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Abstract Learning Classifier Systems (LCSs) are rule-based systems that auto-
matically build their ruleset. At the origin of Holland’s work, LCSs were seen as
a model of the emergence of cognitive abilities thanks to adaptive mechanisms,
particularly evolutionary processes. After a renewal of the field more focused
on learning, LCSs are now considered as sequential decision problem-solving
systems endowed with a generalization property. Indeed, from a Reinforcement
Learning point of view, LCSs can be seen as learning systems building a compact
representation of their problem thanks to generalization. More recently, LCSs have
proved efficient at solving automatic classification tasks. The aim of the present
contribution is to describe the state-of-the-art of LCSs, emphasizing recent devel-
opments, and focusing more on the sequential decision domain than on automatic
classification.

Key words Learning Classifier Systems, Reinforcement Learning, Generaliza-
tion

1 Introduction

All Learning Classifier Systems (LCSs) 1 have in common that they are rule-based
systems able to automatically build the ruleset they manipulate. Invented in 1975
by John Holland (Holland, 1975), these systems are paradoxically less famous than
Genetic Algorithms (GAs) though GAs were originally a sub-part of LCSs. How-
ever, during the past several years LCS research has gained more visibility, giving

Correspondence to: Olivier.Sigaud@lip6.fr,wilson@prediction-dynamics.com
1 The term Learning was added around 2000 so as to clearly distinguish this research line

from other, unrelated, systems that classify.
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rise to the opportunity of publishing a general presentation for a wide scientific
audience. The goal of this paper is to offer an overview of the fundamental aspects
of LCSs and of the recent developments they are giving rise to.

In order to reach that goal, we first present the two mechanisms on which they
rely, namely GAs and Reinforcement Learning (RL). Then we provide a brief
history of LCS research intended to highlight the emergence of three families
of systems: strength-based LCSs, accuracy-based LCSs, and anticipatory LCSs
(ALCSs). Afterward, in section 4, we present everything that is common to all
systems of these three families, from their representation formalism to their funda-
mental mechanisms. The next three sections are dedicated to the particular aspects
of each family, focusing particularly on the most recent theoretical and applied
extensions. We devote particular effort to the accuracy-based family whose main
member, XCS, is the most studied LCS at this time. Finally, we try to highlight
what seem to be the most promising lines of research given the current state of the
art, and we conclude with the available resources that can be consulted in order to
get a more detailed knowledge of these systems.

2 Background

2.1 Genetic Algorithms

First, we briefly present GAs (Holland, 1975; Booker et al., 1989; Goldberg, 1989),
which are freely inspired from the neo-darwinist theory of natural selection. These
algorithms manipulate a population of individuals representing possible solutions
to a given problem. GAs rely on four analogies with their biological counterpart:
they use a code, the genotype or genome, simple transformations operating on
that code, the genetic operators, the expression of a solution from the code, the
genotype-to-phenotype mapping, and a solution selection process, the survival of
the fittest. The genetic operators are used to introduce some variations in the geno-
types. There are two classes of operators: crossover operators, which create new
genotypes by recombining sub-parts of the genotypes of two or more individuals,
and mutation operators, which randomly modify the genotype of an individual.
The selection process extracts the genotypes that deserve to be reproduced, upon
which genetic operators will be applied.

A GA manipulates a set of arbitrarily initialized genotypes which are selected
and modified generation after generation. Those which are not selected are elimi-
nated. A utility function, or fitness function, evaluates the interest of a phenotype
with regard to a given problem. The survival of the corresponding solution or its
number of offspring in the next generation depends on this evaluation.

The offspring of an individual are built from copies of its genotype to which
genetic operators are applied. As a result, the overall process consists in the itera-
tion of the following loop:

1. select ne genotypes according to the fitness of corresponding phenotypes,
2. apply genetic operators to these genotypes to generate offspring,
3. build phenotypes from these new genotypes and evaluate them,
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4. go to 1.

If some empirical conditions that we will not detail here are fulfilled, such a
process gives rise to an improvement of the fitnesses of the individuals over the
generations.

Since research on GAs is now a field in itself, we will not survey it in this
paper. Though GAs are at their root, LCSs have made limited use of the important
extensions of this field. As a consequence, in order to introduce the GAs used in
LCSs, it is only necessary to describe the following aspects:

– One must classically distinguish between the one-point crossover operator,
which cuts two genotypes into two parts at a randomly selected place and
builds a new genotype by inverting the sub-parts from distinct parents, and
the multi-point crossover operator, which does the same after cutting the par-
ent genotypes into several pieces. Historically, most early LCSs were using the
one-point crossover operator. Recently, a surge of interest on the discovery of
complex ’building blocks’ in the structure of input data led to a more frequent
use of multi-point crossover.

– One must also distinguish between generational GAs, where all or an impor-
tant part of the population is renewed from one generation to the next, and
steady state GAs, where individuals are changed in the population one by one
without notion of generation. Most LCSs use a steady-state GA, since this less
disruptive mechanism results in a better interplay between the evolutionary
process and the learning process, as explained below.

2.2 Markov Decision Processes and Reinforcement Learning

The second fundamental mechanism in LCSs is RL. In order to describe this
mechanism, it is necessary to briefly present the Markov Decision Process (MDP)
framework and the Q-LEARNING algorithm, which is now the learning algorithm
most used in LCSs. This presentation is as succinct as possible; the reader who
wants to get a deeper view is referred to Sutton and Barto (1998).

