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ABSTRACT 17 

We compare the ability of various continuum-scale models to reproduce the key features of a 18 

transport setting associated with a bimolecular reaction taking place in the fluid phase and 19 

numerically simulated at the pore-scale level in a disordered porous medium. We start by 20 

considering a continuum-scale formulation which results from formal upscaling of this reactive 21 

transport process by means of volume averaging. The resulting (upscaled) continuum-scale 22 

system of equations includes nonlocal integro-differential terms and the effective parameters 23 

embedded in the model are quantified directly through computed pore-scale fluid velocity and 24 

pore space geometry attributes. The results obtained through this predictive model formulation 25 

are then compared against those provided by available effective continuum models which require 26 

calibration through parameter estimation. Our analysis considers two models recently proposed 27 

in the literature which are designed to embed incomplete mixing arising from the presence of fast 28 

reactions under advection dominated transport conditions. We show that best estimates of the 29 

parameters of these two models heavily depend on the type of data employed for model 30 

calibration. Our upscaled nonlocal formulation enables us to reproduce most of the critical 31 

features observed through pore-scale simulation without any model calibration. As such, our 32 

results clearly show that embedding into a continuum-scale model the information content 33 

associated with pore-scale geometrical features and fluid velocity yields improved interpretation 34 

of typically available continuum-scale transport observations. 35 

Keywords: reactive transport; continuum-scale models; upscaling; parameter estimation; pore-36 

scale modeling 37 

38 
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1. INTRODUCTION 39 

Recent developments in pore-scale numerical modeling and imaging technologies are 40 

providing remarkable added value to our knowledge of dynamics of reactive transport processes 41 

in complex pore spaces (e.g., Molins et al., 2014; Menke et al., 2015). These techniques and 42 

approaches allow characterizing and comparing the relative importance of the dynamics 43 

associated with advective transport, diffusive mixing and reactive processes at the (micron) scale 44 

of individual pores. Reactive transport applications in hydrogeology typically involve large 45 

spatial scales. It would then be desirable to explore the extent at which our knowledge on pore-46 

scale dynamics could be transferred into models that can be applied at a continuum- (or Darcy-) 47 

scale. In this work we consider solute transport in porous media in the presence of a 48 

homogeneous bimolecular irreversible reaction of the kind A + B → C, which is typically 49 

classified as a fluid-fluid reaction. Upscaling this reactive transport problem from the pore- to a 50 

continuum-scale is especially challenging under conditions of advection dominated transport and 51 

fast reaction, respectively associated with large values of the Péclet, Pe, and Damköhler, Da, 52 

numbers (e.g. Gramling et al., 2002; Tartakovsky et al., 2009; Porta et al., 2012a). Available 53 

column experiments at the laboratory scale document the space-time dynamics of the reaction 54 

product C (Gramling et al., 2002; Raje and Kapoor, 2000). These works show that the 55 

assumption of complete mixing of the reactants at the pore-scale can lead to considerable 56 

discrepancies between measured concentration of the reaction product C and predictions based 57 

on continuum-scale approximations. This result is consistent with theoretical upscaling by 58 

Battiato and Tartakovsky (2011). Experimental observations documenting the evolution of the 59 

pore-scale reaction rate in a Hele-Shaw cell are illustrated by de Anna et al. (2013, 2014). These 60 

authors show that the spatial distribution of the reaction rates within the pore space is highly non 61 
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uniform in space and is characterized by a filamentary structure. The pore-scale dynamics of the 62 

process of mixing of the reactants, which is inherently linked to the reaction product, has also 63 

been investigated through detailed numerical simulations in various settings (e.g., Tartakovsky et 64 

al., 2009; Willingham et al., 2010; Porta et al. 2012b, 2013; Hochstetler and Kitanidis, 2013; 65 

Rolle and Kitanidis, 2014; Alhashmi et al., 2015). These studies emphasize the critical 66 

importance of a proper model of local mixing for the interpretation of reactive transport 67 

processes. Similar conclusions are drawn from column scale experiments where pH-controlled 68 

reactions take place (e.g., Jose and Cirpka, 2004; Loyaux-Lawniczak et al., 2012; Edery et al., 69 

2015). 70 

Several alternative approaches have been proposed with the aim of embedding effects of 71 

pore-scale incomplete mixing within Darcy-scale effective reactive transport models (see also 72 

the review by Edery et al., 2013). These include particle-based Lagrangian methodologies (e.g., 73 

Edery et al. 2009, 2010; Ding et al., 2013) as well as Eulerian approaches (e.g., Sanchez-Vila et 74 

al., 2010; Chiogna and Bellin, 2013; Hochstetler and Kitanidis, 2013). Here we focus on the 75 

latter set of approaches as applied to bimolecular fluid-fluid reactions. Continuum-scale 76 

approaches typically embed effective formulations, which encode incomplete mixing effects into 77 

transport and reaction parameters. These effective formulations typically require model 78 

calibration against a set of observations, and can be used to interpret available data. In this 79 

context, a series of works (e.g., Sanchez-Vila et al., 2010; Chiogna and Bellin, 2013; Rubio et 80 

al., 2008) are focused on the interpretation of the experimental dataset of Gramling et al. (2002). 81 

These authors document the spatial distribution of the reaction product concentration within a 82 

fully saturated column where the host porous medium is a bead pack. Longitudinal (i.e., along 83 

the mean flow direction of flow) profiles of solute concentration are reported for diverse time 84 
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levels and transport conditions. A comparison of the results obtained in the above referenced 85 

works shows that very different modeling approaches allow interpreting this particular 86 

experimental dataset with comparable levels of accuracy. This suggests that the information 87 

content associated with the distribution of the reaction product in the system is insufficient for a 88 

unique characterization of incomplete mixing through effective continuum-scale approaches. 89 

Alhashmi et al. (2015) perform a three-dimensional pore-scale simulation in an attempt to 90 

replicate the reactive experiment scenario of Gramling et al. (2002). They show that spreading of 91 

the reactants across the medium can be quantified in terms of a time dependent dispersion 92 

coefficient. The temporal evolution of longitudinal spreading is different for the two reactants A 93 

and B. However, to the best of our knowledge, the ability of effective models to characterize the 94 

concentration of the two reactants (A and B) within the regions where they mix and the reactive 95 

process takes place has not been tested to date. 96 

A mathematical formulation relating pore-scale characteristics and effective reactive 97 

transport parameters at a continuum-scale can be derived through formal upscaling 98 

methodologies, such as the method of volume averaging (e.g., Whitaker, 1999; Orgogozo et al., 99 

2010; Valdes-Parada et al., 2011; Guo et al., 2015). The latter is applied to bimolecular reactive 100 

transport by Porta et al. (2012a). These authors show that it is possible to obtain a closed 101 

nonlocal formulation of a reaction term associated with incomplete mixing in the presence of of 102 

a fast reaction (i.e., large Da values). The assumptions underlying the theoretical analysis of 103 

