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Abstract

The automated design of the controller of software agents embedded in an environ-
ment is an important class of problems addressed in information sciences. In that
class of problems, the case where agents face perceptual aliasing problems is par-
ticularly di�cult. Within the evolutionary and adaptive approaches to controller
design, there are several families of systems capable of dealing with such problems.
This paper is devoted to a comparison of the way perceptual aliasing problems are
solved by one family, namely Learning Classi�er Systems, compared to our own
model, ATNoSFERES. We present this model based on an indirect encoding Ge-
netic Algorithm which builds Augmented Transition Network controllers, and we
compare it with di�erent Learning Classi�er Systems, namely XCSM (a memory-
based extension of the most studied Learning Classi�er System, XCS) and ACS (an
Anticipatory Learning Classi�er System). To solve perceptual aliasing problems, the
�rst uses an explicit internal state management mechanism while the second uses
a rule-chaining mechanism. To carry out our comparison, we apply these systems
to three di�erent benchmark experiments. Our results raise a discussion of the re-
spective properties of the mechanisms used by XCSM and ACS. Then we show that
ATNoSFERES is endowed with enough expressive power to represent the mech-
anisms used by the other two systems to deal with perceptual aliasing problems.
We conclude that ATNoSFERES provides a powerful framework to deal with such
problems.
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1 Introduction

The software design of decision making systems is a very general problem in
information sciences. Roughly speaking, this problem can be split into two
categories. First, there are single-step problems, where an agent must make
one classi�cation decision from some input. Data mining problems provide
good examples of this category. Second, there are multi-step problems, where
an agent must make a sequence of decisions in order to reach any arbitrary goal
in a given environment. In this paper, we will focus on the second category.

Designing decision making systems by hand is often di�cult, whether they
belong to the �rst category or to the second. So far, a lot of work has been de-
voted to engineering methods, architectures and theoretical frameworks whose
purpose is to help human experts deal with these problems by hand. But in
recent years, more and more work is focusing on automated techniques able to
tune e�cient decision making systems while requiring less design e�ort from
human experts.

Evolutionary computing approaches are promising automated design tech-
niques, because they can be applied to a very wide range of application do-
mains with very few feedback from the applications and without any prior
domain-dependent knowledge on the problem. In this family of approaches,
Learning Classi�er Systems (LCSs) [18] are a family of systems based on evolu-
tionary and learning techniques where the decision making units are expressed
in the form of rules called �classi�ers�. This formalism makes them very ap-
pealing because the rules produced are generally easy to read, interpret, and
eventually modify.

While more and more LCSs are used to solve data mining problems, a lot of
LCSs are also used to solve multi-step problems, e.g. control agents involved
in a sensorimotor loop with their environment. Such agents perceive situations
through their sensors as vectors of several attributes, each attribute represent-
ing a perceived feature of the environment. As pointed out by [30], LCSs are
adaptive architectures based on Reinforcement Learning (RL) techniques [55],
but endowed with generalization capabilities. Thanks to an LCS, an agent
can learn the optimal policy � i.e. which action to perform in every situation,
in order to maximize a reward obtained from the environment. The policy is
de�ned by a set of rules � or classi�ers � specifying an action according to
some conditions concerning the perceived situation.
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Standard RL algorithms perform well in situations where the state of the
agent-environment interaction is always known without ambiguity. But in real-
world environments, it often happens that agents perceive the same situation
in several di�erent states, eventually requiring di�erent optimal actions, giving
rise to the so called �perceptual aliasing� problem. In such a case, the environ-
ment is non-Markov, and in general agents cannot perform optimally if their
decision at a given time step only depends on their perceptions at the same
time step.

There are several attempts to apply LCSs to non-Markov problems, relying
on di�erent approaches to the problem. In this paper, we will focus on two
approaches: an explicit internal state management mechanism, implemented
in XCSM and XCSMH [29], and a classi�er-chaining mechanism implemented
in ACS [50]. So far, there has been no direct comparison between the two kinds
of approaches. One of the side-e�ects of this paper is to provide an indirect
comparison through a comparison to our own system, ATNoSFERES.

In previous papers [24,26�28], we have presented a new framework, ATNoS-
FERES, also used to automatically design the behavior of agents and able to
cope with non-Markov problems. ATNoSFERES relies on a pure evolutionary
approach instead of the combination of evolutionary and learning techniques
used in classical LCSs, but the resulting graph-based representation is seman-
tically very similar to the LCS representation, raising the opportunity of a
detailed comparison between the two classes of systems. In this paper, we will
show that our approach to the perceptual aliasing problem in ATNoSFERES
is endowed with enough expressive power to represent explicit internal state
management mechanisms as well as classi�er-chaining mechanisms. Thus we
will use ATNoSFERES as a tool to compare the mechanisms in a uni�ed frame-
work and claim that our system can express more e�cient solutions than the
two others taken separately. But we will also mention that compared to the
LCSs studied here, ATNoSFERES takes more time to �nd the solutions.

In the next section, we present the features and properties of the ATNoS-
FERES model in the general context of evolutionary techniques. Then we em-
phasize the formal similarity between the representations in ATNoSFERES
and in LCSs, and we present in more detail the di�erent approaches used in
LCSs to cope with non-Markov problems.

Next, we provide new experimental comparisons di�ering from the previously
published ones in several respect: we make comparisons with new systems
and the encoding language is smaller than in previous papers, resulting in a
more e�cient exploration. First, we compare ATNoSFERES with XCSM and
XCSMH on theMaze10 problem, that was used as a benchmark by [29] to as-
sess the performance of XCSM and XCSMH. Then we compare ATNoSFERES
with ACS, relying on a study [38] on two distinct environments, E1 and E2.
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We claim that the study presented in this paper gives a �rst approach to a
more accurate understanding of some relevant properties of di�erent classes
of non-Markov problems.

