waves, especially in deep water.

Generally, the kurtosis is associated with the presence of

large waves. Complementary to the evolution of the kurtosis,

the probability density function should be further studied.

Figure 6 displays the exceedance probabilities of wave height

(counted by zero up-crossing method) at the location of the

maximum value of kurtosis. In the figure, MER distribution,

considering the nonlinear interaction, is plotted for compari-

son. It can be easily observed that for smaller BFI, the wave

height distribution almost obeys theMER distribution, and for

larger BFI there is a little deviation from theMER distribution.

MER distribution can better predict the probability of large

waves (1.5 <H/Hs < 2.0), but underestimates the statistics of

the wave height distribution when H/Hs is larger than 2.0,

which is the classical value to identify events are rogue or

freak waves (Klinting and Sand 1987). Meanwhile, the ex-

ceedance probabilities of wave height at maximum values of

kurtosis considering the influence of the relative water depth

and peak enhancement factor are exhibited in Fig. 7. The

evolution of the wave height distribution is consistent with

that obtained from the kurtosis. From Fig. 7a, it can be ob-

served that for deeper water depth, MER model can better

predict the probability of large waves (1.5 <H/Hs < 2.0), but

also underestimates the statistics of the wave height distribu-

tion whenH/Hs is larger than 2.0. From Fig. 7b, irrespective of

the peak enhancement factor, their wave height distributions

Fig. 4 The evolution of kurtosis along the wave flume for different relative water depths and peak enhancement factors under single-peak spectrum. a

BFI = 0.6, λ = 16. b BFI = 0.6, kph = 10.30. c BFI = 0.8, λ = 16. d BFI = 0.8, kph = 10.30. e BFI = 1.0, λ = 16. f BFI = 1.0, kph = 10.30
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keep basically consistent. And when 1.5 <H/Hs < 2.0, the

wave height distribution is very close to the MER theoretical

prediction, which still underpredicts the occurrence of extreme

waves (H/Hs > 2.0).

4.2 Bimodal spectrum

In sing-peak spectrum, modulational instability plays an im-

portant role during extreme wave generation, and BFI value

can be an indicator, while, for bimodal spectrum, the energy is

divided into two partitions. The nonlinear interaction process

is more complex. It is not easy to define an index to estimate

the extreme wave generation. So, in this section, two spectral

shape parameters are considered. We fix the integral parame-

ters (the significant wave height Hs and the mean zero-

crossing period Tz of the sea states) and vary the set of param-

eters: the energy distribution SSER and the frequency separa-

tion ID. As detailed in the introduction, one of the present

objectives is to assess the importance of the wave energy

distribution in the bimodal sea states and not only through

the abovementioned integral parameters.

Figure 8 shows the evolution of the kurtosis along the wave

flume for different cases under bimodal spectrum, where the

solid black lines represent the results for the single-peak spec-

trum for a reference. The horizontal axis represents the distance

away from the wave-maker normalized by the wavelength Lz
corresponding to the mean zero-crossing period (obtained from

linear dispersion relation). It should be noted that comparing to

Fig. 3c, the evolution takes place on a longer spatial extent in

order to ensure sufficient evolution for bimodal waves. In Fig.

8a, the results of Cases A–J with fixed SSER but various ID

values have been compared. The variation under single-peak

spectrum has the faster growth rate and the larger maximum

kurtosis than that under the bimodal spectrum. As ID becomes

larger, the maximum kurtosis becomes gradually smaller. For

Cases F–J where there is obvious bimodal structure of the

spectrum with ID larger than 0.10, the values of kurtosis are

close to Gaussian value of 3.0 and the changes during the wave

propagation are not significant. This is consistent with the find-

ings of Støle-Hentschel et al. (2020). Their study indeed reveals

that considering a bimodal spectrum, the non-Gaussian behav-

ior of one partition of the spectrum may be hidden due to a

simple superposition. However, additional phenomena can be

Fig. 6 The influence of BFI on exceedance probability of wave height

under single-peak spectrum for Case 2 (kph = 10.30, λ = 16) (the solid

lines represent MER distribution)

(a) numerical results    (b) theoretical values

Fig. 5 Contour plot of the

maximum kurtosis with regard to

different initial deep-water BFI

and 1/(kph) (the dotted black line

level represents the limit of the

deep-water condition). a

Numerical results. b Theoretical

values
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Fig. 8 The variation of the kurtosis along the wave flume for different cases under bimodal spectra compared with that under the single-peak spectrum. a