Porta et al. (2012a) have been verified by comparison against direct numerical upscaling of 104 

pore-scale simulations performed in simple two-dimensional geometries, i.e., a plane channel 105 

(Porta et al., 2012b) and an ordered array of cylinders (Porta et al., 2013). The continuum-scale 106 

model proposed by Porta et al. (2012a) is presented in terms of a nonlocal integro-differential 107 
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formulation, consistent with a recent formulation obtained by Hansen et al. (2014) starting from 108 

the generalized master equation. Note that the formulation proposed by Porta et al. (2012) 109 

accounts for the temporal dynamics of the spreading process discussed by Alhashmi et al. (2015) 110 

by including a nonlocal in time dispersive transport term. 111 

In this work we start from pore-scale numerical simulations of a bimolecular 112 

homogeneous and fast reaction. We consider the latter to take place within a two-dimensional 113 

pore space, which is generated by randomly placing in space a set of circular grains of uniform 114 

diameter. The key target of the work is to test our ability to interpret the continuum-scale results 115 

obtained from direct upscaling of pore-scale simulations in such a disordered system through 116 

continuum-scale models. The reactive transport setting we analyze is similar to the one 117 

considered, e.g., in Gramling et al. (2002), and we model it in terms of an effective one-118 

dimensional unsteady transport process at the continuum-scale. We distinguish two different 119 

approaches, depending on the type of information employed to compute the associated model 120 

parameters: (1) an approach based on the use of effective models which require calibration 121 

against reactive transport features that are typically observed at the continuum scale, e.g., spatial 122 

distribution or breakthrough curves of reactants; and (2) an approach based on upscaled models 123 

which only require information on pore-space geometry and on the velocity field to predict 124 

reactive transport at the continuum-scale. 125 

A first goal of this work is to provide the numerical approximation of the nonlocal 126 

upscaled model of bimolecular reactive transport derived by Porta et al. (2012a). We then 127 

consider three additional effective reactive transport models, i.e., the typical advection dispersion 128 

reaction equation, which implicitly assumes complete mixing at pore-scale, and the models 129 

proposed by Sanchez-Vila et al. (2010) and Hochstetler and Kitanidis (2013). These models 130 
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differ in terms of the formulation employed to characterize the effective reaction parameters. 131 

Consistent with typical applications, we estimate these parameters through results obtained from 132 

numerical upscaling of pore-scale calculations. 133 

Available experimental datasets typically document the evolution of the reaction product 134 

in space and time (Gramling et al., 2002; Raje and Kapoor, 2000). Therefore, the majority of 135 

previous works dealing with this reactive transport setting are solely based on the interpretation 136 

of the space-time evolution of the reaction product. In this work we explicitly consider the model 137 

performance also in terms of its ability to capture the dynamics of the concentrations of the two 138 

reactants A and B. This aspect is key in a pre-asymptotic transport regime, where the 139 

characterization of transport can be significantly affected by the initial distribution of the 140 

reactants in the domain (e.g., Alhashmi et al., 2015). We compare the ability of all these model 141 

formulations to interpret the considered reactive transport process and analyze the impact of 142 

incorporating diverse types of information in the estimation of model parameters. By doing so, 143 

we also identify the critical relevance of specific formats assumed by continuum-scale reactive 144 

and transport terms. The results of this work allow quantifying the relevance of nonlocal terms in 145 

the reactive transport setting we analyze. 146 

The work is organized as follows. Section 2 provides a description of the pore-scale 147 

problem setting. Section 3 is devoted to a presentation of the continuum-scale modeling options 148 

we implement. In Section 4 we assess the capabilities of the selected continuum-scale models to 149 

interpret the pore-scale simulation results. Concluding remarks end the work. 150 

2. PROBLEM SETTING 151 

We consider the two-dimensional domain   filled by a fully saturated porous medium, 152 

consisting of a liquid ( l ) and a solid fraction ( s ). The porous domain is constituted by a 153 
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collection of periodic unit cells,  . The geometry of the unit cell is generated by the disordered 154 

superposition of circular grains of uniform diameter ˆ 0.08w   mm and is characterized by a 155 

porosity 0.6   (see Figure 1). Note that here and in the following all primed variables are 156 

defined within a unit cell and hat-signed variables are dimensional. The liquid and the solid 157 

phases share an impermeable boundary surface, ls . Fluid flow through the pore space is 158 

associated with a steady laminar two-dimensional velocity field, ˆ ˆ( )u x , which satisfies the Stokes 159 

problem. The flow field is driven by a unit pressure gradient along the x-direction and a zero 160 

pressure gradient along the y-direction (Figure 1). The numerical approximation of the velocity 161 

field is obtained by the methodology introduced by Bekri et al. (1995) and Coelho et al. (1997). 162 

A desired value of average fluid velocity, Û , along the x-direction is imposed by multiplying the 163 

computed velocity field by an appropriate constant. Figure 1 depicts the dimensionless velocity 164 

norm ˆˆ /Uu u . We observe velocity values which are smaller than Û  (i.e., 1u ) throughout 165 

most of the domain, values of u  > 3 being mostly concentrated only within a few pore throats. 166 

One can clearly identify the presence of regions which are characterized by small velocity values 167 

and are poorly connected to the flow preferential path (e.g., regions highlighted in Figure 1). The 168 

dimensionless velocities varies in space over a range of values which is comparable to that 169 

obtained by flow simulation performed within millimeter-scale imaged rock samples (see e.g., 170 

Bijeljic et al., 2013). 171 

The external boundary ext  of l  can be subdivided into three parts according to the sign 172 

of ˆ ˆ( ) eu x n , i.e., in  ( ˆ ˆ( ) 0e u x n ), out ( ˆ ˆ( ) 0e u x n ), and imp  ( ˆ ˆ( ) 0e u x n ), en  being the 173 

inward unit vector normal to the boundary. A bimolecular irreversible reaction of the kind A + B 174 



8 

 

→ C takes place in the liquid phase and it is assumed not to affect the velocity field and the pore 175 

space geometry. Molecular diffusion is modeled through the standard Fick’s law. We employ the 176 

following dimensionless formulation of the reactive transport problem (Porta et al., 2013) 177 

21i
i i

c
c c

t Pe


   


u   ,i D E   (1) 178 

21
( )B

B B B B D

c Da
c c c c c

t Pe Pe


     


u    (2) 179 

where  180 

0
ˆ ˆ

i ic c c , ˆˆ Uu u , 
ˆ

ˆ
ˆ

t t
U

 , ˆ
ˆ


  , 

ˆˆ

ˆ
m

U
Pe

D
 , 

2

0
ˆ ˆˆ

ˆ
m

kc
Da

D
   (3) 181 

îc  is concentration, 0ĉ  is a reference concentration; k̂  [m3/(mol s)] is the reaction kinetic 182 

constant; ˆ
mD  is molecular diffusion ˆ  is a characteristic spatial dimension; and Pe and Da are 183 

the Péclet and Damköhler numbers, respectively. Note that (1)-(2) are written in terms of the 184 

conservative components D B Ac c c   and E B Cc c c  . System (1)-(2) can be readily obtained 185 

from algebraic recombination of the mass conservation equations written for the three chemical 186 

species A, B and C (e.g., Porta et al., 2012a and references therein). 187 

We consider a replacement setting: the system is initially saturated by a constant 188 

concentration 0ĉ  of species A for x > 0; species B is introduced continuously in the system for t 189 