From the results, we discuss the respective properties of explicit internal
state management mechanisms and classi�er-chaining mechanisms on di�erent
problems. Since ATNoSFERES has the power to express the two mechanisms,
we claim that it is able to choose the most suitable solution depending on the
characteristics of the problem. But we also have to discuss the fact that AT-
NoSFERES converges slower than the LCSs studied here on the benchmarks
tested in this paper. Thus we conclude that we should include on-line learning
mechanisms in our model, which is our goal for immediate future work.

2 Description of the ATNoSFERES model

2.1 The graph-building process

The control architecture provided by the ATNoSFERES model [24,42] involves
an ATN graph [63] which is basically an oriented, labeled graph with an initial
node (labelled Start) and a �nal node (labelled End). Nodes represent states
and edges represent transitions of an automaton. The graph describing the
behaviors is built from a genotype by adding nodes and edges to a basic
structure containing only the Start and End nodes.

There are many di�erent evolutionary techniques to automatically design
structures such as circuits [22], �nite-state machines [9], neural networks [65]
or program trees [20]. Very roughly, we can sketch three categories.

The �rst one uses the genotype as an encoding of a set of parameters for the
structure (using an evolutionary algorithm like Genetic Algorithm [16,7,12]
or Evolutionary Strategies [46]), which can give rise to �ne-grain evolution.
The problem with this approach is that the shape of the structures evolved
is directly limited by the number of parameters through which the algorithm
searches.

The second one identi�es the genotype with the structure evolved (e.g. Ge-
netic Programming [20,40] and Evolutionary Programming [9]). It can evolve
any structure of any shape, but because of the hierarchies and the dependen-
cies between parts of the structure, the genetic operators must be carefully
designed in order to produce correct o�spring structures, and this involves
strong biases in the way they explore the search-space. For example, when
one uses Genetic Programming, one must set a limit to the depth of the pro-
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duced program trees. The consequences of these biases are di�cult to evaluate,
and much theoretical work is actually involved in studying this problem [43].

The third one uses a genotype relying on a language to build the structure
(e.g. developmental program tree for neural networks [19,14,36]). This last
approach combines the advantages of giving rise to �ne-grain evolution of
the structure while imposing no limitation on the structure evolved, provided
that the genetic operators respect the syntactic rules of the language when
producing the o�spring.

Most of the languages used to build the structures are either rewriting rules
inspired from L-systems [35], or context-free grammars [4,5] for the given
structure. On the one hand, rewriting rules might be hard to control. For
instance, the structures evolved might grow exponentially, unless limited. On
the other hand, context-free grammars impose strict hierarchical constraints
on the syntax of the genotypes. When designing the genetic operators, these
constraints are easy to deal with thanks to the grammar. But during evolution,
these strict hierarchies prevent gradual evolution. As a matter of fact, if a
change occurs in a part of the genotype that is governed by a grammatical rule
close to the root of the context-free grammar, the constraints on grammatical
correctness will imply other major changes in the genotype.

In the ATNoSFERES model, we use a stack-based language [25]. Its gram-
mar is contextual and does not su�er from hierarchical string dependencies.
Therefore we do not face the problem presented above when designing the
genetic operators. Like some particular context-free grammatical approaches
(e.g. Grammatical Evolution [45]) that are nonetheless specialized on program
tree evolution, the interpreter accepts any genotype, and always produces a
correct structure. Furthermore, we do not need to put any limit (especially on
the genotype length), because, as we have reported in previous papers [24],
some implicit regulation mechanisms seem to operate.

As a consequence of our choices, the graph building process operates in two
steps (see �gure 1):

(1) Translation: The bitstring (genotype) is translated into a sequence of
tokens. Translation relies on a genetic code, i.e. a function

G : {0, 1}n −→ T (|T | ≤ 2n) (1)

where T is the set of possible tokens (the roles of di�erent tokens will
be described in the next paragraph). Depending on the number of to-
kens available, the genetic code might be more or less redundant. Binary
substrings of size n (decoded into a token each) are called �codons�.

(2) Interpretation: The token interpreter is fed with the token stream pro-
duced by the translator. The tokens are interpreted one by one as instruc-
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tions of a robust programming language, dedicated to graph building.
The interpretation of each successive token operates on a stack in which
parts of the future graph are stored. The construction of the graph takes
place during this interpretation process, by creating nodes and connec-
tions between nodes. As in other stack-based languages (e.g. Forth [41]
or PostScript [1]), the data in the stack can also be directly accessed by
some instructions other than push/pop operations (e.g. connect, dup: see
table 1) and if an instruction cannot be executed successfully, it is simply
discarded. When all tokens have been interpreted, the nodes (each one
carrying connections to other nodes) are popped from the stack and the
graph is ready to use.
Since any sequence of tokens is meaningful, the graph-building lan-

guage is highly robust to any variation a�ecting the genotype. Thus there
is no speci�c syntactical or semantical constraint on the genetic operators.
In addition, the sequence of tokens is to some extent order-independent
and a given graph can be produced from di�erent genotypes.

a

bitstring

b

tokens

translator

c

structure

interpreter

stack

Fig. 1. Principles of the genetic expression used to produce the behavioral graph
from the bitstring genotype. The string is �rst decoded into tokens (a), which are
interpreted in a second step as instructions (b) to create nodes, edges, and labels.
Finally, when all tokens have been interpreted, the unused conditions and actions
remaining in the stack are added to the structure and the structure is popped from
the stack (c).