SSER= 1.0. b ID = 0.06. c ID = 0.20

Fig. 7 The influence of relative

water depth and peak

enhancement factor on

exceedance probability of wave

height under single-peak spec-

trum (the black solid lines repre-

sent MER distribution). a BFI =

0.8, λ = 16. b BFI = 0.8, kph =

10.30
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found in Fig. 8b and c in which the energy repartition between

wind-sea and swell (SSER) is varied. In each subplot, as the

value of SSER becomes larger, the growth rate and the maxi-

mum value of the kurtosis become smaller for values lower

than 1.0. When SSER reaches 1.0, which represents the sea-

swell energy equivalent sea state, the kurtosis gets the mini-

mum value (represented by the blue lines). Subsequently, as

SSER continues increasing, the kurtosis becomes gradually

larger. The amount of energy in each partition has a significant

effect on the combined sea state statistics.

Figure 9 displays the relationship between the maximum

values of kurtosis and ID values under sea-swell energy equiv-

alent sea state that helps to understand the effect of the ID value

on the kurtosis. We find that when the ID value is smaller than

0.10, the maximum value of kurtosis becomes smaller with

increasing ID. This can be explained that when the two peaks

of the input spectra have not been completely separated, the

effect of increasing ID is mainly to have broaden the spectrum,

which leads to the decrease of the effective BFI at constant Hs.

The maximum values of the kurtosis decrease consequently.

However, when the ID values are larger than 0.10, the maxi-

mum values of the kurtosis are nearly constant around 3.3 and

there is almost no change in statistics of the bimodal sea. This

indicates that statistics of the combined (bimodal) sea states

with two completely separated peaks in the input spectra devi-

ate moderately from Gaussian state. Note that this value of 3.3

is the maximum of a space-evolving kurtosis. It is driven by

nonlinear interactions (also known as dynamic kurtosis), the

importance of bound modes being limited (just depend on

steepness).

Similarly, the variation of the maximum values of the kur-

tosis with various SSER values but fixed ID value is demon-

strated in Fig. 10. The black dotted line represents the maxi-

mum kurtosis of the wave trains under single-peak spectrum.

For swell-dominated sea (i.e., SSER < 1.0), the maximum

value of kurtosis becomes smaller with SSER increasing up

to 1.0. Thereafter, as SSER becomes larger than 1.0 (i.e.,

wind-sea-dominated), the maximum value of kurtosis be-

comes larger with increasing SSER. Meanwhile, the line for

smaller ID value always lies above the larger one. These phe-

nomena indicate that under the swell-dominated conditions or

the wind-sea-dominated conditions, all the kurtosis maxima

are larger than those of the case under sea-swell energy equiv-

alent sea state. It demonstrates that with the same value of ID,

the wave trains under sea-swell energy equivalent sea state are

the less prominent to extreme wave appearance.

According to the study of Støle-Hentschel et al. (2020), it is

necessary to partition the mixed sea states and analysis should

be performed on each partition to better interpret the combined

sea state wave statistics. Cases D–G from Table 3 are chosen

to investigate the statistics difference between the mixed sys-

tem and the two independent systems. The BFI value of each

partition (swell and wind-sea) is reported in Table 4. As a

reminder, the reference single-peak spectrum with identical

Hs and Tz exhibits BFI = 0.6. The swell is weakly nonlinear

relative to the wind-sea. Figure 11 gives the initial amplitude

spectra of selected cases for further comparison with single

independent system conditions. The vertical dotted line marks

the splitting frequency fm that is employed to separate the

combined swell and wind-sea (mixed) into swell and wind-

sea contributions.