> 0 at a constant concentration 0ĉ  through the boundary in . Equations (1)-(2) are then 190 

completed by the following boundary and initial conditions 191 

0ic n  , ,i B D E ;  , ,ls imp out  x  (4) 192 

1
( , ) ( , )e i e i ic t c t N

Pe
   u n x n x , , ,i B D E  inx   (5) 193 
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( ,0) 0Bc x , ( 0) 1Dc ,  x , ( ,0) 0Ec x  , 0l x x   (6) 194 

( ,0) 1Bc x , ( 0) 1Dc , x , ( ,0) 1Ec x  , 0l x x   (7) 195 

A flux boundary conditions is assumed at in  so that 1B D Ec c c   . Zero flux is imposed on 196 

the liquid-solid interface ls , and imp . Note that the boundary in  is located at 60x    so that 197 

the pore space is saturated with a constant concentration of B at 0t   within the first unit cell 198 

adjacent to the inlet section (i.e., for 60 < x < 0). This choice allows avoiding any influence of 199 

the inlet boundary condition on the reactive process at early times. 200 

The reactive transport problem is solved within the pore space by means of the particle 201 

tracking methodology described by Porta et al. (2012b, 2013) and adapted from routines 202 

developed by Bekri et al. (1995) and Debenest et al. (2005) for the pore scale description of 203 

reactive transport. We select ˆ ˆ 0.08w   mm and set Pe = 24.88 (i.e., average velocity 204 

ˆ 0.62U   mm/s, Reynolds number Re = 0.05) and Da = 1038. This value of Pe is computed by 205 

relying on the average fluid velocity and suggests that the process takes place under moderately 206 

advection-dominated conditions. We note that the local velocity distribution displays large 207 

variations within the considered disordered cell (see Figure 1). The relative strength of the time 208 

scales related to transport by advection and diffusion can be evaluated through the local Péclet 209 

number   ˆ ˆˆ /loc mPe Dx u  (Porta et al., 2015). One can expect transport to be strongly 210 

advection-dominated along the fast channels detected in the system, where the largest values of 211 

velocity are about one order of magnitude larger than the average velocity (i.e., 212 

 10, 250locPe u x ), while diffusion drives solute transport within the cavities, where the 213 

fluid is basically immobile, i.e.   0locPe x .  214 
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The total longitudinal length of the system is L = 1200 ( ˆ 9.6L   cm), i.e. we consider a 215 

collection of 20 unit cells   along the x-direction. Our computations rely on a discretization of 216 

the pore space into elementary squares K (pixels) of size 0.02 mm. As in Porta et al. (2013), we 217 

consider a unit concentration to be equivalent to a number of particles 100KNP   per elementary 218 

square. Note that, as a result of these modeling choices, simulating a uniform unit concentration 219 

of a single chemical species along the whole computational domain requires a number of 220 

approximately 1.7×107 particles. This yields reliable local (pixel-scale) concentration values for 221 

c > 5  10-3 (Porta et al., 2013, 2012b). 222 

Figure 2 shows a snapshot of the spatial distribution of cA, cB and cC within the pore space 223 

for t = 448. Note that reactant A is initially residing in the system. Positive values of cA are 224 

observed for x < 500 solely within pores which are scarcely accessible to flow, these areas 225 

corresponding to regions (cavities) highlighted in Figure 1. The invading reactant B tends to 226 

follow the principal pathways, characterized by large velocity values. As a consequence, local 227 

concentrations of reactants exhibit significant and sharp variations across relatively small 228 

distances. We also observe that reactant concentrations are anti-correlated, i.e., Bc  is small in 229 

pores where concentration of A is significant and vice versa, due to the occurrence of the fast 230 

reaction. This is consistent with previous computational analyses in regular two-dimensional 231 

geometries (Porta et al., 2013). The concentration of the reaction product C in Figure 2 displays 232 

a peak value at x ≈ 450. Contributions to Cc  in the forward tail (x > 500) are mainly associated 233 

with regions characterized by large velocity, stagnant regions chiefly contributing to the 234 

backward tail (x < 400). 235 
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Pore-scale simulation results are used in the following as calibration and validation data 236 

against which outputs of continuum-scale models are compared. For this purpose we consider 237 

section-averaged concentrations in the fluid phase. These are defined as 238 

   
1

,i i

H

c x c x y dy
H

  ;  
1

,
H

G x y dy
H

    (8) 239 

where H is the total length of the porous medium along y, ic  is section-averaged concentration of 240 

local concentrations 
ic  of chemical species i = A, B, or C and G(x,y) is an indicator function, i.e. 241 

G(x,y) = 0, 1 respectively for solid grains and fluid. 242 

3. CONTINUUM-SCALE MODELS 243 

A number of approaches have been proposed to model this reactive problem at the Darcy-244 

scale. In this work we consider three existing effective models together with the upscaled 245 

formulation stemming from volume averaging of the system (1)-(2), as provided by Porta et al. 246 

(2012a). In Section 3.1 we summarize the salient features of the considered effective models. 247 

Section 3.2 recalls the definition of the continuum-scale system resulting from volume averaging 248 

of the pore-scale system (1)-(2). 249 

3.1 Effective models 250 

Effective continuum models of reactive transport are typically formulated through an 251 

advection dispersion reaction equation (ADRE) 252 

2

2

1
( 1)i i iC C C
D U

t Pe x x

  
  

  
 ,i D E  (9) 253 

   
2

*

2

1
1

ˆ
B B B

eff B B D

C C C
D U K C C C

t Pe x x

  
    

  
 (10) 254 
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where ˆ ˆ/ mD D D   is the dimensionless longitudinal dispersion coefficient, effK  is an effective 255 

reaction constant, iC  (i = B, D, E) are continuum-scale concentrations. We consider in the 256 

following three models for Keff proposed in the literature: 257 

 Model 1 (complete mixing): 258 

 eff

Da
K

Pe
  (11) 259 

 Model 2 (Sanchez Vila et al., 2010): 260 

 eff

Da
K

Pe
 ; 0

ˆ ˆ

ˆ

mt

k






  (12) 261 

where 0̂  and m are parameters to be estimated through model calibration. 262 

 Model 3 (Hochstetler and Kitanidis, 2013): 263 

 eff F

Da
K E

Pe
 ; FE

Da







 (13) 264 

where EF is the reaction effectiveness factor,   and   being model parameters. 265 