2.2.1 Markov Decision Processes A MDP is defined as the collection of the fol-
lowing elements:

– a finite set S of discrete states s of an agent ;
– a finite set A of discrete actions a ;
– a transition function P : S ×A→ Π(S) where Π(S) is the set of probability

distributions over S. A particular probability distribution Pr(st+1|st, at) indi-
cates the probabilities that the agent reaches the different st+1 possible states
when he performs action at in state st ;

– a reward function R : S×A→ IR which gives for each (st, at) pair the scalar
reward signal that the agent receives when he performs action at in state st .

The MDP formalism describes the stochastic structure of a problem faced by
an agent, and does not tell anything about the behavior of this agent in its environ-
ment. It only tells what, depending on its current state and action, will be its future
situation and reward.
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The above definition of the transition function implies a specific assumption
about the nature of the state of the agent. This assumption, known as the Markov
property, stipulates that the probability distribution specifying the st+1 state only
depends on st and at, but not on the past of the agent. Thus P (st+1|st, at) =
P (st+1|st, at, st−1, at−1, . . . , s0, a0). This means that, when the Markov property
holds, a knowledge of the past of the agent does not bring any further information
on its next state.

The behavior of the agent is described by a policy π giving for each state the
probability distribution of the choice of all possible actions.

When the transition and reward functions are known in advance, Dynamic Pro-
gramming (DP) methods such as policy iteration (Bellman, 1961; Puterman and
Shin, 1978) and value iteration (Bellman, 1957) efficiently find a policy maximiz-
ing the accumulated reward that the agent can get out of its behavior.

In order to define the accumulated reward, we introduce the discount factor
γ ∈ [0, 1]. This factor defines how much the future rewards are taken into account
in the computation of the accumulated reward at time t as follows:

Rcπ(t) =
Tmax∑
k=t

γ(k−t)rπ(k)

where Tmax can be finite or infinite and rπ(k) represents the immediate reward
received at time k if the agent follows policy π.

DP methods introduce a value function V π where V π(s) represents for each
state s the accumulated reward that the agent can expect if it follows policy π from
state s. If the Markov property holds, V π is solution of the Bellman equation (Bert-
sekas, 1995):

∀s ∈ S, V π(s) =
∑

a

π(st, at)[R(st, at) + γ
∑
st+1

P (st+1|st, at)V π(st+1)] (1)

Rather than the value function V π , it is often useful to introduce an action-
value function Qπ where Qπ(s, a) represents the accumulated reward that the
agent can expect if it follows policy π after having done action a in state s. Every-
thing that was said of V π directly applies to Qπ , given that V π(s) = maxa Qπ(s, a).
The corresponding optimal functions are independent of the policy of the agent;
they are denoted V ∗ and Q∗.

2.2.2 Reinforcement Learning Learning becomes necessary when the transition
and reward functions are not known in advance. In such a case, the agent must
explore the outcome of each action in each situation, looking for the (st, at) pairs
that bring it a high reward.

The main RL methods consist in trying to estimate V ∗ or Q∗ iteratively from
the trials of the agent in its environment. All these methods rely on a general
approximation technique in order to estimate the average of a stochastic signal
received at each time step without storing any information from the past of the



Learning Classifier Systems: A Survey 5

agent. Let us consider the case of the average immediate reward. Its exact value
after k iterations is

Ek(s) = (r1 + r2 + · · ·+ rk)/k

Furthermore,

Ek+1(s) = (r1 + r2 + · · ·+ rk + rk+1)/(k + 1)

thus
Ek+1(s) = k/(k + 1)Ek(s) + rk+1/(k + 1)

which can be rewritten:

Ek+1(s) = (k + 1)/(k + 1)Ek(s)− Ek(s)/(k + 1) + rk+1/(k + 1)

or
Ek+1(s) = Ek(s) + 1/(k + 1)[rk+1 − Ek(s)]

.
Formulated that way, we can compute the exact average by merely storing k.

If we do not want to store even k, we can approximate 1/(k + 1) with α, which
results in equation (2) whose general form is found everywhere in RL:

Ek+1(s) = Ek(s) + α[rk+1 − Ek(s)] (2)

The parameter α, called learning rate, must be tuned adequately because it
influences the speed of convergence towards the exact average.

We do not detail all of the RL method relying on this estimation principle.
We only give the update equation of the Q-LEARNING algorithm, which is the
following:

Q(st, at)← Q(st, at) + α[rt+1 + γ max
a

Q(st+1, a)−Q(st, at)] (3)

3 Brief History of LCS

3.1 Pittsburgh versus Michigan

LCSs were invented by Holland (Holland, 1975) in order to model the emergence
of cognition based on adaptive mechanisms. They consist of a set of rules called
classifiers combined with adaptive mechanisms in charge of evolving the popula-
tion of rules. The initial goal was to solve problems of interaction with an envi-
ronment such as the one presented in figure 1, as was described by Wilson as the
“Animat problem” (Wilson, 1985).