Table 1 details the tokens that are used to build the graphs. There are three
categories of token:

• behavior tokens (actions, conditions) that are speci�c to the description of
a behavioral structure. These tokens are just pushed onto the stack.
• structure tokens (node, connect, ...) that perform atomic graph building
steps, eventually using tokens already in the stack. These tokens are inde-
pendent from the agent abilities.
• stack tokens (swap, dup, ...) that manipulate the stack. They are both in-
dependent from the agent abilities and from the structure built.
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token resulting actions

behavior tokens actions and conditions tokens, speci�c to the de�nition of behavior

condition? push the condition on the stack

action! push the action on the stack

structure tokens create nodes and connect them with edges

node create a new node and push it on the stack

connect create an edge from the �rst to the second node token a,

label the edge with the set of condition tokens and the list

of action tokens from the top to the second node,

delete the action and condition tokens that were used

startConnect create an edge from the Start node to the �rst node token,

label the edge with the set of condition tokens and the list

of action tokens from the top to the �rst node,

delete the action and condition tokens that were used

endConnect create an edge from the �rst node token to the End node,

label the edge with the set of condition tokens and the list

of action tokens from the top to the �rst node,

delete the action and condition tokens that were used

selfConnect b create an edge from the �rst node to itself

label the edge with the set of condition tokens and the list

of action tokens from the top to the �rst node,

delete the action and condition tokens that were used

defaultSelfConnect b create an edge for each node in the stack to itself

label the edges with the set of condition tokens and the list

of action tokens from the top to the �rst node,

delete the action and condition tokens that were used

stack tokens manipulate the stack

nop no action, the token is just discarded

swap swap the two �rst tokens

dup push a copy of the �rst action or condition token

del delete the �rst action or condition token

dupNode push a copy of the �rst node token

delNode delete the �rst node token c

popRoll pop the token, and put it on the bottom of the stack

pushRoll take the token from the bottom of the stack, and push it

a
if both nodes are copies of the same node, the result is a self-connected edge

b
additional token

c
if the stack contains copies of that node, the copies remain in the stack

Table 1
The graph building language. Here ��rst� (node, action or condition) refers to the
�rst (node, action or condition) token encountered while going down the stack. The
additional tokens are not strictly necessary since their e�ect might be obtained by
other means. They were introduced in ATNoSFERES in order to cope more easily
with generalization.

In [27], we demonstrated that the performance of ATNoSFERES could be
increased by using a new structure token, selfConnect, endowing our model
with the ability to build self-connecting edges from a node to itself more easily.
This new token has been used in all the experiments presented below.

2.2 Integration into an evolutionary framework

In this paper, the ATNoSFERES model is applied inside an evolutionary algo-
rithm to produce the controller of agents. Each agent has a bitstring genotype
from which it can build a control graph. The �tness of each agent is computed
by evaluating its behavior in an environment. Then individuals are selected
depending on their �tness and bred to produce o�spring.
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The genotype of the o�spring is produced by a classical crossover operation
between the genotypes of the parents. Additionally, we use two di�erent mu-
tation strategies to introduce variations into the genotype of new individu-
als: classical bit-�ipping mutations, and random insertions or deletions of one
codon. This modi�es the sequence of tokens produced by translation, so that
the complexity of the graph itself may change. Nodes or edges can be added
or removed by the evolutionary process, as can condition/action labels on the
edges.

To evaluate an agent, we use those graphs as follows (see also �gure 3):

• At the beginning (when the agent is initialized), the agent is at the Start
node (S).
• At each time step, the agent crosses an edge:
(1) It computes the set of eligible edges among those starting from the current

node. An edge is eligible when either it has no condition label or all the
conditions on its label are simultaneously true.

(2) An edge is chosen in this set. The �rst versions of ATNoSFERES were
choosing the eligible edges randomly, but then we found that a determin-
istic choice (e.g. choose the �rst edge in the list of eligible edges) yieldeld
better results. If the set is empty, then an action is chosen randomly over
all possible actions, the current node remains unchanged, and we do not
perform the next step.

(3) The actions on the label of the current edge are sequentially performed
by the system. Assuming that only one action can be performed at a
time, only the last action is actually performed. When the action part of
the label is empty, an action is chosen randomly. In all the experiments
described in this paper, the action part of all edges contains at most one
action, in order to simplify the comparison with LCSs.

(4) The new current node becomes the destination of the edge.
• The agent stops when it is at the End node (E). This node is a general
feature of our model and may never be reached. This appears to be the case
in all the following experiments (since agents reaching the End node stop
moving and thus have a very low �tness, see � 4).

3 LCSs, non-Markov problems, and ATNoSFERES

3.1 Learning Classi�er Systems

As explained in the introduction, LCSs are rule-based systems combining RL
algorithms with generalization capabilities. In the context of multi-step prob-
lems, the problems tackled by LCS are characterized by the fact that situa-
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Fig. 2. The sensorimotor loop with a standard LCS. The agent perceives the pres-
ence/absence (resp. 1/0) of blocks in each of the eight surrounding cells and must
decide towards which of the eight adjacent cells it should move. The agent perceives
[01010111] (starting north and rotating clockwise). Within the list of classi�ers
characterizing it, the LCS �rst selects those matching the current situation. Then,
it selects one of the matching classi�ers and the corresponding action is performed.

tions are de�ned by several attributes representing perceivable properties of
the environment. In this context, an LCS builds classi�ers so as to de�ne the
behavior of an agent as shown in �gure 2.