Model 1 implies that the same reaction constant can be employed at the pore and continuum-266 

scales, i.e. reactants are assumed to be completely mixed at the pore-scale. Models 2 and 3 267 

account for the effect of incomplete mixing of the reactants through the effective reaction 268 

parameters (12)-(13). The definitions in (12)-(13) are motivated by previous literature 269 

approaches to model conservative and reactive transport. Sanchez-Vila et al. (2010) introduce 270 

(12) based on the rate-limited mass transfer process observed by Haggerty et al. (2004). 271 

Hochstetler and Kitanidis (2013) introduce the reaction effectiveness factor EF (13) following 272 

the definition of the segregation intensity introduced by Kapoor et al. (1997). 273 
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3.2 Upscaled transport model  274 

Porta et al. (2012a) perform an upscaling of (1)-(2) through the volume averaging 275 

method (Whitaker, 1999). Due to the nature of the scenario we consider, we recall here the 276 

corresponding one-dimensional formulation, which is labeled as model 4 in the following. A key 277 

target of the volume averaging analysis is to obtain a closure formulation in terms of the intrinsic 278 

volume averaged concentration 279 

 
1

( )

l

i i

V

c c dV
V

  x
x

 (14) 280 

where V(x) is a volume of porous medium within . The volume averaged formulation for the 281 

conservative species reads  282 

 
1

1 *    ,

l l l

li i i

U

c c c
u D i D E

t x Pe x t x

     
      

        

  (15) 283 

where  284 

 
0

*

l lt

i i

U U

c c
D D t d

t x x
 



   
  

    
 

 ;  
1

ls

l

U x

V

D bn dA ub
V

   (16) 285 

is the dispersion coefficient, 
l

u u u   is a spatial fluctuation (or deviation) of the velocity in 286 

the x-direction within the pore space, and b is a closure variable. Equations (15)-(16) are based 287 

on the following unsteady closure relationship (Moyne, 1997; Chastanet and Wood, 2008) 288 

 ,

l

l i

i i i

c
c c c b t

t x


   

 
x  (17) 289 
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where 
l

i i ic c c   (i = D,E) is a spatial fluctuation of the concentration about the mean. The 290 

medium we consider is characterized by a periodic structure and the closure variable b can be 291 

computed within a unit cell. The following differential problem is satisfied by b 292 

  21b
b u b

t Pe


    


u  , 0l t   x  (18) 293 

xb n n  , 0ls t   x  (19) 294 

 ,0 0b  x  , 0l t   x  (20) 295 

Here, we have considered the unit cell reference system x , with the corresponding liquid l
  296 

domain and the liquid-solid surface ls
 . The format of the transport equation for the reactive 297 

species B depends on the relative importance of Da as compared to Pe. Here, we consider Da >> 298 

Pe so that (Porta et al., 2012a) 299 

   1 2

1
1 *

l l l l

lB B B D

U

c c c c Da
u M D R R

t x Pe x x t x Pe

      
       

         

 (21) 300 

where 301 

 1

l l l

B B DR c c c   (22) 302 
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2 1
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D
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c
R M M b
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 (23) 303 

and 
2

l l

B B

l l l l

B A B D

c c
M

c c c c
 

 
. The reaction terms (22)-(23) stem from volume 304 

averaging of the pore-scale reaction term 305 

     
l ll l l

B B D B B D B B Dc c c c c c c c c      (24) 306 
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Porta et al. (2012a) propose the following closure approximation for Da >> Pe  307 

2

l l

B D

B D Dl l

B D

c c
c c Mc Mb

t xc c


   

 
 (25) 308 

Substitution of (25) in (24) leads to  2

l

B B DR c c c  . We refer to the formulation (15)-(21) as 309 

model 4 in Section 4 for simplicity. The parameters appearing in (15)-(21) can be fully 310 

characterized from pore-scale geometry and velocity distribution upon solving the system (18)-311 

(20). We do so by implementing a finite element formulation of (18)-(20) in the FreeFEM++ 312 

environment (Hecht et al., 2012). We discretize the solution in space through a stabilized 313 

streamline diffusion finite element formulation while employing a first order implicit backward 314 

Euler finite difference scheme in time. We compute the solution by employing a structured grid 315 

formed by approximately 105 triangular elements. 316 

Figure 3 depicts the time evolution of the coefficients UD  (16) and of the quantity  317 

   
2

2 ,
l

B t b t x  (26) 318 

We select B2 as a measure of the nonlocal reaction term (23), i.e., the localized counterpart of 319 

(23) reads 320 

   

2

2, 21

l

D

LOC

c
R M M B t

x

 
   

 
 

 (27) 321 

We observe that both DU and B2 vary over a wide range of values and are always increasing 322 

within the considered time window. This result evidences that the reactive transport process we 323 

observe takes place within a pre-asymptotic regime. Therefore, the nonlocal terms embedded in 324 

(15)-(21) can be expected to play a relevant role in the reactive system characterization. 325 
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The numerical solution of the upscaled system requires the discretization of the integro-326 

differential terms appearing in (15)-(21). We employ a trapezoid integration rule to discretize the 327 

integral terms (16) and (23) in the time domain. System (15)-(21) is approximated through a 328 

fixed space and time discretization. We select a time step t = 2 and a spatial discretization step 329 

x = 1. We numerically verified through a grid convergence analysis that the results do not 330 

depend on the spatial discretization and time step size (details not shown). We also verify that 331 

the results of the nonlocal solution reproduce those of the corresponding local formulation when 332 

parameters are constant in time. The computational time associated with a run of the nonlocal 333 

model 4 is approximately 105 s (28 hours) on a processor Intel(R) Pentium(R) III Xeon processor 334 

2.83 GHz. For comparison, note that the numerical solution of the effective models (9)-(10) 335 

requires approximately 103 s on the same processor. 336 

4. COMPARATIVE ASSESSEMENT OF CONTINUUM-SCALE MODELS 337 

In this section we discuss the ability of the continuum-scale models introduced in Section 338 

3 to reproduce the results obtained by pore-scale simulation of the reactive transport process. 339 

As anticipated in the Introduction, we compare two classes of models which are 340 

distinguished on the basis of the information sources employed to characterize the model 341 

parameters and are associated with diverse levels of complexity. Models 1-3 have a simple 342 

structure, but their effective parameters are estimated through model calibration, i.e. they 343 

incorporate information on the output concentration profiles. On the other hand, model 4 is 344 

characterized by a complex structure, and the related parameters are estimated relying solely on 345 

pore-scale information, i.e. no model calibration is required. Our model comparison aims at 346 

assessing the impact of the critical differences amongst the considered continuum-scale models 347 

on the ability of the models to reproduce our pore-scale reference solution. These key differences 348 
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can be classified as illustrated in the following. With reference to transport, model 4 is nonlocal 349 

in time and allows accounting for non-Fickian dispersion effects, as opposed to models 1-3 350 

which are all based on an assumed Fickian dispersion process. With reference to the way 351 

reaction is embedded in the model, model 4 entails a space and time dependent nonlocal 352 

formulation of the reaction rate constant; model 2 embeds a time dependent effective reaction 353 

parameter Keff through (12); while models 1 and 3 employ a constant effective reaction 354 

coefficient, Keff . 355 

In the following, we start by discussing the characterization of the parameters of models 356 