From the definition of kurtosis (Eq. (9)), Støle-Hentschel

et al. (2020) calculated the kurtosis of combined sea states

Fig. 10 The variation of the maximum values of the kurtosis with various

SSER values

Fig. 9 The relationship between the maximum values of kurtosis and ID

values under sea-swell energy equivalent sea state (SSER = 1.0)

Table 4 Detailed parameters of various cases to investigate the statistics

difference between the mixed system and the independent system

Case fp (Hz) Hs (m) ε = kpHs/

2

BFI

Case D 0.92

1.08

0.0212

0.0212

0.0359

0.0495

0.36

0.49

Case E 0.90

1.09

0.0212

0.0212

0.0342

0.0512

0.34

0.51

Case F 0.84

1.14

0.0212

0.0212

0.0302

0.0552

0.30

0.55

Case G 0.78

1.18

0.0212

0.0212

0.0262

0.0592

0.26

0.59
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based on the assumption that the two systems are independent

(i.e., the free surface is a simple superposition of the wind-sea

and swell):

λ4;mixed ¼
λ4;swellσ

4
swell þ 6σ2

swellσ
2
wind−sea þ λ4;wind−seaσ

4
wind−sea

σ2
swell þ σ2

wind−sea

� �2

ð16Þ

where σ2 is the variance of the corresponding free surface

elevation.

Figure 12 compares the kurtosis evolution of the mixed sea

state with the results obtained under single independent sys-

tem conditions. The theoretical results obtained from Eq. (16)

are also included. Irrespective of the ID value, analysis of the

entire wave system shows that the mixed sea has milder ex-

treme wave statistics than the pure wind-sea.When one part of

the sea state (wind-sea) exhibits strongly nonlinear behavior,

put together with a swell with a mildly nonlinear feature, it

looks like weakly nonlinear according to the superposition.

However, the physics taking place in the mixed sea state are

Fig. 11 Initial amplitude spectra of selected cases for further comparison

with single independent system conditions

(a) Case D ID = 0.08     (b) Case E ID = 0.10

(c) Case F ID = 0.15    (d) Case G ID = 0.20

Fig. 12 Comparison of the statistic of the mixed sea state with the results

under single independent system conditions and the theoretical results

obtained from Eq. (16). (The black solid lines represent the theoretical

results, and red solid lines represent the result of the mixed sea states.) a

Case D ID = 0.08. bCase E ID = 0.10. cCase F ID = 0.15. dCase G ID =

0.20
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complex, especially in the wind-sea partition which exhibits

strong non-Gaussian properties. When the ID values are larger

than 0.10 (Fig. 12c and d), i.e., the swell partition and the

wind-sea partition are separated, the statistic agrees with the

theoretical value well. This means that there are no significant

interactions between the wind-sea and the swell in this com-

bined sea state. While as the ID values are less than 0.10

(Fig. 12a and b), the deviations between the numerical mixed

system and the theoretical values become larger. This demon-

strates that for the cases with small ID values, the mixed wave

system exhibits nonlinear interactions between partitions. It is

associated with the fact that the theoretical result does not

involve the influence of one partition (swell or wind-sea) on

the other one. It is a simple averaging that do not provide the

whole information about the physical processes at play. In this

configuration (ID < 0.10), it is consequently not advisable to

consider the combined sea state as a simple linear superposi-

tion of two independent partitions.

As a general point, it is of major importance to stress that

when facing multimodal systems, the complexity of the underly-

ing physics (typically resulting from nonlinear interactions) can-

not be deduced by an analysis limited to the statistical content of

the whole sea state (such as kurtosis or probability distribution)

without information about the energy distribution (i.e., the spec-

trum shape). It is indeed demonstrated here that wave fields

characterized by weakly non-Gaussian features may actually

contain strongly nonlinear phenomena (in the present case, the

wind-sea partition exhibits a strongly non-Gaussian behavior),

and nonlinear interactions between partitions of mixed sea also

play significant roles as ID< 0.10. This is essential in a numerical

point of view, assessing the importance of highly nonlinear

models, such as the HOS method at use in the present study,

compared to weakly nonlinear approaches.

Finally, exceedance probability distributions of the wave

height at the location with maximum kurtosis are given in

Fig. 13 for different choices of parameters. The MER distri-

bution is represented as the black solid line, and the case under

single-peak spectrum is represented as black scatters for ref-

erences in the figures. It can be observed that the wave height

distributions have certain degree of departure from the MER

distribution when H/Hs is larger than 1.5 in all subplots. In

Fig. 13a, for smaller ID values (Cases A and C), the wave

height distributions are close to MER distribution and for

larger ID values (Cases E–I) the departures become gradually

larger as ID values become larger. However, until the swell

partition and the wind-sea partition are completely separated

(Cases G and I), the departure remains unchanged due to the

global weak nonlinearity in the wave trains. In Fig. 13b, it can

be reported that MER distribution lies in the middle of the

analyzed results and the departure from the MER line is not

mono changing. The larger departure can be observed for the

single case and case with SSER = 1.0. All these results from

the exceedance probability distribution of wave height are

consistent with those obtained from the study of kurtosis as

shown in Figs. 9 and 10. It implies that the wave trains under

bimodal spectrum with equivalent energy distribution and

larger intermodal distance between the two peaks of the initial

spectrum are the less prominent to extreme wave appearance.