An historical presentation of research on LCSs can be found in [62] and [31].
Here, we will just present the modern view of LCSs resulting from the radical
simpli�cations achieved by Wilson in designing ZCS [60] and XCS [61].

In this view, an LCS evolves a population of classi�ers with a [Condition]

part, an [Action] part and some measure of the bene�t that the system can
draw from performing the action if the condition holds. Generally, this measure
is updated thanks to an RL algorithm and the population of classi�ers evolves
according to a Genetic Algorithm (GA) [12] using this measure as �tness
function. Within this framework, the use of �#� symbols in the [Condition]

part of the classi�ers results in a generalization capability, since don't care
symbols make it possible to use a single vector of symbols to describe several
situations 1 . Indeed, a don't care symbol matches any particular value of the
considered attribute.
1 For instance, in a binary language, [1#0] matches both [100] and [110].
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In most early LCSs [18], the �tness of each classi�er was de�ned directly
according to the expected utility associated to the classi�er. After having
de�ned a very simple LCS called ZCS, [60] found it more e�cient to use the
accuracy of the utility prediction rather than the expected utility itself. In
particular, this �tness measure results in a better coverage of the state space
since accurate classi�ers predicting a low reward far from the source of reward
will be kept. The resulting system, XCS [61], is now the most widely used LCS
in the context of Markov problems and data mining problems [2].

Anticipatory Learning Classi�er Systems (ALCSs) are a more recent family of
LCSs. The �rst ALCS, ACS, has been developed by [50] and then improved as
ACS2 by [3]. It di�ers from classical LCSs by adding to the [Condition] and
[Action] parts an [Effect] part that represents a perceptual anticipation
of the consequences of the action upon the environment. ACS relies on an
Anticipatory Learning Process (ALP) [50] and has been successfully applied
to both Markov [52] and non-Markov [51] environments.

The main feature of ACS with respect to standard LCSs is that their use
of anticipation make it possible to use some e�cient heuristics helping the
system to converge faster, though no explicit performance comparison has
been published yet. GÃ c©rard and Sigaud have proposed two ALCSs similar
to ACS, namely YACS [11] and MACS [10]. These systems have been shown
to be faster than ACS and to give rise to a more compact set of classi�ers,
but they are limited to Markov and deterministic environments.

3.2 Pittsburgh versus Michigan style

A LCS usually uses a GA to replace some classi�ers for improved performance.
But there are two di�erent ways of using GAs in this context, giving rise to
the distinction between Pittsburgh style LCSs (e.g. [49]) and Michigan style
LCSs (e.g. [17]).

In the Pittsburgh style, the GA evolves a population of controllers with their
whole list of classi�ers. The lists of classi�ers of di�erent controllers are com-
bined using crossover operators and modi�ed with mutations. The controllers
are evaluated according to a �tness measure and the more e�cient ones � with
respect to the �tness � are kept. Thus a Pittsburgh style LCS evolves a pop-
ulation of controllers. On the contrary, in the Michigan style, the GA evolves
a population of classi�ers belonging to a single controller: classi�ers are the
individuals combined and modi�ed by the GA. A �tness is computed for each
classi�er and the best ones are kept. Thus Michigan style LCSs use a GA to
perform online learning: the classi�ers are improved during the life time of
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the agent. Usually, such LCSs rely on utility functions that depend on scalar
rewards given by the environment, as de�ned in the RL framework (see [55]).

Most recent LCSs are Michigan style systems. As we will explain in the fol-
lowing sections, several research trends attempt to combine the advantages of
the Michigan approach with those of the Pittsburgh approach.

3.3 Learning Classi�er Systems on non-Markov problems

Dealing with simple [Condition][Action] classi�ers does not endow an agent
with the ability to behave optimally in perceptually aliased problems. In such
problems, it may happen that the current perception does not provide enough
information to always choose the optimal action: as soon as the agent perceives
the same situation in di�erent states, it will choose the same action though
this action may be inappropriate in some of these states (see �gure 4, page 17,
for an example).

In such a case, it is necessary to provide the system with more than just
current perceptions. In the general RL framework, several kinds of solutions
have been tested.

• The �rst one consists in adding explicit internal states to the perceptions
involved in the decisions of the system. This approach was used by Holland
in his early LCSs thanks to an internal message list [18]. But both [44]
and [48] reported unsatisfactory performance of Holland's system on non-
Markov problems. In the context of more recent LCS research, a di�erent
form of the explicit internal state solution was adopted by [6] in ZCSM and
by [33] in XCSM and XCSMH.
• The second one, memory window management, is a special case of explicit
internal state management where the internal state consists in an immediate
memory of the past. Some systems use a �xed size window (see [34] for a
review) while others use a variable size window (e.g. [37]). The next solution,
rule-chaining, can be seen as an alternative view of the variable size window
mechanism.
• The third one consists in chaining the decisions, making one decision depend
on the decisions previously taken, so as to use a memory of previous actions
to disambiguate the current situation. Among LCSs, this solution was used
in ZCCS [57], CXCS [56] and ACS [51].
• The fourth one consists in splitting a non-Markov problem into several
Markov problems, making sure that aliased states are scattered among dif-
ferent sub-problems. This solution has been investigated �rst by [59], and
then improved by [54]. To our knowledge, no LCS actually uses this solution,
despite its very interesting properties.
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• The last solution consists in building a �nite state automaton corresponding
to the structure of the problem, as [39] or [15] do, in a context where the
structure of the problem is known in advance. This is the solution chosen
in ATNoSFERES, but in a context where the agents do not know anything
about the structure of the problem before starting. To do so, we use a
Pittsburgh style evolutionary algorithm.

