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Yuyang Wang 1,*, Jean-Rémy Chardonnet 2, Frédéric Merienne 3

Arts et Métiers Institute of Technology, LISPEN, HESAM Université, 2 Rue Thomas Dumorey, 71100 Chalon-sur-Saône, France   
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A B S T R A C T

Research puts forward perception-based cognitive workload evaluation methods to help VR developers and users 
measuring their workload when playing with a VR application. Approaches to measure workload based on 
biosensors have progressed significantly, while evaluation based on subjective methods still rely on standard 
questionnaires such as the NASA-TLX table, the Subjective Workload Assessment Technique and the Modified 
Cooper Harper scale. The pre-defined questions enable operators to carry out experiments and analyse the data 
more easily than with biofeedback. However, the subjective evaluation process can bias the results because of 
unperceived internal changes and unknown factors among users. It is therefore necessary to have a method to 
handle and analyse this uncertainty. We propose to use the Technique for Order Performance by Similarity to 
Ideal Solution (TOPSIS) model to analyse the NASA-TLX table for measuring the overall user workload instead of 
using the classical weighted sum method. To show the advantage of the TOPSIS approach, we performed a user 
experiment to validate the approach and its application to VR, considering factors including the VR platform and 
the scenario density. Three different weighting methods, including the fuzzy Analytic Hierarchy Process (AHP) 
from fuzzy logic, the classical weighting based on pairwise comparison and the uniform weighting method, were 
tested to see the applicability of the TOPSIS model. The results from TOPSIS were consistent with those from 
other evaluation methods; a significant reduction in the coefficient of variation (CV) was observed when using 
the TOPSIS model to analyse the NASA-TLX scores, indicating an enhanced precision of the workload evaluation 
by the TOPSIS method. Our work has a potential application for VR designers and experimenters to compare 
cognitive workload among conditions and to optimize the settings.   

1. Introduction

Virtual reality (VR) has become popular due to the fast development
of affordable head-mounted devices (HMDs) with various available ap-
plications. Current VR HMDs mainly include high spatial and temporal 
resolution with dual displays (for example 1440 × 1600 pixels per eye 
and 90Hz to 120Hz refresh frame rate frequencies), achieving high- 
fidelity stereoscopic vision and image rendering, and low latency body 
tracking experience. Some international companies such as Google, 
Facebook, Microsoft, HTC, Samsung and Apple are participating in the 
development of new VR hardware with their own advantages (Chang 
and Chen, 2017), bringing a total market size estimated to more than 

$100 billion in the next decades (Bellini et al., 2016; Framingham, 2016; 
Merel, 2017). 

Despite this growth and the capabilities of the latest devices, if a VR- 
based task is not designed with an appropriate level of cognitive work-
load to match a user’s expertise, the task completion performance may 
be restrained (Zhang et al., 2017). Cognitive workload in this case is a 
term that refers to the cost of completing a task (Hart, 2006). It can be 
defined as the amount of cognitive resources used per unit time to reach 
the performance required by the task (Wickens et al., 2015). For prag-
matic purposes, Blackwood (1900) proposes a simple definition that the 
workload is the ratio of time required to time available (time required/ 
time available). When the time required to complete a task is longer than 
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the time available, it is cognitive overload, and vice versa. For example, 
when a user navigates in a virtual environment as a primary task, he/she 
may have to interact with internal objects as a secondary task, and 
because of this, the non-skilled user would keep overloading for longer 
time. More introduction to cognitive workload can also be found in Paas 
et al. (2003). 

Although workload is defined at a qualitative level, researchers are 
still trying to find measurable criteria on a multi-dimensional basis to 
quantify this phenomenon. The approaches used in the literature to 
measure cognitive workload include subjective measurements via 
questionnaires, physiological measurements via biosensors and perfor-
mance measures (Paas et al., 2003; Zhang et al., 2017). Physiological 
means for measuring cognitive workload have progressed due to the 
development of new types of biosensors, while subjective measurement 
methods are still based on long-living existing questionnaires such as the 
Subjective Workload Assessment Technique (SWAT) (Reid and Nygren, 
1988), the Modified Cooper Harper scale (MCH) (Kilmer et al., 1988), or 
the NASA-TLX table (Hart, 2006; Hart and Staveland, 1988). 

Subjective measurements require users to provide feedback of their 
experience through questionnaires. Among well-known questionnaires, 
the MCH method was developed by Harper and Cooper (1986), which is 
still being used nowadays as a reliable measurement of aircraft perfor-
mance. The user evaluates the performance of a specific task in terms of 
controllability, workload, and attainable performance goals, on a 1-10 
scale; then, the assessment is analysed through a statistical study. On 
the other hand, the SWAT method consists of three criteria to measure 
workload: time load, effort load and psychological stress load (Reid and 
Nygren, 1988). The user is asked to sort these factors, then to rate each 
of them in a 3-scale table, and the final evaluation is derived through a 
conversion table that provides the relationship between the 1-3 scale 
table and the final score. NASA-TLX (Hart, 2006; Hart and Staveland, 
1988) is another widely accepted subjective workload evaluation 
method applied in the computer-human interface field (Cannavò et al., 
2020; Ma and Kaber, 2006). Based on a multi-dimensional rating pro-
cedure, NASA-TLX obtains an overall workload score according to a 
weighted average of ratings on six criteria: Mental Demand (MD), Phys-
ical demand (PD), Temporal Demand (TD), Performance (Pe), Effort (Ef) 
and Frustration (Fr). Despite the simplicity of implementing these 
different methods, subjective evaluation cannot generally be performed 
in real time (while performing the tasks), which can lead to biased re-
sults because of unaware internal changes, e.g., the psychosocial envi-
ronment (Casner and Gore, 2010), thus resulting in high uncertainty. 