1-3, which is performed through calibration against concentration profiles extracted from the 357 

reference pore-scale simulation. We then compare the results of the set of the four continuum-358 

scale models illustrated in Section 3 against (section-averaged) pore-scale simulation results. 359 

4.1 Calibration of the effective models 360 

The characterization of the effective models (9)-(13) (models 1-3) is here performed 361 

through the estimation of the embedded effective parameters, performed via model calibration. 362 

The model calibration parameters we consider are listed in Table 1 for each of the three models. 363 

The longitudinal dispersion coefficient is considered as a calibration parameter for all 364 

three models. This choice is motivated from results of previous studies focusing on the 365 

interpretation of the dataset of Gramling et al. (2002). In this context, Alhashmi et al. (2015) 366 

demonstrate through numerical pore-scale simulation that transport in the system is still in a pre-367 

asymptotic stage. Otherwise, results by Sanchez-Vila et al. (2010) show that a Fickian model can 368 

be employed to interpret the same reactive transport dataset up to a reasonable accuracy by 369 

including the dispersion coefficient as a parameter to be estimated through model calibration 370 

against the reactive transport data. 371 
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Models 2 and 3 both embed two additional calibration parameters which are associated 372 

with the respective reaction models, i.e. 0̂  and m in (12) for model 2,  and  in (13) for model 373 

3. Given the structure of the reactive term in (13), we note that infinite combinations of ,   can 374 

lead to the same effective reaction constant for a given Da. This implies that joint estimation of 375 

  and   is possible only when calibration data associated with diverse values of Da are 376 

available. Since we consider here a unique value of Da, we follow the indication of Hochstetler 377 

and Kitanidis (2013) and set 1   while estimating  . 378 

Our aim is here to study the performance of these models in the presence of different sets 379 

of calibration data. We consider two sets of such data, i.e., concentration profiles of the invading 380 

reactant B (dataset Bic  ) and of the reaction product C (dataset Cic  ) at a fixed dimensionless time, 381 

( 448t  ). We select this time level because it is the longest time considered in the pore-scale 382 

simulation. We then calibrate all three models by employing separately the two datasets. Entries 383 

of the calibration datasets are concentrations Bic   (i = 1 … DBN ), and Cic   (i = 1 … DCN ), DBN  384 

and DCN  indicating the number of data included in the datasets Bic   and Cic  , respectively. We 385 

select values Cic 
 as 386 

 1

1 L i

Ci C
L i

c c dx
L




 


 
 1, ,20i   (28) 387 

where 60L   is the length of the unit cell   along the x-direction. In other words, we consider 388 

the 20 unit cells constituting the total length L of the porous domain and identify Cic 
 as the 389 

spatial average of the pore-scale concentrations of the reaction product cC computed within each 390 

of the unit cells (i.e, we set 20DCN  ). 391 
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Entries of dataset Bic 
 are selected in a similar way, i.e., as the spatial average of the 392 

concentration in the liquid phase 393 

 1

1 L i

Bi B
L i

c c dx
L




 


 
 1, ,8i   (29) 394 

Note that positive values of Bc  are observed only for x < 500, i.e., in the first 8 unit cells. We 395 

augment the entries in this calibration dataset by considering additional concentration values at 396 

locations close to the reaction front (x ≈ 450), because one of our goals is the characterization of 397 

the parameters of the incomplete mixing models which are expected to influence concentration 398 

values at such locations. As such, dataset Bic 
 includes a total of 16 data which are distributed 399 

along the length of the porous domain ( 16DBN  ). The spatial distributions of the calibration 400 

data Bic 
 and Cic 

 are depicted in Figure 4a and 4d, respectively. 401 

Model parameters are estimated either through the datasets Bic 
 or Cic 

 by considering the 402 

following metrics 403 

 
2

1

1 DCN

C Ci C i

iDC

J c C x
N





     (30) 404 

 
2

1

1 DBN

B Bi B i

iDB

J c C x
N





     (31) 405 

where  J iC x  (J = B, C) is the continuum-scale model output at location ix  corresponding to 406 

the location of data Bic 
, Cic 

. We employ criteria (30)-(31) in a maximum likelihood framework 407 

(Carrera and Neuman, 1986), where we assume the covariance matrix associated with 408 

measurements error to be equal to a diagonal matrix with constant entries. This enables us to 409 

compute the covariance matrix of the estimation error 410 
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1

2

, , , ,j j j j

T

k C k C k C k C


Q J J  k = 1, 2, 3;  j = B, C (32) 411 

where indices k and j respectively indicate the model and the dataset employed for model 412 

calibration, 2

, /
jk C j,min DjJ N   is the estimated model error, ,k jJ  is the Jacobian matrix whose 413 

entries are the derivatives of the output state variables Cj with respect to the parameters of model 414 

k. The diagonal entries of matrix (32) quantify the uncertainty 2

p  associated with the ML 415 

estimate of model parameter p. 416 

Table 1 lists the values of the estimated parameters and the related standard deviation p , 417 

together with the minimum values of (30)-(31) (respectively denoted as JCmin and JBmin) obtained 418 

through calibration against the two types of data Bic 
 and Cic 

 for each of the three effective 419 

models (9)-(13). The calibrated model results are compared in Figure 4 against the calibration 420 

data and the complete profile of section-averaged concentrations  Bc x  and  Cc x  rendered by 421 

pore-scale simulation at t = 448. Models 2 and 3 lead to smaller values of JCmin than model 1. 422 

This result is consistent with previous analysis (Sanchez-Vila et al., 2010; Hochstetler and 423 

Kitanidis, 2013) and supports the idea that effective models 2-3 can interpret the distribution of 424 

the reaction product in the reactive transport setting we analyze in the presence of pore-scale 425 

incomplete mixing of reactants. We also observe that the values of JBmin are similar for models 1 426 

and 2 and JBmin is largest for model 3. We note that values of standard deviation p  associated 427 

with the estimates of the dispersion parameters are about 5-10 % of the corresponding ML 428 

estimate for all three models and for the two considered datasets, thus resulting in relatively 429 

small coefficients of variation. These results suggest that the data convey appropriate 430 

information to characterize the longitudinal dispersion coefficients. However, note that the 431 
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estimated longitudinal dispersion coefficients are significantly different across models and/or 432 

depending on the type pf calibration data employed. Model calibrations based solely on Bic 
 yield 433 

estimated longitudinal dispersions which are considerably larger than those based on Cic 
 (see 434 