In the remainder of this section, we will examine more closely two strategies
that have been used to solve non-Markov problems in LCSs, namely Explicit
Internal State Management and Classi�er-Chaining.

3.3.1 Explicit Internal State Management

Shortly after the original ZCS [60] was published, an explicit internal state was
added [6] to ZCS. The resulting system was called ZCSM, where M stands for
Memory.

Following the same idea and suggestions already present in [61], Lanzi [29]
proposed XCSM as an extension of XCS with explicit internal states. XCSM
manages an internal memory register composed of several bits that explic-
itly represents the internal state of the LCS. The memory register provides
XCSM with more than just the environmental perceptions. Thus, dealing with
perceptual aliasing is made possible by adding information from the past ex-
perience of the agent. As a result of this addition, a classi�er contains four
parts: an external condition about the situation, an internal condition about
the internal state, an external action to perform in the environment and an
internal action that may modify the internal state.

The [Internal condition] and [Internal action] parts contain as many
attributes as there are bits in the memory register. In order to be selected
by the LCS, a classi�er must match with both the external and internal con-
ditions. When it is selected, the LCS performs the corresponding action in
the environment and modi�es the internal state if the internal action is not
composed only of don't change symbols �#�. When a classi�er is �red, a # in
the internal action results in not changing the corresponding bit in the mem-
ory register. XCSM bene�ts from generalization in the external condition (like
XCS), in the internal condition and also in the internal action.

Results obtained with XCSM on several benchmark environments were pre-
sented in [33], Maze10 (see �gure 4, p. 17) being the most di�cult. The very
poor performance of XCSM on complex non-Markov problems led Lanzi to
propose a further extension, XCSMH, where H stands for hierarchical. The
only di�erence between XCSM and XCSMH is that in the latter the dynamics
of the internal state is deterministic even during exploration, and that the
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internal state cannot change if the perceptions do not change. This minor
modi�cation resulted in a signi�cant improvement in performance (see [33]).

3.3.2 Classi�er-chaining mechanisms

LCSs that use a classi�er-chaining mechanisms are called corporate classi�er
systems. The �rst suggestion of a corporate classi�er system appears in [62].
The authors provide a critical review of early LCSs and express the need for a
good combination of Michigan and Pittsburgh approaches. After reviewing a
few earlier seminal works, the solution they suggest consists in creating �cor-
porations� of classi�ers by linking together classi�ers often �red in sequences.
To our knowledge, the corresponding system has never been implemented.

More recently, ZCCS, a corporate classi�er system inspired from [62] and based
on ZCS [60], has been implemented [57], probabilistically linking classi�ers into
�behavioral sequences�. In general, the length of the behavioral sequences is
arbitrarily limited to a given parameter. This solution is adequate for solving
perceptual aliasing problems since a behavioral sequence can result in bridging
aliased situations: the sequences that help solve perceptual aliasing problems
are sequences starting before the ambiguous states and ending after these
states have been crossed. Since the ambiguous states are hidden in sequences,
the agent never needs to guess what to do in an ambiguous context. The success
of this solution relies on the probabilistic nature of the sequence building
algorithm. Sequences providing a selective advantage (because they bridge an
aliased state) are kept, the others are discarded.

The same authors then proposed CXCS [56], a second corporate classi�er sys-
tem based on XCS. In [58], they experimented a lot of simple variations on
the original corporation mechanism, exploration rate and corporate represen-
tation. Unfortunately, they tested their systems mostly on Markov problems
and on a non-Markov hand-crafted �delayed reward task� that is too simple
to provide a serious benchmark for comparison.

On a di�erent line of research, another classi�er-chaining mechanism was used
in ACS in order to deal with non-Markov environments [51]. In that case, the
[Effect] part of a classi�er consisting in a behavioral sequence is intended to
represent the perceptual consequence of the sequence of actions. The mech-
anism is restricted to deterministic domains and applies classi�er-chaining
in particular situations, whereas CXCS forms many more connections so as
to �nd the relevant ones by chance. Despite its restricted use, its classi�er-
chaining mechanism makes ACS able to deal e�ciently with deterministic
non-Markov environments. In order to build behavioral sequences, a new pa-
rameter was added to ACS, namely �BSmax�. BSmax represents the maximal
length of the behavioral sequences that ACS may build.
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3.4 ATNoSFERES and LCSs
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Fig. 3. Using ATNoSFERES to control an agent. In this example, the agent, lo-
cated in a cell of the maze, perceives the presence/absence of blocks in each of the
eight surrounding cells. It has to decide towards which of the eight adjacent cells it
should move. From its current location, the agent perceives [E ¬NE N ¬NW ¬W ¬SW
S ¬SE] (token E is true when the east cell is blank). From the current state (node)
of its graph, two edges (in bold) are eligible, since the [Condition] part of their
label matches the perceptions. One is selected, then its action part (move east) is
performed and the current state is updated.

Like LCSs, ATNoSFERES binds conditions expressed as a set of attributes to
actions, and is endowed with the ability to generalize conditions by ignoring
some attributes. Indeed, an ATN such as those evolved by ATNoSFERES can
be easily translated into a list of classi�ers, either using an explicit internal
state or a classi�er-chaining mechanism. Whatever the LCS formalism, the
conditions associated with the edges correspond to the conditions of the clas-
si�ers and the actions associated to the edges correspond to the actions of the
classi�ers.

In the explicit internal state view, the nodes of the ATN play the role of inter-
nal states and endow ATNoSFERES with the ability to deal with perceptual
aliasing. The source and destination nodes of the edge correspond to internal
states.