Many researchers have investigated the possibility of measuring 
cognitive workload through the physiological response of users, which 
does not require a direct response from the user. Contrary to subjective 
measures, results from physiological evaluation are representative of the 
actual task workload (Miller, 2001). Some of the frequently applied 
physiological methods include cardiac activity, eye gaze and electro-
encephalography (EEG) (Gerry et al., 2018; Zhang et al., 2017). Cardiac 
activity is the most common approach for measuring workload in 
driving and flight simulators and is measured through blood pressure, 
heart rate and heart rate variability (HRV) (Hoover et al., 2012). 
Heartbeats can be analysed in the time and frequency domains to 
determine the HRV. Some early studies found that heart rate and HRV 
correlate with workload: the higher the mental workload, the higher the 
heart rate and the lower the HRV (Metalis, 1991; Mulder, 1986). Pupil 
dilation has recently been used as an indicator for mental workload in 
the HCI community since eye gaze signals indicate a user’s cognitive 
state (Kosch et al., 2018). EEG signals are hypersensitive and credible for 
regular memory load evaluation, especially the alpha and theta wave-
bands of EEG that are reflective of the task difficulty (Gevins et al., 
1998). Physiological measurements alleviate the complexity of the 
experiment in that users do not have to conduct a second test or to be 
asked for feedback. However, these measures are subject to several 
sources of error: the accuracy of physiological data heavily relies on the 
performance and precision of the sensors; such signals are sensitive to 

disturbances. 
Performance-based techniques are the third type of workload mea-

surements. Paas et al. (2003) reports performance variables (e.g., reac-
tion time, accuracy, and error rate) from a secondary task could reflect 
the cognitive workload imposed by a primary task. These criteria have 
been found to be correlated with cognitive workload (Son and Park, 
2011). However, the insensitivity of some of the measurements while 
using performance-based methods is one drawback (Shakouri et al., 
2018). For instance, a task with a low demanding workload can enable 
an excellent performance during the beginning stage of the task but then 
performance will degrade as the user becomes fatigued or distracted 
(Casner and Gore, 2010), leading to mixed and noisy results. Accord-
ingly, using this method along with other workload evaluation methods 
may improve the quality of the measure. 

Because the complexity of a task in a virtual environment can affect 
information processing, performance and user attention (Ma and Kaber, 
2006), a virtual environment can act on users at both the cognitive and 
perceptual levels (Milleville-Pennel and Charron, 2015). To design and 
gain a better experience of VR technologies, advanced evaluation 
methods have to be developed to qualify and compare the cognitive 
workload induced by different VR applications. Because of the multi-
faceted and multi-dimensional nature of cognitive workload, it is hard to 
define quantitative criteria that heavily rely on the competences and 
efforts of users in a specific application (Longo, 2014). Since subjective 
evaluation can be easily conducted and interpreted on one-dimensional 
or multi-dimensional scales, it is the most preferred approach (Eraslan 
et al., 2016). However, this evaluation method generally fails to control 
dispersion effects, noise and uncertainty during subjective investigation 
(Katicic et al., 2015), posing a threat to what we refer to the measuring 
precision. Considering that most current methods often fail to take into 
account inherent uncertainties during subjective judgment and com-
parison processes (Zhou and Chan, 2017), we propose to use the Tech-
nique for Order Performance by Similarity to Ideal Solution (TOPSIS) (Yoon 
and Hwang, 1995) model to enhance the precision of the subjective 
evaluation of workload. TOPSIS was developed for decision-makers to 
measure and compare the relative performance among different alter-
natives; it has been widely used in many evaluation processes such as 
supply chain management, manufacturing system design, business and 
marketing management and health management (Behzadian et al., 
2012). The TOPSIS method is adopted in this work as a novel mean to 
compute an overall cognitive workload in VR applications. We supposed 
that the weighting methods will affect the weighted sum approach or 
from the TOPSIS. In this case, we introduced the fuzzy analytic hierar-
chy process (AHP) as an alternative to the existing weighting methods, 
which was detailed in subsection 2.2. The TOPSIS method was applied 
on top of three different weighting techniques to get a workload score 
from the NASA-TLX table. 

The purpose of this study is not to develop a new approach to deduce 
mathematical operations and equations for measuring the cognitive 
workload, but rather, to improve the precision and quality of current 
evaluation approaches with existing models. The improvement of pre-
cision would enable VR designers and experimenters to better discrim-
inate differences among settings and to optimize their applications 
easily. The VR domain requires many evaluation methods to obtain 
user’s feedback regarding the interaction design, but the application of 
appropriate methods ensuring quality of the feedback in this field is 
rather scarce, which motivated us to involve TOPSIS and fuzzy AHP to 
improve the measuring quality of cognitive workload in VR. It is worth 
noting that our proposed method can be applied not only to VR, but also 
to any human-computer interaction application for which cognitive load 
is important to consider. 

The proposed model was validated by a user study in section 4: two 
factors known to influence cognitive workload during a navigation task 
in a virtual environment are supposed to demonstrate the effectiveness 
of the TOPSIS method. These factors include the VR platform (HMD and 
CAVE) and the scenario density. For each of them, the overall workload 



score was computed by the classical weighted sum method (Hart, 2006) 
and our TOPSIS model. The overall workload measured from TOPSIS 
was firstly validated by ensuring consistency of the results with the 
literature. In addition, compared to the weighted sum method, the 
TOPSIS model significantly reduced the data dispersion in terms of the 
coefficient of variation (CV), showing more accurate workload scores. 

2. Methods for computing the cognitive workload scores

Throughout this paper, we will focus on the NASA-TLX table to
demonstrate our methodology, since the criteria are well defined and 
widely accepted for the analysis of workload in virtual reality. 

2.1. Weighted sum method 

The calculation of the overall workload from the NASA-TLX table 
consists of two steps. First, participants have to perform a pairwise 
comparison of the criteria provided in the NASA-TLX table, based on the 
task they conducted and experienced; for example, if the user thinks that 
Mental demand is more important than Physical demand, then the weight 
of Mental demand is incremented by one while that of Physical demand 
remains unchanged. After a total of 15 comparisons, the weighting co-
efficients for the six criteria are obtained by normalisation. These 
comparisons are used to determine the weighting coefficient for each 
criterion. In the rest of the paper, this weighting coefficient calculation 
method will be named Hart. Second, participants are given another 
questionnaire to quantify the score for each criterion. The overall 
workload score is computed as a sum of the scores for each criterion 
weighted by their respective weighting coefficient (Eq. 1) (Hart, 2006; 
Hart and Staveland, 1988). Subjective workload evaluation can be 
completed directly by the participants without any requirement of so-
phisticated devices, which is nearly straightforward and inexpensive to 
perform. 

TLXHart = WMD ∗MD+WPD ∗ PD+WTD ∗ TD
+WPe ∗ Pe+WEf Ef +WFr ∗ Fr

(1) 

TLXHart is the overall cognitive workload measured by the weighted 
sum method, W with a subscript is the corresponding weighting coeffi-
cient for each criterion. 

Past research in many areas reports another approach to process the 
NASA-TLX table and obtain the cognitive workload score in a straight-
forward manner: a uniform weight is applied to each criterion (Kamaraj 
et al., 2016; Tubbs-Cooley et al., 2018), which means WMD, WPD, WTD,

WPe, WEf and WFr are equal to 16.67%. This approach is a particular case 
of the Hart weighting method. However, this approach is not adapted to 
different situations where the importance of each criterion needs to be 
differentiated. 