In the context of the initial research on LCSs, the emphasis was put on paral-
lelism in the architecture and evolutionary processes that let it adapt at any time to
the variations of the environment (Golberg and Holland, 1988). This approach was
seen as a way of “escaping brittleness” (Holland, 1986) in reference to the lack of
robustness of traditional artificial intelligence systems faced with problems more
complex than toy or closed-world problems.
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Fig. 1 Representation of an interaction problem. The agent senses a situation as a set of
attributes. In this example, it is situated in a maze and senses either the presence (symbol
1) or the absence (symbol 0) of walls in the eight surrounding cells, considered clockwise
starting from the north. Thus, in the above example it senses [01010111]. This informa-
tion is sent to its input interface. At each time step, the agent must choose between going
forward [f], turning right [r] or left [l]. The chosen action is sent through the output
interface.

This period of research on LCSs was structured by the controversy between the
so-called “Pittsburgh” and “Michigan” approaches. In Smith’s approach (Smith,
1980), from the University of Pittsburgh, the only adaptive process was a GA ap-
plied to a population of LCSs in order to choose from among this population the
fittest LCS for a given problem.

By contrast, in the systems from Holland and his PhD students, at the Uni-
versity of Michigan, the GA was combined since the very beginning with an RL
mechanism and was applied more subtly within a single LCS, the population being
represented by the set of classifiers in this system.

Though the Pittsburgh approach is becoming more popular again currently,
(Llorà and Garrell, 2002; Bacardit and Garrell, 2003; Landau et al., 2005), the
Michigan approach quickly became the standard LCS framework, the Pittsburgh
approach becoming absorbed into the wider evolutionary computation research
domain.

The first concrete implementation of Michigan style LCS, called “CS1”, was
published by Holland and Reitman (Holland and Reitman, 1978). This first, rather
complex model is described in figure 2. The GA creates new classifiers from the
existing ones. The fitness of a classifier is measured by its capacity to propose
an efficient action in adequate situations. This efficacy itself is evaluated by a RL
algorithm called BUCKET BRIGADE (Holland et al., 1986).

The presence of an internal message list can emulate memory mechanisms
when a message is kept on the list over several time steps. But some of the mech-
anisms have proved difficult to design, among them the internal message suppres-
sion process and the interactions between classifier evaluation and the evolution of
the population (Wilson and Goldberg, 1989).
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process
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Fig. 2 Architecture of Holland’s CS1 system, after Booker et al. (1989). The input interface
produces messages which are added to the internal message list. A set of production rules
called “classifiers” is applied to these messages to produce new messages by firing rules
whose [Condition] part matches with the original messages. Some messages are sent to the
output interface, giving rise to actions.

Given the difficulty of obtaining reliably convincing performance with diverse
versions of these systems, LCS research became less active in the 1980s. An his-
torical overview of the extension of these systems was published in Wilson and
Goldberg (1989).

3.2 The renewal

The first important evolution in the history of LCS research is correlated to the par-
allel progress in RL research, particularly with the publication of the Q-LEARNING
algorithm (Watkins, 1989).

Classical RL algorithms such as Q-LEARNING rely on an explicit enumeration
of all the states of the system. But, since they represent the state as a collection of
a set of sensations called “attributes”, LCSs do not need this explicit enumeration
thanks to a generalization property that we will describe later on. This general-
ization property has been recognized as the distinguishing feature of LCSs with
respect to the classical RL framework. Indeed, it led Lanzi to define LCSs as RL
systems endowed with a generalization capability (Lanzi, 2002).

An important step in this change of perspective was the analysis by Dorigo
and Bersini of the similarity between the BUCKET BRIGADE algorithm (Holland,
1986) used so far in LCSs and the Q-LEARNING algorithm (Dorigo and Bersini,
1994). At the same time, Wilson published a radically simplified version of the
initial LCS architecture, called ZCS 2 (Wilson, 1994), in which the list of internal
messages was removed.

2 Zeroth-level Classifier System.
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ZCS defines the fitness or strength of a classifier as the accumulated reward
that the agent can get from firing the classifier, giving rise to the “strength-based”
family of LCSs. As a result, the GA eliminates classifiers providing less reward
than others from the population.

After ZCS, Wilson invented a more subtle system called XCS (Wilson, 1995),
in which the fitness is bound to the capacity of the classifier to accurately predict
the reward received when firing it, while action selection still relies on the expected
reward itself. XCS appeared very efficient and is the starting point of a new family
of “accuracy-based” LCSs.

Finally, two years later, Stolzmann proposed an anticipatory LCS called ACS (Stolz-
mann, 1998; Butz et al., 2000) giving rise to the “anticipation-based” LCS family.
As we will show, this third family is quite distinct from the other two. Its scientific
roots come from research in experimental psychology about latent learning (Tol-
man, 1932; Seward, 1949). More precisely, Stolzmann was a student of Hoffmann
(Hoffmann, 1993) who built a psychological theory of learning called “Anticipa-
tory Behavioral Control” inspired from Herbart’s work (Herbart, 1825).

The extension of these three families is at the heart of modern LCS research.
Before closing this historical overview, we must add that, after a second survey
of the field (Lanzi and Riolo, 2000), a further important evolution is taking place.
Even if the initial impulse in modern LCS research was based on the solution of
sequential decision problems, the excellent results of XCS on data mining prob-
lems (Bernadó et al., 2001) have given rise to an important extension of researches
towards automatic classification problems, as exemplified by Booker (2000) or
Holmes (2002).

4 Fundamental aspects

In order to present model-free RL methods in the context of MDPs, let us adopt
the viewpoint of Lanzi (Lanzi, 2002), who proposes a nice framework that defines
LCSs as RL systems with generalization properties.