Table 1). This leads to an increased spreading of the reaction product when these models are 435 

calibrated against Bic 
 as opposed to what can be obtained by employing Cic 

 as a calibration 436 

dataset (see Figure 4b and d). 437 

The estimate of parameter m in model 2 rendered by calibration against Cic 
 is consistent 438 

with the value obtained by Sanchez-Vila et al. (2010) by using the same type of information. 439 

Note that Table 1 lists 0̂  in dimensional units [m3mol-1sm-1]. Given that the dimensional units of 440 

this parameter depend on the specific value assumed by the exponent m, the values of 0̂441 

obtained in Table 1 are hardly comparable to those obtained in Sanchez-Vila et al. (2010). The 442 

best estimate obtained for parameter  in model 3 is of the same order of magnitude of the one 443 

obtained by Hochstestler and Kitanidis (2013) when Cic 
 data are employed. In general, we 444 

observe that the estimated values of the effective reaction parameters embedded in models 2 and 445 

3 largely depend on the type of information available for calibration.  446 

Figure 4d shows that the peak of concentration CC  rendered by models 2 and 3 is smaller 447 

than that associated with model 1 when Cic 
 is considered for calibration. Otherwise, the three 448 

effective models yield the same concentration peak of CC  when their parameters are estimated 449 

against Bic 
 (see Figure 4b). Previous studies (e.g., Sanchez-Vila et al., 2010; Chiogna and Bellin, 450 

2014) show that the evolution of the peak concentration is typically linked to incomplete mixing 451 
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of the reactant at pore-scale. We further note from Table 1 that the standard deviations related to 452 

the effective reaction parameters embedded in models 2 (i.e, 0̂  and m) and 3 (i.e, ) are much 453 

larger when calibration is performed through dataset Bic 
 than by relying on Cic 

. Therefore, 454 

results in Figure 4b and 4d and Table 1 suggest that an accurate estimation of the incomplete 455 

mixing parameters embedded in models 2 and 3 requires information on the reaction product 456 

concentration. This result can be explained upon observing that the output concentration BC  457 

rendered by the investigated continuum models attains very small values close to the reaction 458 

front. Large variations of the incomplete mixing parameters induce modest variations of BC . 459 

Otherwise, the peak concentration of CC  is very sensitive to variations of these reaction model 460 

parameters, as previously shown by Sanchez-Vila et al. (2010), Chiogna and Bellin (2013), and 461 

Ciriello et al. (2015). Therefore, model calibration against Cic 
 yields a reduced uncertainty for 462 

the reaction parameters which represent incomplete mixing, as compared to results obtained 463 

through calibration based on Bic 
 observations. 464 

4.2 Model comparison 465 

In this Section we aim at assessing the performance of the diverse effective and upscaled 466 

models in reproducing the pore-scale simulation results, which represent our reference solution.  467 

We compare in our discussion the results obtained through calibration of the effective 468 

models 1-3 against the dataset Cic 
 (see Section 4.1) and the prediction yielded by model 4 on the 469 

basis of pore-scale information. We focus on a comparison of the longitudinal profiles of 470 

concentrations of the three chemical species as rendered by pore- and continuum-scale models 471 

and quantify model performance through some global indicators. 472 
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Figures 5a-f depict a comparison between the concentration profiles rendered by the 473 

numerical solution of the continuum-scale models and section-averaged concentration obtained 474 

through the pore-scale simulation for solutes A (Figure 5a-b), B (Figure 5c-d) and C (Figure 5e-475 

4f) at two selected (dimensionless) times, i.e., t = 74 (Figure 5a,c,e) and 448t   (Figure 5b,d,f). 476 

As time advances, B displaces A and the two reactants mainly mix in a limited region around the 477 

the interface between B and A (i.e., the reaction front), which migrates in the system by 478 

advection. Owing to our choice of dimensionless space-time reference, the reaction front is 479 

found at locations x ≈ t for each considered time level. The backward tail of Ac  in our reference 480 

pore-scale solution displays an oscillatory behavior characterized by isolated localized peaks (see 481 

Figures 5a-b, respectively for x < 70, x < 400). These oscillations are related to the investigated 482 

pore structure, i.e. they are chiefly due to the presence of cavities in the porous domain where the 483 

solute is trapped for long times (see also Figures 1-2). As time progresses, the reaction front 484 

advances in the porous domain by advection and new immobile (or low velocity) zones with Ac  485 

> 0 remain isolated and surrounded by the invading solute B (see Figure 2). Thus, the number of 486 

localized concentration peaks in the profile of Ac  increases with time. The effect of these low-487 

velocity zones is also detected on Bc  and Cc  profiles (Figures 5c-d and e-f). The section-488 

averaged concentrations of reactants B and A show an anti-correlated behavior, i.e. sharp 489 

increases of A concentrations correspond to localized declines of B concentrations, consistent 490 

with the pore-scale spatial distributions depicted in Figure 2. The presence of cavities (poorly 491 

connected and almost immobile zones) results in localized high concentration peaks that are also 492 

visible in the profiles of the reaction product C, which is delayed in low velocity regions. We 493 

note that this phenomenon is not observed when considering experimental measurements and 494 
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numerical simulation of the same reactive process within three-dimensional regular porous 495 

media, e.g., glass beads packing (Gramling et al., 2002; Alhashmi et al., 2015). The considered 496 

disordered two-dimensional porous medium includes poorly connected and essentially stagnant 497 

regions, giving rise to the local accumulations of species A and C observed in Figure 5. 498 

All continuum-scale models considered in this study fail to reproduce trapping of 499 

concentration of species A within immobile regions (see Figure 5b). To quantify the relevance of 500 

this inaccuracy, we consider the temporal evolution of ARC , the residual average concentration 501 

of A, in a subregion of our computational domain 502 

   
0

1
,

MX

A A

M

RC t C x t dx
X

   (33) 503 

XM < L identifying the longitudinal size of a given subdomain we consider. The time evolution of 504 

ARC  enables us to evaluate the residence time of reactant A in the system. As an example, 505 

Figure 6a depicts the evolution of ARC  when 300MX  , i.e. we compute ARC  within a domain 506 

segment of longitudinal length corresponding to five unit cells. Since we expect the reaction 507 

front to approach the location XM for t = XM, selecting 300MX   enables us to characterize the 508 

temporal dynamics of RCA before and after the main reaction front breaks through location XM 509 

within the time window considered in our pore-scale simulation. We observe that the pore-scale 510 

simulation yields what appears to be a two-stage evolution of the residual mass of A. This 511 

feature is identified by a remarkable change in the slope of ARC (t) which takes place at t ≈ 300, 512 

i.e. for t ≈ XM. For t < 300, the average concentration of A progressively decreases to a value 513 

approximately equal to 10-2. For t > 300, the concentration of A decreases at a lower rate as 514 

compared to the above mentioned first stage. In this second stage, the residual mass of A can be 515 
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found within system cavities and smoothly decreases in time due to reaction. We observe that all 516 

four continuum-scale models reproduce almost exactly the (section-averaged) pore-scale results 517 

up to a time t ≈ 250, the evolution of RCA in the second stage (t > 300) being misrepresented by 518 

all investigated continuum-scale models. Results in Figure 5a-b and 6a suggest that considering 519 