2.2. Fuzzy Analytic Hierarchy Process 

In the Hart weighting approach, participants have to compare the 
criteria in pairs to determine which one is more important than the other 
one. However in practice, the process of comparison and decision 
making is associated with the strong vagueness of human thinking: 
decision-makers generally give some or all pairwise comparison values 
with an uncertainty degree instead of precise ratings, and such uncer-
tainty degree is represented from an appropriate semantic scale (Singh 
et al., 2013; Yu, 2002). As they usually are unable to explicit about their 
preference due to the fuzzy nature of the comparison process, 
decision-makers (VR users in the current context) usually tend to give 
interval judgments with semantic scale than fixed value (Gumus, 2009). 

To cope with it, mathematicians proposed the fuzzy method in real 
practice in which an uncertain pair-to-pair comparison exists. 
Mouzé-Amady et al. (2013) propose a fuzzy integral approach based on 
the Sugeno integrals to determine the weighting coefficients. The 
weighting coefficients are determined with at least one global measure 

(either a subjective rating or an objective cue, e.g., HRV, reaction time) 
to serve as an aggregation criterion. Then data-driven models (e.g., 
minimum specificity principle, simulated annealing technique) are used 
to find the optimal weighting coefficients and to fit the global criterion. 
In this approach, the weighting coefficients are no longer set based on 
the participant’s subjective evaluation. To focus on evaluation with only 
subjective ratings, we will rather use the fuzzy AHP proposed by Chang 
(1996) to compute the weighting coefficients, as an alternative to the 
Hart weighting approach. Here we briefly describe the basic concepts 
behind the fuzzy AHP. More theoretical details can be found in the 
literature (Chang, 1996). 

2.2.1. Definition of triangular fuzzy numbers 
Each fuzzy number can be represented by a membership function. A 

fuzzy number is called a triangular fuzzy number (TFN) when it can be 
described by the following function μM(x): R→[0,1],

μM(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − l
m − l

x ∈ [l,m]

x − u
m − u

x ∈ [m, u]

0 otherwise

(2)  

where l ≤ m ≤ u, l, m, u are the lower, modal and upper values of the 
TFN. This function is called the membership function. 

The TFN has some pre-defined arithmetic operators. If M1 = (l1,m1,

u1) and M2 = (l2,m2, u2) are two TFNs, the operation rules between the 
two TFNs are given as, 

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M1 ⊕M2 = (l1 + l2,m1 + m2, u1 + u2) (3a)

M1 ⊗M2 = (l1l2,m1m2, u1u2) (3b)

λM1 = (λl1, λm1, λu1) (3c)

M− 1
1 = (l1,m1, u1)

− 1
≈

(
1
u1
,

1
m1

,
1
l1

)

(3d)

where ⊕ denotes the extended summation of two TFNs and ⊗ denotes 
the extended multiplication. 

2.2.2. Formulation of a fuzzy synthetic extent analysis 
Assuming a triangular fuzzy comparison matrix Ã = (aij)n×n, the 

extent analysis first sums up each row of this matrix, then normalizes the 
row sums with respect to the ith row, 

Si =
∑n

j=1
aij ⊗

[
∑n

i=1

∑n

j=1
aij

]− 1

(4)  

where aij = (lij,mij, uij) is a triangular fuzzy number. According to the 
operations rules, Si is also a triangular fuzzy number. 

Given two triangular fuzzy numbers, S1 = (l1,m1, u1) and S2 = (l2,
m2, u2), the degree of possibility that S2 ≥ S1 is defined as 

V(S2 ≥ S1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 m2 ≥ m1

0 l1 ≥ u2

l1 − u2

(m2 − u2) − (m1 − l1)
otherwise

(5) 

To compare S1 and S2, both values of V(S1 ≥ S2) and V(S2 ≥ S1) must 
be computed. Further, the degree of possibility for a convex fuzzy 
number S to be larger than k convex fuzzy numbers Si, i = 1, 2, ...k can be 
defined by 

V(S ≥ S1, S2, ..., Sk)
= V[(S ≥ S1) and (S ≥ S2) and
... and (S ≥ Sk)] = minV(S ≥ Si)

(6)  



2.2.3. Procedures to perform a fuzzy AHP analysis 
Step 1: Problem analysis and hierarchical structure formulation 

Following the general procedures used in the AHP method, it is neces-
sary to define factors that affect the goal. For example, a complex 
problem like workload can be decomposed into many criteria, and each 
criterion can be decomposed into many sub-criteria which can also be 
further decomposed (Fig. 1), as in the NASA-TLX table. It is worth 
mentioning that the proposed approach can be applied to other work-
load measurement methods during a simulation experience, and not 
only to the NASA-TLX, as long as the measuring criteria from multi- 
groups can be validated. For example, Harris et al. (2019) propose a 
simulation task load index (SIM-TLX) where the criteria are introduced 
by integrating the NASA-TLX, the SURG-TLX and external indexes 
(Wilson et al., 2011). In this case, there are three groups of criteria, and 
each group has its own sub-criteria that should be placed according to 

the structure presented in Fig. 1. And thanks to the hierarchical struc-
ture, the total number of comparisons would exponentially reduce 
despite increasing measuring criteria. In our case, we applied this 
structure to the NASA-TLX and for a navigation task in a virtual envi-
ronment; the target or the goal was: which criterion is more important to 
reduce workload during virtual locomotion? Pairwise comparisons are 
performed for each criterion based on the announced target. The cor-
responding hierarchical structure is shown in Fig. 2. 

Step 2: Determining the fuzzy linguistic scale 
When requested to compare or evaluate objects, individuals gener-

ally use linguistic expressions such as “very important”, “little impor-
tant”, “good” and “bad”. These linguistic expressions contain uncertain 
and fuzzy information that needs to be processed. To best fit subjective 
evaluations, we adapted pre-defined linguistic expressions from previ-
ous studies (Hong et al., 2018; Novák and Perfilieva, 1999) that relied on 

Fig. 1. General hierarchical structure of workload evaluation; this structure can include related indices from different groups or sources.  

Fig. 2. A specific case of hierarchical structure to measure workload with the NASA-TLX criteria.  



the original work of Saaty (1987). Comparative judgment generally uses 
expressions from a linguistic set ℱ={Equally important, Weakly more 
important, Strongly more important, Very strongly more important, 
Absolutely important} that maps a corresponding fuzzy number, as 
presented in Table 1. 