A simple implementation of the Q-LEARNING algorithm consists in building a
table called Q-table which contains < s, a, p > triples, where s and a represent the
state and action of the agent, and p the current estimate of the long term reward that
the agent can expect from this (s, a) pair. The process consists in adding an entry
to the table each time the agent carries out a new state-action pair, and updating
the value of p corresponding to the action performed in the current state according
to equation (3).

The problem with this tabular representation is that the table can grow to a
very large size. As Lanzi (2002) clearly explains, in order to avoid this problem,
one must use a different representation endowed with a generalization capability.
In practice, this can be done by using < c, a, p > triples where the c elements do
not stand for one single state anymore, but rather for a condition which will cluster
together all states for which this condition holds.

LCSs are characterized by their specific way of representing the conditions
c and by the processes they call upon for finding conditions giving rise to both
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compact and efficient representations. We will detail these features in the next
section.

4.1 Classifier Formalism

An LCS is composed of a population of classifiers. Each classifier is a triple <
c, a, p > containing a [Condition] part, an [Action] part, and an estimation of the
expected accumulated reward that the agent can get if it fires this classifier.

Formally, the [Condition] part of classifiers is a list of tests. There are as many
tests as attributes in the problem description, each test being applied to a specific
attribute. In the most common case where the test specifies a value that an at-
tribute must take for the [Condition] to match, the test is represented just by this
value. There exists a particular test, denoted “#” and called “don’t care”, which
means that the [Condition] of the classifier will match whatever the value of the
corresponding attribute. At a more global level, the [Condition] part of a classifier
matches if all its tests hold in the current situation. In such a case, the classifier can
be fired.

The first LCSs only used Boolean tests. In that case, each test takes its value
from {0, 1, #}. More recently, several systems have been extended to deal with
nominal values 3 or continuous values 4. In the continuous case, a test generally
specifies an interval in which the value of the attribute must lie so that the [Con-
dition] part matches. There are also LCSs in which the tests are expressed as a
symbolic condition called “S-expression” (Ahluwalia and Bull, 1999; Lanzi and
Perrucci, 1999). In the boolean and nominal case, the generalization property of
LCSs relies on the # symbol. Thanks to # symbols in the [Condition] part of
classifiers, two input situations are considered equivalent with respect to a given
classifier if the specified (non-#) values in the condition match the corresponding
attributes of the two situations. In the continuous case, a test is more general than
another if the specified interval of the first contains the specified interval of the
second.

After describing the representation manipulated by LCSs, we must present
their mechanisms. The general goal is to design an RL system; thus there will
be at its heart an action selection mechanism relying on the value of all actions in
different situations. Furthermore, these systems are endowed with a generalization
capability which relies on classifier population evolution mechanisms in order to
reach a satisfactory level of generality. We present both categories of mechanisms
in the next sections and we will show afterward that families of systems can be
distinguished by the way they deal with interactions between these mechanisms.

4.2 Action Selection

The set of classifiers whose [Condition] part matches the current situation is called
the “match-set” and denoted [M]. Furthermore, we denote by [A]—the “action-

3 For instance, MACS (Gérard et al., 2005).
4 For instance, XCSF (Wilson, 2001).
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set”—the set of classifiers in [M] which advocate the action a that is actually
chosen. Given the generalization property of classifiers, the [Condition] part of
several classifiers can match at the same time, while they do not necessarily specify
the same action. Thus, LCSs must contain an action selection mechanism which
chooses the action executed given the list of classifiers in [M]. In order to benefit
from RL properties, this mechanism must use the expected accumulated reward
of each classifier, but it must also include some trade-off between exploration and
exploitation. When presenting the different LCSs, we will describe the different
action selection and classifier evaluation mechanisms.

4.3 Classifier population evolution

Ensuring that each classifier reaches the ideal generalization level is a crucial con-
cern in LCSs. The system must find a population which covers the state space as
compactly as possible, without being detrimental to the optimality of behavior.
The mechanisms responsible for this property differ from one system to the other,
but they all rely on adding and deleting classifiers.

In strength-based and accuracy-based systems, generalization and specializa-
tion of classifiers are caused by a GA which evolves the classifiers’ [Condition]
parts. Compactness emerges from the competition between classifiers and the fact
that the population is limited. In the case of anticipation-based systems, more de-
terministic generalization and specialization heuristics are used, even if a GA is at
work in the generalization process in ACS2. We will describe the various classifier
creation and deletion mechanisms once we have presented the three main families
of modern LCSs.

5 Strength-based systems: ZCS

5.1 Presentation

Strength-based LCSs are the simplest ones. Each classifier contains only one eval-
uation variable which is both its estimation of the accumulated reward brought
by its firing and its fitness for the population evolution process. The most typi-
cal strength-based LCS is ZCS. It works with a classifier population of fixed size
P . A general view of the interaction between an agent controlled by ZCS and its
environment is shown in figure 3.

5.2 Action selection

In ZCS, once [M] is determined, the selection of the fired action is based on a
roulette wheel (Goldberg, 1989) mechanism which induces some exploration. In-
deed, instead of always firing the action specified by the strongest classifier in [M],
each classifier has a probability to be fired depending on its relative strength with
respect to the strength of all other classifiers in [M], and one classifier is chosen
randomly based on these probabilities.
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Fig. 3 In a strength-based LCS, classifiers are composed of a [Condition] part, an [Action]
part, and a value that is both the classifier fitness and its estimation of expected reward.
Among the classifiers, the system selects those whose [Condition] part matches the cur-
rent situation and chooses one classifier in that set with a roulette wheel mechanism. The
corresponding action is executed (in the example, the agent executes [001].