In the classi�er-chaining mechanism, all edges can be translated into classi�ers
either independently from each other or in chains of any lengths, linking edges
ending in a node to another edge starting from the same node.
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Thus our model has the potential to express the di�erent mechanisms found
in LCSs listed above when confronted to non-Markov problems.

4 Experimental Comparisons

4.1 Experimental setup

All experiments presented in this paper take place in the context of non-
Markov multi-step problems. In order to carry out some comparisons, we use
benchmark experiments involving an agent looking for some food in a simple
maze-like environment (see �gures 4 and 6). We tried to reproduce an ex-
perimental setup as close as possible to that used in [29] to test XCSM and
XCSMH in the Maze10 environment and in [38] to test ACS in E1 and E2

environments, taking into account the speci�cities of our model. The same
setup has been applied to all the experiments presented in this paper.

4.1.1 Perception/Action abilities and Tokens

The agents used for the experiments can perceive the presence/absence of walls
or the presence of food in the eight adjacent cells of their environment, these
three perceptions being mutually exclusive. They can move in all adjacent
cells (the move will be e�ective if the cell is blank or contains food). Thus,
the genetic code includes 24 condition tokens and 8 action tokens that depend
on this particular setup. Additionally, it includes 7 stack manipulation tokens
and 4 node creation/connection tokens that are independent of the problem.
With respect to the encoding used in previous publications, we used a new 6
bit encoding to de�ne these 43 tokens. Previously we used either 7 bit long
tokens [28] or di�erent 6 bit long tokens [26,27]. Table 2 details the genetic
graph building code.

000000 swap 000001 swap 000010 swap 000011 swap

000100 dup 000101 dup 000110 dupNode 000111 dupNode

001000 del 001001 del 001010 delNode 001011 delNode

001100 popRoll 001101 popRoll 001110 pushRoll 001111 pushRoll

010000 node 010001 node 010010 node 010011 node

010100 connect 010101 connect 010110 connect 010111 connect

011000 selfConnect 011001 selfConnect 011010 selfConnect 011011 startConnect

011100 startConnect 011101 startConnect 011110 endConnect 011111 endConnect

100000 goNorth! 100001 goSouth! 100010 goWest! 100011 goEast!

100100 goNorthEast! 100101 goSouthEast! 100110 goNorthWest! 100111 goSouthWest!

101000 freeNorth? 101001 foodNorth? 101010 occupiedNorth? 101011 freeSouth?

101100 foodSouth? 101101 occupiedSouth? 101110 freeWest? 101111 foodWest?

110000 occupiedWest? 110001 freeEast? 110010 foodEast? 110011 occupiedEast?

110100 freeNorthEast? 110101 foodNorthEast? 110110 occupiedNorthEast? 110111 freeSouthEast?

111000 foodSouthEast? 111001 occupiedSouthEast? 111010 freeNorthWest? 111011 foodNorthWest?

111100 occupiedNorthWest? 111101 freeSouthWest? 111110 foodSouthWest? 111111 occupiedSouthWest?

Table 2
The genetic code used in the experiments.
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Since 26 = 64, some tokens can be encoded twice or more. The choice to encode
one token or another several times as it appears in table 2 is arbitrary: we took
into account some soundness constraints such as having the same number of
tokens with symmetrical e�ects (e.g. dupNode and delNode) but we did not
try to improve it over several experiments. Looking for an optimal mapping
between tokens and encoding would be computationally too expensive and is
currently outside the scope of more theoretical tools such as the ones developed
in [43].

4.1.2 Course of Experiments

Each experiment involves the following steps:

(1) Initialize the population with N = 300 agents with random bitstrings.
(2) For each generation, build the controller of each agent and evaluate it in

the environment.
(3) Select the 20 % best individuals of the population and produce new ones

by crossing the parents. The system performs probabilistic mutations
(with a 1% rate) and insertions or deletions of codons (with a 0.5% rate)
on the bitstring of the o�spring.

(4) Go back to step 2 with the new generation.

4.1.3 Fitness function.

Each individual is evaluated in the environment, starting on a blank cell in the
environment and looking for food within a limited duration (20 time steps in
all experiments described below). The agent can perceive the food only in its
immediate neighborhood, and it can perform only one action per time step;
when this action is incompatible with the environment (e.g. go west when the
west cell contains an obstacle), it has no e�ect (the agent loses one time step
and stays on the same cell).

The �tness of the agent for each run is the remaining time if the food has been
found within the time limit, 0 otherwise. Thus, the selection pressure encour-
ages short paths to food. To evaluate one generation, each agent is evaluated
once starting on each blank cell, then its total �tness for this generation is the
sum of the �tnesses computed for each run.

Each agent is reevaluated at each generation in order to average its �tness over
generations. This is necessary because of non-determinism in the automata.
Indeed, in a situation where no arc is eligible, or when an edge does not
carry any action label, one action is chosen randomly. Thus an automaton
will be fully deterministic only in the case where one arc can be elected in any
encountered situation, and if all such arcs bear an action to perform.
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4.2 Experimental environments

4.2.1 Maze10

We �rst tested our model in the Maze10 environment (see �g. 4), for which
[29] provides empirical results obtained with XCSM and XCSMH.

This environment is non-Markov, and presents 13 aliased situations (among
the 18 free cells) which are perceived as 5 distinct situations. In �gure 10,
page 21, we show the optimal number of steps necessary to reach food from
each starting cell, given a limited perception (an omniscient agent could per-
form even better). More precisely, in order to compute this optimal policy, we
take into account the fact that an agent cannot choose the correct action in a
perceptually aliased situation if it cannot determine its actual state from its
past. In particular, an agent starting from an ambiguous situation can only
choose an action from the probability that each action is the most favorable
one across the possible states.