Step 3: Fuzzy comparison using the fuzzy linguistic scale 
Experienced evaluators are invited to fill a comparison table where 

they perform pairwise comparisons. Considering NASA-TLX, questions 
can be “what is the relative importance of criterion Ci, i = 1,2, .., p 
compared to Cj, j = 1,2, .., p, i ∕= j to measure cognitive workload during 
a virtual locomotion”. The filled comparison table forms a fuzzy com-
parison matrix, denoted by C̃,

C1 C2 C3 C4 C5 C6

C̃ =

C1
C2
C3
C4
C5
C6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 c12 c13 c14 c15 c16
c21 1 c23 c24 c25 c26
c31 c32 1 c34 c35 c36
c41 c42 c43 1 c45 c46
c51 c52 c53 c54 1 c56
c61 c62 c63 c64 c65 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(7) 

where cij =
1
cji
, and 

⎧
⎪⎨

⎪⎩

cij =
(
lij,mij, uij

)

1
cji

=

(
1
uij
,

1
mij

,
1
lij

) (8) 

An example of matrix is provided in Annex Appendix A. 
Each evaluator provides a fuzzy comparison matrix. The final eval-

uation matrix C̃
h 

aggregates the responses from all evaluators. Assuming 
we have H evaluators, we here take the average of all fuzzy comparison 
matrices, 

cij =

(
1
H

∑H

h=1
l
(
chij
)
,

1
H

∑H

h=1
m
(
chij
)
,

1
H

∑H

h=1
u
(
chij
)
)

(9)  

where l(⋅), m(⋅) and u(⋅) are functions to find the lower, modal and upper 
values of the TFN. 

Step 4: Weighting vector determination using the extent analysis 
With the extent analysis method formulated in Eq. 4, we are able to 

describe each criterion with a triangular fuzzy number. In order to 
determine the weighting vector of the criteria, the principle of com-
parison of fuzzy numbers must be used. 

Assume that d′

(Ci) = minV(Si ≥ Sj) for j = 1, 2, ...p, i ∕= j, the 
weighting vector of p criteria is defined as, 

W
′

=
[
d

′

(C1), d
′

(C2), ..., d
′ (
Cp
)]T (10)  

where Ci, i = 1,2, ..., p are the criteria. Applying a normalisation opera-
tion, the final normalised weighting vector is 

W =

[
d′

(C1)
∑p

i=1d
′
(Ci)

,
d′

(C2)
∑p

i=1d
′
(Ci)

, ...,
d′ ( Cp

)

∑p
i=1d

′
(Ci)

]T

=
[
d(C1), d(C2), ..., d

(
Cp
)]T

(11)  

3. TOPSIS method

The TOPSIS method proposed by Hwang and Yoon (1981) is a
comprehensive within-group evaluation method that can make full use 
of raw data and reflects the gap between the evaluated objects. The basic 
idea is developed based on normalised original data represented in the 
matrix form to find the optimal and the worst solutions within a finite set 
of alternatives. Then, the distance between each evaluation object and 
the optimal and the worst solutions is calculated separately, which gives 
the relative closeness. This value is used as the basis for evaluating the 
merits and demerits. The method does not strictly rely on the data dis-
tribution and sample content, and the calculation process is simple and 
easy. 

3.1. Data homogenization 

The TOPSIS method uses the distance scale to measure the difference 
among samples. To use the scale, it is necessary to normalise the index 
attributes in the same manner (e.g., for attribute A, the bigger the 
number, the better the result, while for attribute B, the smaller the 
number, the better the outcome. Such inconsistency can lead to incon-
venience and confusion for the calculation in the next steps). Usually, a 
cost-type indicator is converted to a benefit-type indicator (that is, the 
higher the value, the better the result; in fact, almost all evaluation 
methods need this step to homogenise the raw data). 

3.2. Construction of the normalised matrix 

Let n be the number of objects to be evaluated, each object has m 
attributes; then the original data matrix is constructed as, 

X =

⎛

⎜
⎜
⎝

x1,1 x1,2 ⋯ x1,m
x2,1 x2,2 ⋯ x2,m
⋮ ⋮ ⋱ ⋮
xn,1 xn,2 ⋯ xn,m

⎞

⎟
⎟
⎠ (12) 

To perform dimensionless calculations, we need to construct a 
weighted canonical matrix in which the attributes are normalised vec-
tors, that is, each column element is divided by the norm of the current 
column vector (using the cosine distance measure), 

zij =
xij
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1x2
ij

√ (13)  

The normalised non-dimensional matrix becomes, 

Z =

⎛

⎜
⎜
⎝

z1,1 z1,2 ⋯ z1,m
z2,1 z2,2 ⋯ z2,m
⋮ ⋮ ⋱ ⋮
zn,1 zn,2 ⋯ zn,m

⎞

⎟
⎟
⎠ (14)  

3.3. Identification of the optimal and the worst solutions 

There exist two idealised goals. One is the positive ideal goal or the 
optimal goal, and the other one is the negative ideal solution or the 
worst goal. The positive optimal solution Z+ consists of the maximum 
value of each column element in Z: 

Z+ =

⎛

⎜
⎜
⎝

max
(
z1,1, z2,1,⋯, zn,1

)

max
(
z1,2, z2,2,⋯, zn,2

)

⋮
max

(
z1,m, z2,m,⋯, zn,m

)

⎞

⎟
⎟
⎠ (15) 

The negative worst solution Z− consists of the minimum value of 
each column element in Z: 

Table 1 
Linguistic rating scales and corresponding fuzzy numbers  

Linguistic scales TFNs 

Equally important (EI) (1, 1, 1) 
Weakly more important (WI) (1, 1, 3/2) 
Strongly more important (SI) (3/2, 2, 5/2) 
Very strongly more important (VI) (5/2, 3, 7/2) 
Absolute important (AI) (7/2, 4, 9/2)  



Z− =

⎛

⎜
⎜
⎝

min
(
z1,1, z2,1,⋯, zn,1

)

min
(
z1,2, z2,2,⋯, zn,2

)

⋮
min
(
z1,m, z2,m,⋯, zn,m

)

⎞

⎟
⎟
⎠ (16)  

3.4. Calculation of the separation distance 

The TOPSIS algorithm can be easily adapted to process subjective 
evaluations by considering that the best criterion to evaluate should be 
the closest to the optimal solution, and the farthest to the worst one. The 
separation distance is used to measure the distance between the current 
sample and the optimal/worst solution, and can be defined as the 
following, 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D+
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1
wj
(
Z+
j − zi,j

)2
√
√
√
√ (17a)

D−
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1
wj
(
Z −
j − zi,j

)2
√
√
√
√ (17b)

where wj is the weight of the jth attribute (importance) and is derived 
from the fuzzy AHP method explained in the previous section. 