5.3 Classifier evaluation

The reward propagation mechanism in ZCS is close to the original BUCKET BRIGADE
algorithm (Holland, 1986), but it differs by the fact that there is no bidding process.
More precisely, there is a three-step process. First, all classifiers which advocated
the action at−1 chosen at the previous time step share equally a fraction γ.α of the
sum of the values of classifiers in [A]. Second, all classifiers in [A] share equally
a fraction α of the reward rt received for executing at. Last, the value of all clas-
sifiers in [M] which do not belong to [A] is reduced with a tax τ . This mechanism
is closer to SARSA (Sutton, 1996) than to Q-LEARNING (Watkins, 1989).

5.4 Classifier Creation and Deletion

In ZCS, the evolution of the classifier population is driven by a GA and a covering
operator.

– At each time step, there is a probability p of running the GA. If it is run, the
GA uses a roulette wheel mechanism based on fitness to choose two classifiers
from the global population. Two offspring of these classifiers are generated
thanks to a one-point crossover operator and a mutation operator. The initial
fitness of the offspring is the average of the fitness of their parents. They re-
place in the population two classifiers chosen by a roulette wheel mechanism
based on the inverse of the fitness.

– The covering operator is called each time [M] is empty or only contains clas-
sifiers whose fitness is Φ times weaker than the average fitness of the global
population. The operator adds to the population a new classifier matching the
current situation, whose action is chosen randomly and whose initial fitness is
equal to the average fitness of the population. Each test in the [Condition] part
can take the # value with a 33% probability.
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5.5 Parameters

For ZCS parameters, Bull and Hurst (2002) gives the following default values:
population size P = 400, initial fitness S0 = 20.0, learning rate α = 0.2, discount
factor γ = 0.71, tax τ = 0.1, GA firing rate p = 0.25, crossover rate Pc = 0.5,
mutation rate Pm = 0.002, covering operator firing rate Φ = 0.5.

5.6 Recent evolution

At the time of writing this survey, the last publication about ZCS internal processes
dates back to 2002 (Bull and Hurst, 2002), which can be interpreted as a decline
of research on strength-based LCSs in favor of accuracy-based LCSs. However,
more general works on the strength-based approach are still being published (Bull,
2004a, 2005).

Before this drop of interest, ZCS was extended in two directions in order to
solve problems where the Markov property does not hold: the addition of internal
registers (Cliff and Ross, 1994) and addition of a classifier-chaining mechanism
(Tomlinson and Bull, 1998). We will describe these extensions more accurately in
the context of XCS, to which they have also been applied.

Moreover, ZCS has been used in several applications. In particular, Bull (Bull,
1998, 1999) used it to represent trading agents in a simplified market, Cao (Cao
et al., 1999, 2001) used it to control traffic junction simulations and Miramontes Hercog
(Miramontes Hercog and Fogarty, 2002) used it to solve classical collective behav-
ior benchmarks.

The main drawback of ZCS is that overly general classifiers can be sustained
in the population and can result in the system taking suboptimal actions. Consider
a classifier that can fire (matches) both for an optimal action close to some reward
and a suboptimal action far from a reward. Its strength will be the average between
a high expected value and a low expected value. Unfortunately, this average can
be higher than the expected reward of a more specialized classifier specifying the
optimal action far from the reward. As a result, the GA will only keep the first
classifier while the second would be more useful for efficient behavior far from
the goal.

Bull and Hurst (2002) shows on a toy problem that, given well-chosen param-
eters this problem can be overcome, but this paper did not completely rescue ZCS,
because XCS proposes a more elegant solution to the same problem. This fact can
be seen as the reason for the preference for accuracy-based over strength-based
LCSs.

6 Accuracy-based systems: XCS

6.1 Presentation

XCS, invented by Wilson (Wilson, 1995) one year after ZCS, has been the most
studied and applied LCS for several years (Kovacs, 2002). The important research
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efforts concerned with this system have resulted in much improvement in both its
performance and in understanding the reasons for this performance. The reader can
find in Butz and Wilson (2002) a detailed algorithmic description of XCS and in
Butz et al. (2004) a synthesis of its underlying mechanisms and their interactions.

The central idea in XCS consists in decoupling the RL process and the popu-
lation evolution process by introducing a fitness function that is not proportional
to the expected reward, but to the accuracy of the prediction of this reward. The
classifiers that survive in the population are no longer necessarily those predicting
a large reward, but those accurately predicting the reward they receive, be it large
or small. As a consequence, an important difference between ZCS and XCS is that
the second keeps in its population classifiers firing far from a source of positive re-
ward, thus predicting a small reward, given that they do so accurately. As a result,
XCS covers the state space more efficiently than ZCS.

Moreover, the generalization process in XCS groups together in the same [Con-
dition] part situations for which the expected reward is similar. Otherwise, the pre-
diction could not be accurate. To learn more about the comparison between both
families, we refer to Kovacs (2004).

Beyond this first difference, the processes in XCS differ significantly from
those of ZCS. We will describe them more precisely in the following sections.