Figure 14 compares the wave height distribution at the

location with maximum kurtosis between numerical results

and the corresponding results of MER and GC model to in-

vestigate the applicability of the theoretical models under dif-

ferent spectral types. The results are derived for the case under

single-peak spectrum and typical cases under bimodal spec-

trum. It can be clearly seen that comparing toMERmodel, GC

model has better approximation for extreme wave statistics,

(a) SSER = 1.0   (b) ID = 0.10

Fig. 13 Exceedance probabilities

of the wave height distribution at

the location with maximum

kurtosis for different cases under

bimodal spectrum compared with

that under the single-peak spec-

trum (the black solid lines repre-

sent MER distribution). a

SSER= 1.0. b ID = 0.10
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which is resulted from the fact that during the wave propaga-

tion, the third-order nonlinearity is larger than the theoretical

value due to the wave-wave interaction. Meanwhile, there is

still some deviation from the theoretical prediction for the

rogue waves (H/Hs > 2), which can be explained by higher-

order effects (higher than third order).

5 Conclusions

In this paper, the statistical properties of unidirectional wave

trains under single-peak and bimodal spectra are analyzed

from a series of numerical simulations taking into accounts

the nonlinearities in the process. The analysis is limited to

long-crested waves, as a typical configuration during the de-

sign of structures at sea to define the environmental conditions

of operation.

For the wave trains under single-peak spectrum, as is

known, the kurtosis and large wave generation probability

are dependent on the BFI value significantly. The sea states

with larger BFI generally have larger kurtosis and are more

prominent to generate extreme waves. However, the relative

water depth has significant influence on the large wave occur-

rence probability. It is demonstrated that in conditions often

referred as deep water (kph > π), the influence of water depth

on the wave statistics can be significant. A detailed analysis of

the combined effect of deep-water BFI and relative water

depth is provided in the present manuscript. It is shown that

the maximum excess kurtosis associated kph = π can be up to

25% lower than the one of exact deep-water configuration.

Furthermore, the cases of sea states defined with fixed sig-

nificant wave height (Hs) and mean zero-crossing period (Tz)

but different energy distributions (SSER) or peak frequency

widths (ID) are investigated. It covers single-peak and bimod-

al spectra and intends to assess the major importance of these

features on the physics at play. An extensive study is provid-

ed, with the influence on statistical properties of two parame-

ters SSER and ID considered. The limitations associated to the

Fig. 14 Exceedance probabilities of the wave height distribution at maximum kurtosis for some different cases compared with the corresponding MER

and GC distribution

17



description of a sea state with the only two integral parameters

Hs and Tz are demonstrated. Compared with the results under

single-peak spectrum, the kurtosis and wave height distribu-

tion under single-peak spectrum are obviously larger than

those under bimodal spectrum, irrespective of the case. This

indicates that the sea states described by bimodal spectra are

less likely to contain extreme (freak) waves. From an ocean

engineering design point of view, the classical unimodal con-

figuration is consequently conservative. However, taking into

account the fact that 15 to 25% of the sea states are mixed

ones, a more accurate estimation of extreme events and re-

sponses can be achieved with the bimodal description.

With respect to the cases with fixed SSER value, when the

ID value is smaller than 0.10, the maximum value of kurtosis

becomes smaller with increasing ID. As the swell and the

wind-sea partitions are completely separated (ID > 0.10), the

maximum values of the kurtosis of the combined sea states are

constant around 3.3 and the wave height distributions remain a

certain degree of departure from the MER distribution. While

with respect to the cases with ID fixed with 0.10, when SSER

value is close to 1.0, the kurtosis gets the minimum value, and

the wave height distribution has a larger departure from the

MER distribution. It can be concluded that with fixed ID, the

wave train under sea-swell energy equivalent state is the less

prominent to extreme wave appearance.