3.5. Determination of the relative closeness coefficient 

Since the separation distance has two independent values (D+
i and 

D−
i ), to get a unified measurement in one dimension, the relative 

closeness coefficient (RCC) of each entry is defined as, 

RCCi =
D−
i

D+
i + D−

i
, RCCi ∈ [0, 1] (18) 

When RCCi→1, D+
i is small and D−

i is large, it means that the 
measured object is close to having the best performance. However, 
depending on how the index attributes are formulated, it may be pref-
erable to have a value of RCCi close to 0, e.g., if the attributes are 
homogenised as a cost-type problem. 

The performance of each object can be defined by the values of the 
RCC, ranking from large RCC to small RCC or in reverse order. Applying 
this principle to our case, a larger RCC value suggests a higher workload. 
In addition to observing the performance of each object individually, the 
RCC can be grouped according to the factors tested in the experiment 
and the difference of RCC can be compared among groups (e.g., HMD vs 
CAVE). 

3.6. Composed multiple criteria evaluation system 

Fig. 3 presents the whole diagram of the proposed method to 

evaluate cognitive workload using TOPSIS from the fuzzy AHP and the 
Hart weighting approaches. The framework requires two steps. The first 
step is to compute the weighting coefficients from either the fuzzy AHP 
approach, the pairwise comparisons suggested by Hart and Staveland 
(1988) and Hart (2006), or the uniform weighting approach. The second 
step is to use TOPSIS to compute the relative closeness coefficient using 
the weighting information obtained from the first step. 

4. User study

We designed an experiment to investigate the effectiveness of the
proposed method to enhance the precision of the cognitive workload 
evaluation. We applied our tool in a locomotion case in a VR application. 
In this experiment, we considered two factors that encounters in navi-
gation experience in terms of cognitive load: the VR platform type 
(Sevinc and Berkman, 2020) and the scenario density (Parsons et al., 
2009). Based on this principle, we conducted the experiment to study 
the effect of these two factors on cognitive workload. 

If the proposed methods can measure cognitive workload with the 
expected performance after a VR task, we shall obtain the following 
results:  

R1 The RCC can measure the cognitive workload arising from 
different VR platforms and scenario densities, with consistent 
results with the literature 

R2 The RCC provides more precise information on cognitive work-
load than the classical weighting sum method. 

R1 helps identifying the effectiveness of the proposed method as it 
could lead to results similar to the other methods and measure cognitive 
workload successfully. R2 further shows the advantage of this method 
over the others as it could reduce the data dispersion, represented by the 
CV. 

4.1. Experiment equipment 

The experiment was conducted in both a CAVE system and an HTC 
Vive head-mounted display to compare the effect of different displays on 
workload. The CAVE system consists of five walls with 4096 × 2160 px 
projectors that display stereoscopic images at a refresh frame rate of 
120Hz. An in-house interface written in C++ was developed to connect 
all the devices of the system. On the other hand, the HTC Vive has a 
display resolution of 2160 × 1200 px with a refresh rate of 90Hz. 

Navigation in virtual environments (forward/backward and left/ 
right movements) was achieved using the joystick of an ART Flystick 
controller in the CAVE and the touchpad of the Vive controller with the 
HMD. 

Fig. 3. Schematic process of the proposed TOPSIS evaluation procedure; the TOPSIS method can use different weighting approaches.  



4.2. Participants 

We invited fifteen subjects including engineers and students (Mage =

23.1, SDage = 1.82) from the university to participate voluntarily 
without compensation in the experiment. Each of them was given a brief 
introduction to the experiment and to the potential risks that could be 
encountered. They were allowed to terminate the experiment if they felt 
strong discomfort. Also, a pre-exposure questionnaire was filled by these 
participants to gain information about their health condition and 
background that would be utilised for data analysis if necessary. To 
minimise random noise, we performed a within-subject test. A consent 
form was also signed by participants. 

4.3. Task design 

Figure 5 shows how users conducted the task in the CAVE system and 
an overview of the 3D VE with the trajectory to follow highlighted in 
beige colour. The task performed in the HTC Vive followed the same 
settings as in the CAVE. The scenario consisted in walking in a forest 

area. By changing the density of objects present in the environment such 
as trees and flowers, we generated three different scenarios that we 
denoted by low (few objects), middle and high (many objects) densities 
(Fig. 4). According to the definition of cognitive workload in section 1, 
such a setting should impose to participants different levels of cognitive 
workload: the high-density scenario should be more cognitively 
demanding than the low-density scenario because the user needs more 
cognitive resources to interact with the different objects and perform 
tasks. In the low density scenario, the user should be rarely affected and 
distracted when performing tasks, thus implying less workload. The 
general experimental procedure was organised as follows:  

• Participants filled a pre-exposure questionnaire. Each participant
was given a training about how to use the CAVE or the HTC Vive, and
what they had to do in the 3D VE.

• With the help of the experimenter, participants put on the devices
and were exposed to the virtual environment. Then, participants
started to navigate in the VE following a predefined path. To increase
the task difficulty level, users had to touch each checkpoint

Fig. 4. Scenarios with (a) low, (b) middle and (c) high densities; (d): scenario with checkpoints where the user has to stop and interact with.  

Fig. 5. (a) One user is doing the experiment inside the CAVE system, the pink line instructs the initial locomotion direction to prevent the user from getting lost once 
immersed; (b) overview of the 3D virtual environment with the trajectory to follow in beige colour. 



represented by the cube and avoid touching obstacles (trees, flowers) 
in the scenario with the handed device (shown in Fig. 6, the HTC 
Vive controller in the HMD condition or the Flystick controller in the 
CAVE condition), then resume navigation (Fig. 4d).  

• When participants reached the destination inside the VE, they were
removed from the CAVE or the HTC Vive and were requested to fill a 
NASA-TLX table based on their experience and impression.  

• The experiment was repeated three times under the same conditions
on three separate days. 

The experimental conditions are listed in Table 2. They were uni-
formly distributed and balanced, to minimise random errors and hybrid 
effects. Six different conditions had to be tested in random order, and 
each condition was repeated by one user three times on separate days. 
Totally, one user had to perform 18 (6× 3) tests as we had six condi-
tions. The flow chart of the experimental protocol is represented in 
Fig. 6. Participants were allowed to stop if they felt any discomfort. 

4.4. Determination of weighting coefficients 

We computed two different sets of weighting coefficients. The Hart 
weighting coefficient approach explained in subsection 2.1 was oper-
ated strictly following the instructions from Hart and Staveland (1988) 
and Hart (2006). 