FS1 S1

S2 S2

S3 S3

S4 S4S5 S5 S4

S1

S2

Fig. 4. The Maze10 environment. F represents the goal (food). Other marked cells
represent aliased situations (identical names imply the same perception, but even-
tually not the same optimal action).

The experiments reported in [26] were carried out on various initial genotype
sizes, from 50 to 90 codons of 6 bits, and the food was not perceived. The origi-
nal population genotype sizes changed during evolution. Here, we reconducted
the experiments including the ability to perceive food, with initial genotype
sizes from 50 to 300 codons of 6 bits. Each experiment is stopped after 10,000
generations and 20 experiments have been performed in each experimental
situation.

Figures 5 (a) and (b) show the performance of ATNoSFERES on this task
compared with the performance of XCSM and XCSMH. Each cross in �gure 5
(a) represents the performance of the best automaton obtained after 10,000
generations in one run. There are twenty crosses for each initial length. It can
be seen that the performance of ATNoSFERES generally lies between the per-
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Fig. 5. (a) Best average times over complete runs to reach food in Maze10 exper-
iments as a function of the initial length of the bitstring, compared to XCSM and
XCSMH performance. Since the numerical value of XCSM(H) performance was not
given in publications, we have extracted it from �gure 12 in [29], zooming in 16 times
the (vector graphics) curves. (b) Average of the results shown in (a).

formance of XCSM and the performance of XCSMH, but that ATNoSFERES
often outperforms XCSMH, going very close to the optimum. This result will
be discussed in � 5.

4.3 E1 and E2
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Fig. 6. E1 and E2 environments. F (food) is the goal. Capital letters marked cells
represent aliased situations (identical letters imply the same perception). The re-
maining non-aliased marked cells are numbered so as to clarify the example given
in page 27.

The experiments described below take place in E1 and E2 environments (see
�gure 6) that have been used in [38] to study how ACS deals with non-Markov
problems. E1 presents 20 aliased situations (among the 44 free cells) which are
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perceived as 9 distinct situations. E2 presents 36 aliased situations (among 48
free cells), which are perceived as 5 distinct situations.

In �gure 13, page 23, we show the number of steps an optimal agent among
several may need to reach food from each starting cell, given that its perception
is limited, as explained in � 4.2.1.

Before comparing ACS with ATNoSFERES, we have to emphasize a major
di�erence between the way both systems deal with these environments. In ACS
experiments, as they are described in [38, � 4.1 and 4.2], the only movements
tested in each free position are transitions towards surrounding free cells (for
example, if the cell to the north contains an obstacle, going north is not
considered as a possible move, thus it cannot be selected). This constitutes
a kind of prior domain-dependent knowledge about consistent perceptions-
actions bindings, which signi�cantly biases the learning process by reducing
the number of possibilities. In [47], we have shown that prohibiting the use
of this bias can severely impair some learning algorithms. For instance, the
U-Tree algorithm [37] which works well in non-Markov mazes (such as those
studied here) if the agent is prevented from bumping into walls, might grow
an in�nitely deep tree if it keeps bumping into the same wall in an aliased
situation.

In ATNoSFERES, on the contrary, any action can be used at any time. When
the corresponding move is impossible, the agent stays where it is and loses a
time step (it is penalized only in an indirect way, through the �tness function).

The experiments reported in [28] were carried out on various initial genotype
sizes (from 50 to 150 codons), but the codons were 7 bit long. The experiments
presented here are reconducted with 6 bit long codons, and the genotypes are
between 50 and 200 tokens long (with step 10) in E1, and between 50 and
300 tokens long (with step 10) in E2. As with Maze10, each experiment is
stopped after 10,000 generations. For E1 (resp. E2), 20 experiments (resp. 10
experiments) are performed in each experimental situation.

Figures 7 and 8 give the respective �tness values obtained by the best au-
tomata in E1 and E2 experiments, depending on initial lengths of the geno-
types, and the average of these values, compared with the values published by
[38] on ACS.

From �gure 7 (a), it can be seen that in E1, ATNoSFERES easily reaches
the performance of ACS in the case where BSmax = 1, but never reaches the
performance of ACS with BSmax = 2, which is very close to the optimum. On
average (see �gure 7 (b)), ATNoSFERES reaches the performance of ACS in
the case where BSmax = 1 as soon as the initial length of the genotype is over
110.
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Fig. 7. (a) Best average times over complete runs to reach food in E1 experiments
as a function of the initial length of the bitstring. (b) Average of the results shown
in (a).
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Fig. 8. (a) Best average times over complete runs to reach food in E2 experiments
as a function of the initial length of the bitstring. (b) Average of the results shown
in (a).

On the other hand, in E2, the performance obtained with ATNoSFERES
(see �gure 8) is signi�cantly better than the one obtained with ACS with
BSmax = 2 and BSmax = 3. Indeed, ATNoSFERES is always performing
better than ACS on average.