Additionally, comparing to MER model, GC distribution

can better predict the probability of large waves (1.5 <H/Hs <

2.0), especially for unidirectional bimodal wave trains, but

underestimates the statistics of the wave height distribution

when H/Hs is larger than 2.0 (caused by higher than third-

order effects) for long-crested waves in both single-peak state

and bimodal state.

Furthermore, we have compared the mixed sea states with

the corresponding single independent systems. When one part

of the sea state (wind-sea) exhibits strongly nonlinear behav-

ior, and is mixed together with a swell with a mildly nonlinear

feature, it behaves in a weakly nonlinear way, according to the

superposition. Then, it has been demonstrated that the com-

plexity of the underlying physics of a given sea state (mainly

the effect of nonlinear interactions, resonant or not) cannot be

deduced by an analysis limited to the statistical content of the

combined sea state. The way energy is distributed among

frequencies plays a major role. This is of huge importance in

the context of wave modeling, pointing out the necessity to

use highly nonlinear models, even if the statistics may appear

weakly non-Gaussian.
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Appendix A: Generation of irregular waves

The wave-maker motion is determined by the target free sur-

face elevation and the linear transfer function, which depends

on its geometry. According to the linear superposition theory,

the two-dimensional irregular free surface elevation can be

represented as a superposition of regular wave components

with different frequencies:

η x; tð Þ ¼ ∑
i¼1

N f

aicos k ix−ωit þ φið Þ ð17Þ

where the subscript i stands for the ith wave component; Nf is

the total number of wave components; ai, ki, and ωi are the

wave amplitude, wave number, and wave frequency of each

component; and φi is the initial random phase, which is uni-

formly distributed from 0 to 2π. The value of ki can be obtain-

ed through the dispersion equation:

ωi
2 ¼ gkithk ih ð18Þ

with g the gravity acceleration. The wave amplitude of each

component ai is defined from the wave spectrum:

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S ωið ÞΔωi

p
ð19Þ

where Δωi is the division widths of the frequencies, Δωi =

2π(fH−fL)/(Nf−1). (fL, fH) is the considered frequency range.

To avoid the periodic time repetition, the actual frequency of

the ith wave component ωi is selected randomly in the fre-

quency spin as

ωi ¼ i−1þ randð ÞΔωi ð20Þ

where rand is a random number distributed from 0 to 1.

Appendix B: Convergence analysis

The data from the irregular wave experiment under single-

peak spectrum by Li et al. (2013) are used to conduct the

convergence analysis of the established numerical model.

The experiment was carried out in the State Key Laboratory

of Coastal and Offshore Engineering in Dalian University of

Technology, China. The wave flume is 69.0 m long, 2.0 m

wide, and 1.8 m deep. The water depth for the experiment is

set at 1.2 m. Eleven resistive wave gauges are arranged along

the length of the wave flume to record the free surface eleva-

tions. The experimental setup is displayed in Fig. 15.

Irregular waves are characterized by the JONSWAP spec-

trum with random initial phases. Details of the experimental

parameters are listed in Table 5. Two cases with different BFI

values of 0.51 and 0.87, which represent different stabilities of

the wave group, have been chosen by varying the peak period

Tp and the peak enhancement factor γ in the JONSWAP
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spectrum. BFI is defined as deep-water BFI¼
ffiffi
2

p
ε

2Δ f = f p
, with ε =

kpHs/2 the wave steepness andΔf/fp the relative spectral band-

width. For the two cases, the significant wave height Hs is the

same. However, case II has a deeper relative water depth kph,

larger wave steepness ε, and larger BFI value, which repre-

sents a stronger nonlinear wave condition than case I. Thus,

the convergence analysis is performed with the irregular wave

trains for case II.

The numerical wave tank replicas the experimental setup.

Its length is enlarged to 80 m to ensure correct wave absorp-

tion. The error is measured thanks to the free surface elevation

recorded at the middle of the wave tank on a time window

fixed to 100Tp and calculated as:

error ¼
∫t ηnumerical−ηexperiment
�� ��

∫t ηexperiment
�� �� ð21Þ

The convergence analysis is carried out with the parameters

Nz =Nx/4, M = 5, and the result of the convergence analysis

with respect to the number of points per peak wavelength NLp

is represented in Fig. 16. The figure displays two lines

representing the convergence rates of 2 and 3 as a reference.