Participants who attended the experiments and also two professors 
were invited to form an individual pairwise comparison matrix using the 
linguistic expressions given in Table 1; those raters are chosen because 
of their expertise in cognitive workload evaluation in VR applications: 
participants knew what was important for them because of their in- 
person experience in the test, and two external raters performed pair- 
wise comparison based on professional knowledge. A detailed proced-
ure about the rating method could be found in Gumus (2009). The 
comparison among the criteria was conducted by considering which one 
was more important concerning the cognitive demand. To this end, 
participants were asked to fill the comparison questionnaire given in 
Appendix A, which led to a fuzzy comparison matrix. As explained in 
subsection 2.2, the normalised weightings of the aggregated responses 
were derived from the fuzzy synthetic extent analysis. 

5. Results

After the experiments, we collected all the questionnaires. We first
computed the weighting coefficients using the Hart weighting and the 
fuzzy weighting approaches. Then, with these weighting coefficients 
available, we computed the RCC based on the TOPSIS method and the 

Fig. 6. Flow chart of the experiment.  

Table 2 
Experimental conditions  

Experiment 
number 

1 2 3 4 5 6 

Platform type HTC 
Vive 

HTC 
Vive 

HTC 
Vive 

CAVE CAVE CAVE 

Scenario density Low Middle High Low Middle High  

Fig. 7. Aggregated normalised weights of the NASA-TLX criteria from three different approaches: the fuzzy AHP approach, the Hart weighting approach and the 
uniform weighting approach. 



TLXHart score according to the weighted sum method. A statistical 
analysis was then performed to compare the RCC and TLXHart . 

5.1. Weighting coefficients 

Figure 7 illustrates the final weighting values each NASA-TLX cri-
terion according to the weighting determination approach including the 
fuzzy AHP, the classical comparison process (Hart) and the uniform 
weighting. The uniform weights were obtained by setting the same 
weighting coefficient to all indices, and were used in this study as a 
control group, which helped to find the effect of different weighting 
coefficients determination approaches. From Fig. 7, we can observe that 
the weights of the NASA-TLX indices strongly vary depending on the 
approaches. From the fuzzy AHP, Frustration and Mental Demand were 
the top two important factors, with a weighting coefficient of 21.5% and 
19.6% respectively; the Effort weight was relatively low (17.1%) fol-
lowed by the Performance weight (15.7%); Temporal Demand and Phys-
ical Demand had the lowest weights, 12.8% and 13.4% respectively. In 
parallel, the classical pairwise comparison indicated the highest 
weighting coefficient for Mental Demand (33.3%), followed by Physical 
Demand (20.0%); Temporal Demand, Performance and Frustration got 
equal weights (13.3%), while Effort got the lowest weight (6.7%). 

The obtained weighting values from the three approaches were then 
provided to the TOPSIS model in order to get the RCC with Eq. 18. The 
resulting overall workload scores were then compared with the classical 
weighted sum method (denoted TLXHart in Eq. 1). 

5.2. Workload assessment 

Three participants performed only part of the eighteen conditions 
due to their availability. Therefore, this was not a perfect within-subject 
experiment because of the unbalanced samples, and we decided to 
analyze the variance with the mixed-effects model which is an extension 
of the repeated-measures ANOVA but with more flexibility (Galecki and 
Burzykowski, 2013). Independently from the platform type and scenario 
density, individual differences (e.g., the way of thinking, judgment 
criteria) can be a potential factor that affects the overall workload score. 
In order to reduce these individual effects, we set the effect of individual 
difference as random factor while we set the effect of the scenario 
density and the platform type as fixed effects. Statistics were conducted 
in R (R Core Team, 2020) along with the related packages: lme4, afex, 
lmerTest and effectsize. 

A mixed-effects model was conducted to determine the influence of 
two independent variables (platform, scenario) on cognitive workload 
considering both the TLXHart and RCC methods (Table 3). Normality of 
the data was checked. Three coefficient weighting approaches were 
applied for each cognitive workload determination method. Considering 
first the TLXhart evaluation, the level of scenario density was found to 
have significant effects on the overall workload only when it was 
measured with the fuzzy AHP (F2,236.17 = 3.23, p = .04, η2

p = .03) and 
the Hart approaches (F2,236.04 = 4.12, p = .02, η2

p = .03). On the con-
trary, the VR platform did not have any significant effect whatever the 
weighting determination approach (fuzzy weighting: F1,236.09 = 2.10,
p = .14, η2

p = .01, Hart weighting: F1,235.96 = 1.46, p = .23, η2
p = .01 and 

uniform weighting: F1,236.02 = 2.15, p = .14, η2
p = .01). With the RCC 

evaluation, the level of scenario density revealed a significant effect with 
all three weighting approaches (fuzzy weighting: F2,236.11 = 4.72, p < .

01, η2
p = .04, Hart weighting: F2,235.99 = 5.37, p < .01, η2

p = .04, uniform 
weighting: F2,236.23 = 4.12, p = .02,η2

p = .03); the effect of the platform 
still showed no significant difference whatever the weighting approach 
(fuzzy weighting: F1,236.03 = 0.12, p = .73, η2

p < .01, Hart weighting: 
F1,235.91 = 0.04, p = .84, η2

p < .01 and uniform weighting: F1,235.95 =

0.05, p = .83,η2
p < .01). 

Post-hoc analyses were performed to understand the differences 
between the three levels of scenario density. Pairwise comparisons were 
done using Tukey HSD tests. Results are shown in Table 4. In addition to 
p-values, we considered the confidence interval (CI) to provide addi-
tional information that p-values do not convey, for example the actual 
mean difference between groups. The width of the CI for the difference 
reveals the precision of the estimate, and narrower intervals suggest a 
more precise estimate (Lee, 2016). With the TLXhart evaluation, 

Table 3 
Effect of factors on workload from different determination methods. Signifi-
cance level:.05 (*),.01 (**)   

Fuzzy weight Hart weight Uniform weight 

TLX 
Factors Platform Scenario Platform Scenario Platform Scenario 
Sum sq 7.46 22.93 4.88 27.47 6.94 16.42 
NumDF 1 2 1 2 1 2 
DenDF 236.09 236.17 235.96 236.04 236.02 236.11 
F 2.10 3.23 1.46 4.12 2.15 2.55 
p-value .14 .04* .23 .02* .14 .08 
η2

p .01 .03 .01 .03 .01 .02 

RCC       
Factors Platform Scenario Platform Scenario Platform Scenario 
Sum sq 0.0008 0.07 0.0003 0.08 0.0003 0.05 
NumDF 1 2 1 2 1 2 
DenDF 236.03 236.11 235.91 235.99 235.95 236.23 
F .12 4.72 .04 5.37 .05 4.12 
p-value .73 .009** .84 .005** .83 .02* 
η2

p <.01 .04 <.01 .04 <.01 .03  

Table 4 
Post-hoc analysis for the scenario type considering different determination methods; Lower and Upper represent the boundaries of the 95% confidence interval (CI). 
Significance level:.05 (*),.01 (**)   