(a) effective reaction terms which model incomplete mixing effects (as in models 2-3) and (b) 520 

time nonlocalities in both transport and reaction terms (as in model 4) has virtually no effect in 521 

improving our ability to reproduce the delayed mass of the reactant A within poorly connected 522 

cavities. Figure 6a suggests that all four considered continuum-scale models allow reproducing 523 

the residual concentration of the reactant A in the system with comparable accuracy, i.e. up to 524 

values of 0.03-0.05 (3-5% of the initial concentration of A). 525 

The reference longitudinal profiles of the concentration of the invading reactant, Bc , are 526 

well predicted by model 4 for both considered time levels (see Figure 5c-d). The effective 527 

models 1-3 yield CB = 1 for x < 200 and t = 448, the solution associated with model 4 tending 528 

smoothly to unity at x = 0 and closely following the trend of the pore-scale results (see Figure 529 

5d). Insets in Figure 5c-d depict profiles of the concentration of the B reactant in semi 530 

logarithmic scale. Model 4 reproduces closely the forward tail of the invading reactant, which is 531 

mostly affected by the reactive process. Values of Bc  at locations where 0.1Bc   are 532 

overestimated by models 2-3 and underestimated by model 1. This result suggests that the 533 

volume averaged formulation (15)-(21) (i.e., model 4) leads to an improved continuum-scale 534 

representation of mixing at the reactive front, as compared to models 2 and 3, which however 535 

provide a reasonably accurate interpretation of the spatial distribution of the concentration of the 536 

reaction product C (see Figure 3d).  537 



26 

 

We consider now the flux weighted concentration of the invading reactant B, 538 

corresponding to the solute breakthrough curve (BTCB). The latter is defined as 539 

   ,B B MBTC t C X t  for continuum-scale models and as 540 

 
B

H
B

H

c udy

BTC t
udy





 (34) 541 

when calculations are performed from pore-scale data. Figure 6b depicts the temporal evolution 542 

of the breakthrough curve (BTCB) of B at position x = XM = 300. We observe that model 4 543 

reproduces the pore-scale results more closely than the remaining three effective models. This 544 

result is consistent with longitudinal concentration profiles in Figure 5c-d. The observed 545 

differences amongst the models can be explained by considering that model 4 accounts for non-546 

Fickian transport through the nonlocal term (16), while models 1-3 consider a Fickian dispersion 547 

model. Moreover, the volume-averaged (upscaled) reaction term (22)-(23) renders an improved 548 

representation of the mixing of the reactants close to the reactive front as compared to the 549 

effective reaction terms embedded in models 2 and 3. This is suggested by the close agreement 550 

between the results rendered by model 4 and their pore-scale counterparts for low concentration 551 

values. As a consequence, Figure 6b shows that, contrary to the results given by the effective 552 

models 1-3, consideration of nonlocal transport effects and of the upscaled reactive terms 553 

improves our ability to accurately quantify the arrival times of a reactive solute B at a given 554 

location in the system. 555 

Figure 5e-f depicts the comparison between the longitudinal profiles of concentration of 556 

the reaction product C rendered by the different models and the reference pore-scale solution. 557 

These results are complemented by the temporal evolution of the spatial moments of the reaction 558 
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product concentration profiles (Figure 7). Figure 7a shows the temporal evolution of the total 559 

mass of C in the systems, i.e., the zero order moment of the concentration profile 560 
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Figure 7b-c display the evolution of the spreading  562 
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and of the skewness  564 
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  (37) 565 

of the concentration of the reaction product. For the pore-scale simulation, quantities (35)-(37) 566 

are computed by replacing  ,CC x t  in the corresponding expression with the section-averaged 567 

concentration  ,Cc x t . 568 

Figure 7a reveals that effective models 1-3 lead to an overestimation of the total mass of 569 

C for early times. These three models yield modest errors for long times (t > 300). This is 570 

consistent with the observation that the parameters of models 1-3 are estimated through the 571 

concentration of C at t = 448. Model 4 reproduces accurately the total mass of C for early times, 572 

while leading to a slight underestimation of the reference result for t > 200. All four continuum-573 

scale models underestimate the total reaction product by less than 10% at time t = 448. 574 

Figure 7b depicts the temporal evolution of the spreading of the reaction product C, as 575 

quantified through (36), and shows that the longitudinal spreading of the pore-scale 576 

concentration Cc  is underestimated by about 20% when considering models 1-3, model 4 577 
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underestimating it only by 10%. Comparison of the longitudinal profiles reveals that the 578 

inaccuracy associated with model 4 is due to an underestimation of spreading in the forward tail 579 

(see Figure 5f, x > 450). This may be explained by (i) the modeling error embedded in the 580 

approximations underlying the volume averaging procedure, and (ii) numerical inaccuracies 581 

related to the approximation of the closure problem (18)-(20) and of the integro-differential 582 

terms appearing in (15)-(21). With reference to the latter point, we note that while in this work 583 

we implement a standard numerical solver, the development of more sophisticated techniques for 584 

the treatment of integro-differential terms might improve the global performance of model 4. A 585 

detailed analysis of this aspect is beyond the scope of this contribution. The effective models 1-3 586 

underestimate spreading and do not provide a satisfactory interpretation of delayed 587 

concentrations of the reaction product C, even as these are explicitly considered in the model 588 

calibration procedure (see Figure 5f). 589 

Pore-scale results display some early time oscillations of the skewness coefficient (Figure 590 

7c). The latter attains a maximum value of 0.05 at t = 50. After this time the value of C  591 

associated with pore-scale concentration shows a sustained decrease until it attains negative 592 

values for t > 100. This result is consistent with the asymmetric pattern observed in Figure 5e-f. 593 

In particular, Figure 5f shows that for t = 448 the backward tail (x > 450) is characterized by a 594 

smaller average (spatial) gradient than the forward one (x < 450). The continuum models 1-3 595 

yield a positive value of C  within the whole considered time window. The non-negligible 596 

positive value of the skewness observed at early times for models 1-3 is due to the prescribed set 597 

of initial and boundary conditions. We observe that C  tends to zero for long times when we 598 

consider the effective models 1-3, i.e. the spatial distribution of CC  tends to become symmetric 599 
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around the peak, consistent with the structure of the implied Fickian dispersion picture (see also 600 

Figure 5f). Otherwise, results of the nonlocal model 4 are characterized by a negative skewness 601 

within most of the considered observation time frame. Even as model 4 underestimates the 602 

values of C  rendered by pore-scale simulation, it allows capturing the left tailed behavior of CC603 