The numerical convergence rate is slightly larger than 2nd

order, which is the theoretical expected value (Ducrozet

et al. 2012). Considering the numerical simulation of the uni-

directional irregular wave trains, the overall error is about 5%

with 30 points per corresponding peak wavelength. This value

of NLp = 30 is chosen as converged parameter for the rest of

the study. It ensures the accuracy of the numerical simulation

as well as a fast solution. Similar convergence analysis has

been conducted for the discretization in time (time-stepΔt) as

well as the order of nonlinearity of the method M. The final

numerical configuration is NLp = 30, Tp/Δt = 100, and M = 5.

The comparison of the input target spectrum and nu-

merically generated one at x = 5 m is exhibited in Fig. 17.

The comparison ensures the correct wave generation pro-

cedure. In addition, the results obtained with a linear solv-

er (M = 1) is added as a reference. It can be observed that

the generated spectrum with M = 1 is exactly the target

spectrum, which demonstrates the effectiveness of the

established numerical model in dealing with random wave

trains. Consequently, the discrepancies between the input

target spectrum and the generated one in a nonlinear con-

text (M = 5) are only due to the nonlinear effects in the

process of the wave propagation, the generation of waves

being strictly equivalent.

Appendix C: Numerical validation

Complementary to the previous convergence analysis, which

demonstrated the accuracy of the HOS numerical wave tank

compared to the experiments on the free surface elevation at a

single location, this paragraph assesses its relevance for the

systematic study presented in Sections 3 and 4. The experi-

mental data listed in Table 5 are further used to validate the

accuracy of the established numerical model for long-time

simulation and statistical characteristics.

The total simulation duration is 2000 s, i.e., more than 1000

waves are involved in the simulated wave trains. 2D HOS

numerical model is adopted to reproduce the two wave trains.

Figure 18 compares the free surface elevations between the

Fig. 16 Convergence of the numerical simulation with respect to the

number of points per corresponding peak wavelength

Table 5 Parameters of the physical experiment

Case Tp (s) kph γ Hs (m) ε = kpHs/2 BFI

Case I 1.5 2.20 7.0 0.055 0.05 0.51

Case II 1.0 4.82 3.3 0.055 0.11 0.87

Fig. 15 The setup of the

experiment
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experimental data and numerical results at some pre-setting

locations along the wave tank. The horizontal axis represents

the time corrected from the group velocity at the peak of the

spectrum cg. This allows to follow the wave groups in their

evolution and possibly identify the large wave events in each

case. It can be noted that all the free surface elevations of the

numerical simulation remain consistent with the experimental

data along the wave tank, irrespective of the value of BFI.

The evolution of the kurtosis along the wave flume for both

cases with different BFI values is presented in Fig. 19, where

experiments and numerical results are compared. The horizontal

axis represents the distance away from the wave-maker normal-

ized by the corresponding peak wavelength. Complementary,

the probability distribution of the wave height at different posi-

tions of the numerical waves is compared to the experimental

data in Fig. 20, in which Naess distribution are plotted as a

reference. It can be found that the kurtosis and the wave height

distribution of the numerical results have good agreement with

the experimental data, even for case II that exhibits the largest

waves. These comparisons in Figs. 18, 19, and 20 demonstrate

that the established HOS numerical model is able to accurately

simulate the irregular wave trains for a long time, even in the

presence of significant modulation instability. Furthermore, in

Fig. 20, the wave height distributions show different behaviors

for the two cases at different locations. This is an awaited be-

havior from literature: lower kph and lower BFI induce weaker

modulation instability (Janssen 2003; Janssen and Bidlot 2009;

Fedele 2015) and consequently smaller occurrence of extreme

Fig. 17 Comparison of amplitude spectra input target and numerically

generated at x = 5 m

(a) Case (b) Case

Fig. 18 The comparisons of the free surface elevations between experimental data and numerical results along the wave tank (the black solid lines

represent the experimental data, and red solid lines represent the numerical results). a Case I. b Case II

20



(a) Case (b) Case

Fig. 19 The comparisons of kurtosis between experimental data and numerical results along the wave tank (Lp is the wavelength corresponding to the

peak frequency). a Case I. b Case II

(a) Case

(b) Case

Fig. 20 The comparisons of the probability distribution of the wave height between experimental data and numerical results at different locations (Lp is

the wavelength corresponding to the peak frequency). a Case I. b Case II
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waves (characterized by a smaller kurtosis). We are consequent-

ly confident in the accuracy of the numerical model to study this

phenomenon.
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