Fuzzy weight Hart weight Uniform weight 

TLX 
Scenario type low low middle low low middle low low middle 
Scenario type middle high high middle high high middle high high 
Mean difference -0.44 -0.74 -0.30 -0.52 -0.81 -0.29 -0.38 -0.63 -0.25 
Lower -1.01 -1.33 -0.89 -1.07 -1.37 -0.86 -0.92 -1.18 -0.81 
Upper 0.12 -0.16 0.29 0.03 -0.24 0.29 0.16 -0.07 0.31 
p-value .12 .01* .31 .06 .005** .32 .17 .02* .39 
η2

p .01 .03 <.01 .01 .03 <.01 .01 .02 <.01 

RCC          
Scenario type low low middle low low middle low low middle 
Scenario type middle high high middle high high middle high high 
Mean difference -0.03 -0.04 -0.01 -0.03 -0.04 -0.01 -0.02 -0.03 -0.01 
Lower -0.05 -0.07 -0.04 -0.05 -0.07 -0.04 -0.05 -0.06 -0.04 
Upper -0.001 -0.01 0.01 -0.003 -0.02 0.01 -0.001 -0.01 0.01 
p-value .04* .003** .31 .03* .002** .33 .05* .006** .39 
η2

p .02 .04 <.01 .02 .04 <.01 .02 .03 <.01  



statistical significance was observed only between the low and high 
densities and with two weighting approaches (the fuzzy weighting: p =
.01, 95% CI : − 1.33 ∼ − 0.16, η2

p = .03, Hart weighting: p < .01, 95% 
CI : − 1.37 ∼ − 0.24, η2

p = .03, uniform weighting: p = .02, 95% CI : −
1.18 ∼ − 0.07,η2

p = .02). In contrast, the RCC evaluation reported more 
significant effects. Statistical significance was found between the low 
and middle densities (fuzzy weighting: p = .04, 95% CI : − 0.05 ∼ −

0.001, η2
p = .02, Hart weighting: p = .03, 95% CI : − 0.05 ∼ − 0.003,

η2
p = .02 and uniform weighting: p = .05, 95% CI : − 0.05 ∼ − 0.001,
η2

p = .02), as well as between the low and high densities also with all 
three weighting methods (fuzzy weighting: p < .01, 95% CI : − 0.07 ∼

− 0.01, η2
p = .04, Hart weighting: p < .01, 95% CI : − 0.07 ∼ − 0.02,

η2
p = .04 and uniform weighting: p < .01, 95% CI : − 0.06 ∼ − 0.01,η2

p 

= .03). We can also remark that the CIs from the RCC are much nar-
rower than with TLXHart. 

5.3. Advantage of TOPSIS over the weighted sum method 

When the overall workload was measured with the weighted sum 
method, the range of the CIs was wider than with the TOPSIS method, as 
shown in Table 4, revealing that TOPSIS provided more precise esti-
mates than TLXHart . As a supplementary support, we considered the CV 
in addition to the mean (M) and the standard deviation (SD), obtained 
for each platform and scenario type with the three different weighting 
approaches and the two evaluation methods (Table 5). The CV is defined 
as the ratio of SD to M and represents a statistical measure of the 
dispersion of the data (Kesteven, 1946; Lovie, 2005). The higher the CV, 
the higher the dispersion and the less reliable the measure. 

Another mixed-effects model was carried out to analyze the CV from 
Table 5, where the random effects were the platform type and the sce-
nario density and the fixed effects were the evaluation methods (TLXHart ,

RCC) and the weighting approaches (fuzzy weighting, Hart weighting, 
uniform weighting). Table 6 presents the results of the statistical anal-
ysis. A significant difference was found between the evaluation methods 
in terms of CV, F1,30 = 38.23,p < .01,η2

p = .56. The weighting approach 

also influenced the CV significantly, F2,30 = 3.54,p = .04,η2
p = .19. Post- 

hoc analyses revealed that the RCC led to significantly smaller CVs than 
with TLXHart , p < .01, η2

p = .56. Furthermore, it was found that the CV 
from the Hart weighting was significantly higher than with the uniform 

Table 5 
Descriptive statistics with the mean (M), the standard deviation (SD) and the CV with the different approaches    

Fuzzy weighting Hart weighting Uniform weighting 

TLXHart

M SD CV M SD CV M SD CV 
Platform HTC 7.53 2.90 0.39 7.4 2.93 0.40 7.48 2.83 0.38 

CAVE 7.26 3.16 0.44 7.21 3.22 0.45 7.22 3.10 0.43 
Scenario type low 7.04 2.74 0.39 6.92 2.80 0.40 7.05 2.74 0.39 

middle 7.45 2.91 0.39 7.37 2.89 0.39 7.4 2.84 0.38 
high 7.79 3.42 0.43 7.72 3.50 0.45 7.69 3.31 0.43 

RCC  
Platform HTC 0.40 0.13 0.33 0.38 0.14 0.37 0.40 0.13 0.33 

CAVE 0.40 0.14 0.35 0.38 0.15 0.39 0.40 0.14 0.35 
Scenario type low 0.38 0.13 0.34 0.36 0.13 0.36 0.39 0.13 0.33 

middle 0.40 0.13 0.33 0.39 0.13 0.33 0.41 0.12 0.29 
high 0.42 0.16 0.38 0.40 0.17 0.43 0.42 0.15 0.36  

Table 6 
Statistical analysis of CV for the different evaluation methods and weighting approaches. Significance level:.05 (*),.01 (**)  

Mixed-effects model  Sum Sq NumDF DenDF F p-value η2
p

TLX v.s. RCC 0.30 1 30 38.23 .00** .56 
Weighting methods 0.005 2 30 3.54 .04* .19 

Multi-comparison   Mean Difference Lower Upper p-value η2
p

TLX RCC -0.06 -0.08 -0.04 .00** .56 
Fuzzy weight Hart weight -0.02 -0.04 0.003 .09 .09 
Fuzzy weight Uniform weight 0.01 -0.01 0.03 .39 .02 
Hart weight Uniform weight 0.03 0.007 0.05 .01* .19  

Fig. 8. Flowchart of the validation process for the two factors considered here: 
first to check if there is a consistent result to show the proposed method 
working; second to compare the dispersion of measurements based on the CV. 



weighting, p = .01, 95% CI : 0.007 ∼ 0.05, η2
p = .19. However, as an 

exploratory study, we didn’t find difference at the given significance 
level between the fuzzy weighting and Hart weighting, p = .09, 95% 
CI : − 0.04 ∼ 0.003,η2

p = .09. 
Therefore, the evaluation from TOPSIS illustrated a significantly 

lower dispersion of the data compared to TLXHart , which confirms our 
expectation that TOPSIS provides enhanced precision of subjective 
evaluation. 