6.2 Action selection

Studies of XCS describe different ways of dealing with the compromise between
exploration and exploitation. In fact, XCS (as well as, in principle, ZCS) is neutral
with respect to action selection, and any of the methods seen in RL apply. Among
these, we can mention ε-greedy, alternation of pure exploration trials and pure
exploitation trials, or the roulette wheel process also used in ZCS. The choice of the
executed action can be done by treating each classifier separately, or by grouping
together all classifiers advocating for the same action in prediction arrays.

6.3 Classifier evaluation

The classifier evaluation algorithm is closer in spirit to Q-LEARNING than to
BUCKET BRIGADE. It relies on the estimation update process described in equa-
tion (2). The local RL process, applied only to the classifiers of [A], is the follow-
ing:

– the expected reward p is updated given the immediate reward received r in the
following way: p← p + β(r − p),

– then the prediction error corresponding to this expectancy is updated: ε ←
ε + β(|r − p| − ε)

– the raw prediction accuracy is derived: k =
{

1 if ε < ε0
α( ε

ε0
)−ν otherwise where

ν > 0.
– the relative prediction accuracy is computed with respect to its value for other

classifiers of [A]: k′ = kP
x∈A kx
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– finally, the fitness f of classifiers is derived: f ← f + β(k′ − f)

In sequential decision problems, Butz obtained a significant performance improve-
ment by replacing the algorithm above by a gradient descent technique (Butz et al.,
2003a).

6.4 Classifier Creation and Deletion

As in ZCS, the creation of classifiers relies both on a GA and a covering operator.
But, in contrast with ZCS, in XCS the GA is applied in [A] rather than in the global
population. This induces a competition between classifiers matching the same sit-
uations rather than a global competition. The GA is run each θGA time steps. The
parents are chosen according to a roulette wheel process with a probability pro-
portional to their fitness. Recently, Butz (Butz et al., 2003b) obtained a significant
performance improvement using tournament selection instead of roulette-wheel,
in both single-step classification tasks and in multi-step, sequential decision tasks.

Two offspring of the chosen parents are inserted in the global population, after
the application of a mutation operator that can be either non-directional or guided
by the current input. Mutation is said to be “guided” when one test cannot mutate
toward a value different from the corresponding value in the current input.

The covering operator adds classifiers when some actions are absent from [M].
These classifiers specify the missing actions, and their [Condition] part matches
the current input, after generalization by adding some # tests with a probability
P# for each test.

In XCS, the global population size is bounded. When new classifiers are added,
if the size limit is reached, a corresponding number of classifiers must be deleted.
The deletion process is based on an estimation of the average size of the action
sets in which each classifier is involved. A classifier is selected by a roulette wheel
process based on this estimation and deleted. In order to estimate the average size
of the action sets in which a classifier is involved, the estimation process updates
an estimator as according to the classical technique described by equation (2) each
time the classifier is involved in an action set: as = as + β(size− as) where size
is the size of the current action set.

Two additional processes control the population size in XCS.

– Given that the creation of classifiers can generate classifiers identical to already
existing ones, then rather than keeping several identical classifiers in the pop-
ulation, which would not be efficient from a memory and computation time
viewpoint, XCS uses a notion of macro-classifier which associates to each
classifier a numerosity N corresponding to the number of exemplars in the
population. The population size bound is reached if the sum of numerosities is
higher than the bound.

– There is an optional subsumption process which favors generalization of clas-
sifiers within the population. Each time a new classifier is created, this process
checks whether the population contains a sufficiently accurate classifier which
subsumes (is logically more general than) the new classifier. If such a classi-
fier exists, instead of adding the new one to the population, the numerosity of
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the more general classifier is augmented. Though it favors generalization, this
additional process is computationally costly. As a result, it is not always used
in typical experiments with XCS.

6.5 Parameters

The standard parameter values in XCS are the following: population size P = 800
or P = 2000 depending on the problem, learning rate and estimation rate α = 0.1
and β = 0.2, GA firing interval θGA = 25, crossover rate ξ = 0.8, mutation rate
µ = 0.04, probability of # in covering P# = 0.6. See Butz and Wilson (2002) for
a more detailed parameter description.

6.6 Recent evolution

Some recent improvements in XCS have already been described in the previous
sections, namely the incorporation of tournament selection in the GA (Butz et al.,
2003b) and the gradient descent approach to classifier evaluation (Butz et al.,
2003a). We must add that, very recently, Butz and collaborators (Butz et al., 2006)
have shown that importing recent techniques from the evolutionary computation
literature to efficiently detect building blocks (Goldberg, 1989) in the [Condition]
part of classifiers can improve the performance of XCS when such building blocks
are present in the structure of the problems.

Further, other extensions result in an increased application domain for XCS.
The oldest of these extensions are devoted to problems where the Markov property
does not hold. In particular, the perceptual aliasing problem, where two or more
different underlying states of the environment have the same appearance to the
system, is the most studied.

The two main ways of dealing with this problem are classifier chaining and
internal register management. In the first case, implemented in CXCS (Tomlinson
and Bull, 2000) after ZCCS (Tomlinson and Bull, 1998) which relied on ZCS,
the system chains classifiers leading up to an ambiguous situation so as to avoid
deciding in the ambiguous context.

In the second case, implemented in XCSM and XCSMH (Lanzi, 1998) af-
ter ZCSM (Cliff and Ross, 1994) which relied on ZCS, classifiers incorporate in
the [Condition] part some additional tests on the value of an internal register, and
this value is modified by additional information in the [Action] part. The adaptive
mechanisms must make sure that the value of the internal register reliably discrim-
inates between different aliased situations. For a more detailed description of all
mechanisms dedicated to the solution of the perceptual aliasing problem in LCSs,
see Landau and Sigaud (2006).