. This result is associated with the two features which distinguish model 4 with respect to the 604 

effective models 1-3, i.e., (i) the nonlocal nature of the embedded dispersive transport term, and 605 

(ii) the dependence of the reaction term on space and time. 606 

Results of Figure 7 suggest that considering a non-Fickian dispersion model is critical to 607 

capture the evolution in time of spreading and of the asymmetry displayed by the longitudinal 608 

distribution of the reaction product . This result is consistent with the findings of Edery et al. 609 

(2009, 2010) and Alhashmi et al. (2015). We note that Figure 7a suggests that models based on a 610 

Fickian model assumption can interpret the time evolution of the total reaction product mass 611 

(corresponding to M0C) with a reasonable accuracy, even under a pre-asymptotic transport 612 

regime, as previously shown by Sanchez-Vila et al. (2010). 613 

Finally, we observe that models 2, 3 and 4 predict very similar peak values of CC  at t = 614 

448 (Figure 5e-f), in spite of the very different structure exhibited by the reaction terms in the 615 

three models. This is a remarkable result, also considering that previous studies identify the peak 616 

concentration of C as a key indicator of incomplete mixing in the considered setting (e.g., 617 

Chiogna and Bellin, 2013; Sanchez-Vila et al., 2010). We emphasize that the profiles associated 618 

with models 2 and 3 are obtained through calibration against data of Cc 
 (see Figure 5f) while 619 

model 4 leads to a very similar result directly embedding available information on pore-scale 620 

geometry and velocity field, i.e. without the need for any adjustable parameter. The reaction 621 
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product concentration profile rendered by model 4 shows a change in concavity in the vicinity of 622 

the concentration peak for short times (see, e.g., Figure 5e, related to x ≈ 70). This behavior is 623 

likely due to the numerical discretization of the integro-differential terms of the model. This 624 

observation is also supported by considering that this feature vanishes for long times (see Figure 625 

5f). 626 

5. CONCLUSIONS 627 

We consider an irreversible homogeneous reaction taking place in a two-dimensional 628 

disordered porous medium where pore-scale geometry and velocity are known and study the 629 

reactive transport regime characterized by 1Da Pe , corresponding to a fast reaction taking 630 

place under advection dominated conditions. We simulate the reactive transport process at pore-631 

scale and we consider the pore-scale numerical results as calibration and validation data for 632 

continuum-scale models. 633 

We consider three effective models already presented in the literature which require 634 

calibration against observed concentration profiles. Our results show that estimates of effective 635 

reaction parameters describing incomplete mixing can be remarkably sensitive to the type of 636 

concentrations one employs for model calibration, i.e., parameter estimates can be different 637 

depending on whether the concentration of the reaction product or of one of the two reactants is 638 

employed. This suggests that none of these models include a robust description of the way the 639 

totality of pore-scale processes are transferred to continuum-scale formulations in the porous 640 

medium we investigate. The estimated parameter values which model the effect of incomplete 641 

mixing in the reaction term are characterized by large uncertainty when we employ the 642 

concentration of the injected reactant for model calibration. This result suggests that information 643 
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on concentration of the reaction product is required for a reliable (continuum-scale) 644 

characterization of incomplete mixing in the considered setting. 645 

We numerically solve a continuum-scale nonlocal model resulting from an upscaling of 646 

the reactive transport setting considered via volume averaging. This model allows predicting the 647 

longitudinal distribution of the reactants and of the reaction product without the need of any 648 

adjustable parameter, solely requiring available information on pore-scale geometry and velocity. 649 

This model is computationally intensive, as compared to the remaining three effective models we 650 

analyze, but allows interpreting specific features observed from direct averaging of the pore-651 

scale numerical solution, such as the non-Fickian transport behavior of the invading reactant B 652 

and the asymmetric shape of the reaction product concentration profile.  653 

The considered two-dimensional porous system is characterized by a geometry which 654 

includes large cavities where the reactant A, initially residing in the system, is trapped for long 655 

times. All considered continuum-scale models fail to reproduce residual (normalized) 656 

concentrations of A in the system below values of about 3-5%. As a consequence, they are not 657 

able to capture the details of the system behavior at large residence times associated with the 658 

presence of minute values of trapped mass of solute A. It might be possible that the use of 659 

double- or multi-continuum formulations of this reactive transport setting lead to improved 660 

interpretation of this specific feature. This aspect will be investigated in future contributions. 661 
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  Model 1 Model 2 Model 3 

Data  D D 0̂  M D 

Bc 
 

Best estimate 698 678 0.16 0.08 510 87 

p  50 45 2.23 0.25 46 149 

JBmin 0.0102 0.0093 0.0194 

Cc 
 

Best estimate 388 423 0.04 0.76 415 2.08 

p  36 56 1.019 0.24 34 1.36 

JCmin 0.0102 0.0071 0.0071 

Table 1: Results of effective model calibration: best estimate of model parameters, related 763 

standard deviation p , as evaluated through the diagonal entries of Q (32), and associated 764 

minimum values of metrics (30)-(31). 765 
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 768 

FIGURES 769 

  770 

Figure 1. Distribution of velocity ˆˆ /Uu u  within a unit cell  . Areas enclosed by the white 771 

dotted circles correspond to cavities characterized by low velocity. 772 
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 774 

Figure 2. Snapshot of the pore-scale concentration fields cA, cB and cC at time t = 448. 775 
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 777 

Figure 3. Temporal evolution of the effective dispersion coefficient DU (16) (continuous curve, 778 

left vertical axis) and of B2 (26) (dashed curve, right vertical axis). 779 
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 781 

Figure 4. Model calibration results: concentration profiles resulting from model calibration 782 

(continuous curves) against data sets Bic 
 (a-b) and Cic 

 (c-d); calibration data Bic 
 (black symbols 783 

in a) and Cic 
 (black symbols in d) and section-averaged concentrations resulting from pore-scale 784 

simulations (grey points)  785 
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 787 

Figure 5. Comparison between section-averaged pore-scale concentrations and continuum-scale 788 

model results obtained for reactants A (a-b), B (c-d) and reaction product C (e-f), for 789 

dimensionless times t = 47 (left column: a,c,e) and t = 448 (right column: b,d,f). Results of 790 

models 1-3 are obtained through model calibration on Cic 
 data (black symbols in f). Insets in c-d 791 

display a zoom (in semi-logarithmic scale) of the regions identified by the dot-dashed boxes. 792 
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 794 

 795 

Figure 6. Temporal evolution of (a) flux-weighted concentration of reactant B (BTCB) at XM = 796 

300 and (b) residual concentration of species A (RCA) evaluated with XM = 300. 797 
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 799 

 800 

Figure 7. Temporal evolution of (a) the total mass, (b) spreading and (c) skewness associated 801 

with the spatial distribution of the reaction product C as given by the considered continuum-scale 802 

models (lines) and pore-scale simulation (symbols). 803 
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