6. Discussion

We proposed to use the RCC as an enhancement for the measurement
of cognitive workload, with the expected outcomes that: the RCC is a 
more precise metric than classical methods to quantify cognitive 
workload resulting from different tasks or systems. In the considered use 
case, we could investigate the effectiveness of the RCC to discriminate 
cognitive workload in different VR platforms and scenario densities. 
Fig. 8 shows the two steps operated to study the performance of our 
approach. First, evaluation results from TOPSIS were checked for con-
sistency with results from the literature (R1). Then, the precision of the 
evaluation methods was checked by comparing the CVs between RCC 
and TLXHart (R2). 

6.1. Validation of R1 

No evidence was found that different VR platforms can lead to 
significantly different levels of workload, neither the RCC nor TLXHart 
showed such effect. In this sense, our results conformed to the findings of 
past research (Freitas, 2018; Porssut and Chardonnet, 2017; Riley and 
Kaber, 1999; Sevinc and Berkman, 2020) and confirmed that the RCC 
could represent well the level of cognitive workload, with respect to the 
VR platforms. Concerning the scenario density, past work proved that 
the type of scenario can affect cognitive workload (Parsons et al., 2009). 
From Table 3, both the RCC and TLXHart methods behaved consistently. 

No significant difference was found between the middle and the 
high-density scenarios whatever the evaluation method. Past research 
showed that depending on the task difficulty, there exist three workload 
states that are cognitive under-load, adequate workload and cognitive 
saturation (Harrison et al., 2014; McKendrick et al., 2019). In our 
experiment, we set densities to produce these different states. From the 
RCC results, when participants performed the task in the low-density 
scenario, as it was less demanding, they were in an under-load state, 
resulting in significantly lower cognitive load than in the middle density 
case. As the scenario density increased, their cognitive ability to receive 
and process the spatial information was around overload or had already 
become overloaded, which explains why there was no significant dif-
ference between the middle and the high-density scenarios, whatever 
the evaluation method. 

From these observations, our first expected outcome was achieved. 

6.2. Improved workload measurement by reducing dispersion 

Much research has been done over the last decades to measure 
cognitive workload during a task, especially in fields related to human- 
computer interaction (Gevins and Smith, 2003), driving (Patten et al., 
2006) and flight (Kantowitz and Casper, 2017; Sterman and Mann, 
1995), in which users have to process amounts of information simulta-
neously, resulting in high cognitive workload. Many past literature 
methods try to apply biosensors to measure cognitive workload, while 
evaluation through subjective questionnaires did not progress signifi-
cantly. During the subjective evaluation process, participants find it 
difficult to quantify their impressions towards the experience, but they 
are forced to give answers, leading to subjective results with high un-
certainties (Katicic et al., 2015). However, we believed that a proper 
analysis approach can address this drawback and enhance the reliability 

of individual feedback. Therefore, we introduced an alternative evalu-
ation method to the straightforward weighted sum method to quantify 
workload based on subjective evaluation results more precisely. We 
compared the weighted sum method to the TOPSIS method considering 
three different weighting approaches. 

From the experimental results, regarding the scenario type, with the 
classical weighted sum calculation method, statistical significance could 
be detected only between the low and high densities, implying a lack of 
precision of this method to discriminate the overall workload in smaller 
scales. In contrast, with the TOPSIS method, more significant effects 
were detected, as differences between low and middle densities were 
found. TOPSIS could therefore more precisely detect small changes in 
cognitive workload. The reason lies in the significantly smaller CV of the 
RCC, meaning a lower dispersion of the data and therefore an improved 
quality of discrimination among data. 

Regarding the weighting approaches, we did not find a significant 
difference between the fuzzy AHP and the Hart weighting approaches as 
both of them gave similar significant results when applied to TLXhart and 
RCC, but the Hart weighting resulted in a higher CV than with the uni-
form weighting approach. In other words, the fuzzy AHP and the Hart 
weighting approaches provided effective results, while particularly the 
fuzzy weighting could be used as an alternative to the Hart weighting 
and the uniform weighting approaches to determine the weighting co-
efficients for the overall cognitive workload score. This finding implies 
that applying weights to each criterion according to its importance is an 
essential step for computing the overall workload. 

The comparison of CV validated our second outcome R2. It suggested 
that the cognitive workload measured from the TOPSIS was more reli-
able, which would be particular important for those wishing to compare 
and manage the workload difference in smaller scales. 

7. Conclusion

We introduced a new method to improve the precision and reduce
the CV of cognitive workload quantification thanks to the TOPSIS. The 
model was tested with three different weighting approaches: fuzzy 
weighting, Hart weighting and uniform weighting. Thanks to its hier-
archy structure, the fuzzy AHP method for computing the fuzzy 
weighting extended the possibility to measure the workload with other 
questionnaires instead of the NASA-TLX. The proposed method was 
applied in a VR user experiment to validate its performance by studying 
two factors in a navigation task: the type of VR platform and the scenario 
density. Results were compared with a classical weighted sum method. 
The RCC computed from TOPSIS was found to be a comprehensive 
metric for quantifying and comparing the level of workload among 
various VR applications, with a reduced CV on subjective evaluation 
compared to the classical weighted sum method. Validation results were 
consistent with the corresponding literature, which suggested that our 
new framework can be useful in assessing workload measurement by 
reducing subjective uncertainty and improving measuring quality. 

Because of the increasing popularity of VR, it is important to consider 
cognitive workload in this domain. Therefore, the TOPSIS method for 
measuring cognitive workload was designed and validated in the field of 
VR, while it can also benefit to the measurement of cognitive workload 
arising from other domains by following our experimental steps. 
Nevertheless, one substantial limitation was that only two factors were 
considered to determine the effectiveness of our approach; future 
research will consider more factors as well as more use cases to test the 
generality of this approach entirely. 
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Appendix A. Fuzzy comparison questionnaire 

A1. Questionnaire design  

• Name:
• The Nasa Task Load Index (NASA-TLX) is a widely used, subjective,

multidimensional assessment tool that rates perceived workload in
order to assess a task, system, or team’s effectiveness or other aspects
of performance; more precisely: mental demand, physical demand,
temporal demand, performance, effort, frustration.

• In order to create individual weighting of these sub-scales, please fill
the following table (see Table 7) using the pre-defined language
expressions considering: which one do you think is more important
during the task you have just performed?

• Language expressions: equally important (EI), weakly more impor-
tant (WI), strongly more important (SI), very strongly more impor-
tant (VI), absolutely important (AI).

A2. Example of a filled questionnaire 

See Table 8. 
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