Other extensions of XCS deal with continuous state and reward spaces. With
XCSR (Wilson, 2000), Wilson proposed to represent continuous state spaces with
tests checking if the real number corresponding to the value of an attribute is in-
cluded in an interval in IR. In XCSR, the intervals are coded with two real num-
bers representing the center of the interval and the spread around this center. Later,
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Stone and Bull (2003) showed that this representation was inducing a bias detri-
mental to the generality of the system and proposed another representation where
the real numbers specify the bounds of the interval in any order. In parallel, Wilson
proposed in (Wilson, 2004) an extension of XCS to the management of rewards
that are a continuous function of a continuous state.

In line with these works about continuous representations, one of the most
active research trends in the domain of XCS extension results from Wilson’s theo-
retical account of XCS as a generic function approximator. The resulting system,
XCSF (Wilson, 2001), is at the heart of several studies and extensions, one of the
most recent being Lanzi et al. (2006).

7 Anticipation-based systems: ALCSs

7.1 Presentation

Although they share a number of common characteristics with standard LCSs,
ALCSs deviate from the classical framework on one fundamental point. Instead
of [Condition] → [Action] classifiers, they manipulate [Condition] [Action] →
[Effect] classifiers. The [Effect] part represents the expected effect (next state) of
the [Action] part in all situations that match the [Condition] part of the classifier.
Such a set of classifiers constitutes what is called in the RL literature a model
of transitions. Since they learn a model of transitions, ALCSs are an instance
of model-based RL 5 architecture, a category of systems whose prototype is the
DYNA architecture (Sutton, 1990). As a result, ALCSs can be seen as combin-
ing two crucial properties of RL systems. Like DYNA architectures, they learn a
model of transitions, which endows them with anticipation and planning capabil-
ities and speeds up the learning process. Like classical LCSs, they are endowed
with a generalization property, which lets them build much more compact models
than tabular DYNA architectures (Gérard and Sigaud, 2003).

Historically, it seems that Riolo (Riolo, 1991) was the first to publish an LCS
endowed with an explicit anticipation capability. His system, CFSC2, was directly
inspired by the original LCS architecture of Holland (Holland and Reitman, 1978)
with internal messages.

The first ALCS designed after Wilson’s simplifications of the original LCS ar-
chitectures (see section 3) was ACS (Stolzmann, 1998; Butz et al., 2000). Central
to ACS, the ALP (Anticipatory Learning Process) algorithm is the formal coun-
terpart of Hoffmann’s psychological theory of Anticipatory Behavioral Control
(Hoffmann, 1993). ACS was later extended by Butz to become ACS2 (Butz, 2002).
In parallel, Gérard proposed YACS (Gérard et al., 2002) and MACS (Gérard et al.,
2005).

In ACS, ACS2 and YACS, the [Effect] part of each classifier tells which at-
tributes do change and which do not. To represent that, the [Effect] parts can con-
tain a “=” symbol, which means that the corresponding attribute does not change.
For instance, applied to the situation [1031], the classifier [#0#1] [0] [=10=]

5 Or indirect RL
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predicts that the situation resulting from the application of action [0] will be
[1101]. Applied to [2011], it predicts [2101]. This formalism is able to rep-
resent regularities such as “when the agent perceives a wall to the north, what-
ever it perceives in any other direction, going north does not produce any sen-
sory change”, which is represented by the following classifier: [1#######]
[North] [========].

By contrast, MACS can represent regularities between different attributes with
a classifier such as [#1#######] [East] [1????????], where the “?”
symbol means that the classifier cannot predict the value of the considered at-
tribute. The addition of this new symbol results in the capacity to predict sepa-
rately the value of different attributes at the next time step. In the case of MACS,
the authors chose to predict the value of one attribute only in each [Effect] part.

Experimental results on model compactness and convergence speed of MACS
have shown that it builds a slightly more compact model than YACS, which builds
models four times more compact than ACS (Gérard et al., 2005). Furthermore,
MACS builds this model three times faster than YACS, and nine times faster than
ACS in number of time steps. Thanks to these improvements, MACS can deal with
much more complex problems than the other ALCSs. Offsetting this is that the
algorithmic description of MACS is more complex. Furthermore, some heuristics
in MACS are designed for deterministic problems rather than stochastic ones. As
a result, the application domain of MACS is more restricted.

In the following sections, we focus on the processes of MACS, showing in
what respect they differ from those of the other systems.

7.2 Action selection

ACS, ACS2 et YACS use classical solutions to deal with the exploration versus ex-
ploitation trade-off. By contrast, in order to efficiently explore large size problems,
MACS combines three criteria:

– the agent first chooses actions bringing more information about the transitions
that have not been tried enough;

– then, if the best actions are equivalent with respect to the first criterion, it
chooses actions bringing more external reward, as any RL system does;

– finally, if the best actions are equivalent with respect to the first and second
criteria, it chooses actions that have not been tried for the longest time, so as
to handle non-stationary environments as efficiently as possible.

7.3 Classifier evaluation

In MACS, an immediate reward function and an iterative propagation process are
associated with all criteria defined above. The propagation process converges to the
expected reward only if the model of transitions is accurate enough. This is why
MACS favors exploration first. The architecture of MACS clearly distinguishes
two aspects of classifier evaluation:
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– first, the values corresponding to the three previous criteria are associated with
each (situation, action) pair;

– second, classifiers themselves incorporate some accuracy indicators driving the
population evolution process as described hereafter.

7.4 Classifier Creation and Deletion

In order to obtain a model of transitions as general, accurate and compact as pos-
sible, ALCSs generally rely on the combination of two heuristics:

– a specialization heuristic is applied to inaccurate classifiers;
– a generalization heuristic is applied to overspecialized classifiers.

When appropriate, the combination of both heuristics results in the conver-
gence of the population to a maximally general and accurate set of classifiers.

For the specialization process, all ALCSs rely on the same idea: when a general
classifier oscillates between correct and incorrect predictions, it is too general and
must be specialized. Its [Condition] part must be modified so as to match only in
situations where its prediction is correct. ACS, ACS2 and YACS randomly choose
a # test and change it into a specialized test, whereas MACS uses a further heuristic
to efficiently choose the most appropriate # test to be specialized.

The generalization process is more complex. In ACS and ACS2, a GA is used
to replace specific classifiers with more general ones. In YACS and MACS, a more
complex algorithm relies on the estimated accuracy of classifiers to determine ra-
tionally if generalization will result in an improvement or not. We refer to the
papers on each of these systems for a more detailed description of these processes
and the corresponding parameters.

7.5 Recent evolution

In YACS and MACS, the systems were looking for the optimal generalization
rate only in the model of transitions, without generalizing the reward model or the
value function model. The last two models are represented by a table giving a value
for each encountered state, which is detrimental to the compactness argument in
favor of these systems. Recently, Butz (Butz and Goldberg, 2003) proposed XACS
which also generalizes the value function in ACS2, by using XCS.

The most active research trend in this domain consists in trying to extend XCS
in order to endow it with explicit anticipatory capabilities, but there is no convinc-
ing result so far. In addition, the natural continuation of ALCS research relies in
the Factored MDP domain, as we will describe in the next section.

8 Trends and future directions

The modern LCS research community is still small, but rapidly expanding. This
expansion should result in a better exploitation of the suitability of LCS for ap-
plication in complex real-world problems, due to their high power of expression
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combined with a very readable formalism for the human expert. Indeed, quite para-
doxically, there have been few publications about industrial applications of LCSs.
Note that Bull (2004b) is dedicated to this question, however. Moreover in France,
several specific LCS architectures have been used to solve complex sequential de-
cision problems in video games (Sanza, 2001; Sanchez, 2004; Robert, 2005). Fur-
thermore, as we mentioned in the introduction of this paper, outstanding results of
XCS on automatic classification problems (Bernadó et al., 2001) have induced an
important applied research effort in the data mining domain (Holmes, 2002).

In more theoretical directions, two important trends can be distinguished. First,
the numerous research works dedicated to the improvement of XCS are combined
with theoretical investigations which improve the understanding of the efficiency
of its underlying mechanisms. Such investigations benefit from parallel progress
in the theoretical analysis of evolutionary approaches (Poli and Langdon, 1998),
but this research trend is far from exhausted (Drugowitsch and Barry, 2006).

Second, on the RL side, the recent discovery of the Factored MDP framework
(Boutilier et al., 1995) raises a serious hope of convergence between the LCS com-
munity and the much wider RL community. Indeed, in this theoretical framework,
the state is represented as a collection of random variables (Boutilier et al., 2000),
which exactly corresponds to the LCS representation formalism, each test of the
[Condition] part corresponding to one random variable (Sigaud et al., 2004). The
generalization property of LCSs is equivalent to the factorization property of the
new theoretical framework.

But, whereas research on Factored MDPs is restricted to the resolution of plan-
ning problems, with the model of transitions being given in advance, LCSs and
particularly ALCSs do learn the model of transitions simultaneously with deter-
mining an optimal policy. Thus they solve true RL problems. Directly inspired by
previous work in ALCSs, Degris et al. have recently published some work about
learning the model of transitions in the standard Factored MDP framework (De-
gris et al., 2006a,b), which may constitute a step towards the convergence of both
research trends and should give rise to further research efforts in the future.

9 Conclusion

In this paper, we have presented Learning Classifier Systems, which add to the
classical Reinforcement Learning framework the possibility of representing the
state as a vector of attributes and finding a compact expression of the representa-
tion so induced. Their formalism conveys a nice interaction between learning and
evolution, which makes them a class of particularly rich systems, at the intersec-
tion of several research domains. As a result, they profit from the accumulated
extensions of these domains.

We hope that this survey has given to the interested reader an appropriate start-
ing point to investigate the different streams of research that underlie the rapid
evolution of LCS. In order to further study the different topics treated here, new
resources have become available since Kovacs (2002), which surveyed the field in
2001. In particular, a key starting point is the website dedicated to the LCS com-
munity, which can be found at the following URL: http://lcsweb.cs.bath.ac.uk/.
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A more detailed view of recent extensions can be found in the proceedings of
the IWLCS workshops (Lanzi et al., 2000, 2001, 2002a,b; Stolzmann et al., 2002)
and GECCO conferences (Banzhaf et al., 1999; Whitley et al., 2000; Spector et al.,
2001; Langdon et al., 2002; Cantu-Paz et al., 2003; Deb et al., 2004; Beyer et al.,
2005), which bring together each year most of the work dedicated to this research
domain 6.
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