Figure 9 gives the evolution of the best �tnesses. We see that gradual improve-
ments occur in the three environments.
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Fig. 9. Representative evolution of the best �tness in Maze10, E1, and E2 exper-
iments as a function of generations; the shape and smoothness of the curves have
been chosen as representative evolutions. The thickness of the curves (particularly
manifest in Maze10 and E1) is due to the non-deterministic behavior of agents. In
E1 and E2, it seems that the pressure towards deterministic behavior is stronger.
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Fig. 10. An optimal policy in Maze10,
represented by the number of steps
needed to reach food from each start cell.
The optimal average number of steps to
food is 5.0555.
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Fig. 11. Best policy found with ATNoS-
FERES inMaze10 in 10,000 generations
(see �gure 10 for an optimal policy). Its
average number of steps to food is 5.6111.
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Fig. 12. The best automaton found with ATNoSFERES in Maze10 experiment
(after 10,000 generations). Its average number of steps to food is about 5.6111

4.4 Representative solutions

4.4.1 Maze10 environment

As in previous experiments [26], the graph of the best automaton (see �g-
ure 12) has two internal nodes. This automaton is representative for the best
solutions found with this environment. By scanning all the best solutions cor-
responding to crosses in �gure 5 (a), we see that some good solutions have
three internal nodes, but most good solutions have two internal nodes. The
solutions with only one internal node have the worst performance (more than
10 steps to food on average). Thus the best solutions are the ones connecting
two nodes with the good set of edges.

Thanks to the ability to perceive food, the �tness reached is higher than in
our previously published experiments. A comparison between �gure 10 and 11
shows that the policy of the best automaton is very close to the optimal
policy. Two steps are lost for every cell in the left-wing column because the
agent goes to the bottom of the second left-wing column to check whether
the food is there while this is not necessary: the left-wing top corner cell is
su�cient to disambiguate the situation. Other steps are lost in the top of
the right-wing column because the agent goes north instead of going west or
north-west, which would be optimal.
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4.4.2 E1 and E2 environments
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Fig. 13. An optimal policy in E1 (resp. E2), represented by the number of steps
needed to reach food from each start cell. Other equivalent policies can be obtained
at least by applying all possible rotations and symmetries to all the numbers given.
In E1, the optimal average number of steps to food is 2.8181 steps. In E2, it is
2.9792 steps.
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Fig. 14. Best policies found with ATNoSFERES in E1 (resp. E2) in 10,000 genera-
tions, represented by the number of steps needed to reach food from each Start cell
(see �gure 13 for an optimal policy).

Figures 13 and 14 show some optimal policies on E1 and E2 environments
respectively, and the best policies found on these environments with ATNoS-
FERES. On �gure 14, we can see that in some situations where food is visible
the agent needs more than one step to reach it, though a more e�cient be-
havior is obvious. ATNoSFERES has more di�culties in �nding these simple
rules than an RL algorithm combining exploration and exploitation would.
This will be discussed in � 5.4.

23



S

0

fS?

S!

N ~SW?

N!

~NE NW?

SW!

~E?

S!

fE?

E!

W ~N S?

W!

W?

NW!

#?

S!

W ~SE?

NW!

~N?

W!

S NE?

N!

fNE?

NE!

#?

SW!

fS?

S!

E

fE?

E!

1

~NW?

SE!

S SE N?

SE!

SE?

E!

~NE NW?

SW!

~NE?

S!

N ~SW?

N!

#?

NE!

Fig. 15. The best automaton found with ATNoSFERES in E1 experiment (after
10,000 generations). Its average number of steps to food is about 3.4091

The best automaton shown in �gure 15 is representative of the best solutions
found in E1 environment. We obtained similar results in previous experiments
[28] with a 7 bit encoding, but with a slightly better �tness (about 3.3 steps
to food on average, performing as well as ACS with BSmax = 3).
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Fig. 16. A representative good automaton found with ATNoSFERES in E1 experi-
ment (after 10,000 generations). Its average number of steps to food is about 3.75

In E1, 46% of the automata performing better than ACS with BSmax = 1
contained only a single node (in addition to the Start and End nodes that
always exist in ATNoSFERES graphs), which means that a reactive behavior
already performs well in this environment (see �gure 16 for a representative
example).

Figure 17 gives the best automaton found in E2 environment. Representative
best automata all have at least two internal nodes. Automata with only one
internal node are the least e�cient, but they generally perform better than
ACS with BSmax = 2 or 3. It is clear from our experiments that a good
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Fig. 17. The best automaton found with ATNoSFERES in E2 experiment. Its av-
erage number of steps to food is about 3.5833

automaton in E2 requires more nodes than in E1. This seems to imply that
reactive and nearly reactive behaviors perform much worse in E2 than in E1.
This fact will be discussed in the next section.

A closer study of the automata obtained in E1 and E2 environments reveals
that the main improvement mechanisms consists in adding one node when
they contain a single node, and then add more edges to make pro�t of relevant
situation-action couples. For instance, the performance is increased each time
ATNoSFERES builds a new edge binding the perception of food to a move
toward food. As we will discuss in the next section, this implies that good
solutions generally contain more edges connected to the same nodes than
poorer solutions.

5 Discussion

5.1 Nearly Markov versus highly non-Markov problems

As a result of the new experiments performed in this paper, it appears that
di�erent subclasses of non-Markov problems should be distinguished more
accurately than is usually done. Indeed, some problems, like E1, are actually
non-Markov, but in such a way that reactive behaviors can still perform well
on such problems, as shown by the performance of all automata with one node,
exempli�ed in �gure 16. We call them �nearly Markov problems�.
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In E1, our study has shown that an evolutionary process can gradually grow
a set of correct rules (which are to some extent independent from each other),
even more if the agent is tested from each cell. Thus an agent can start with
a few rules that are e�cient for a few cells, and add from one generation
to another new rules that are useful for additional cells. Such reactive so-
lutions already perform well in E1, and are easier to �nd for ATNoSFERES
than solutions implying several internal states. Indeed, building more complex
solutions requires both additional nodes and consistent edges, with appropri-
ate conditions and actions. We meet again the structural cost mentioned in
[26]: �simple�, incremental good solutions are preferred to structurally com-
plex optima. As a matter of fact, ACS with BSmax = 2 performs better than
ATNoSFERES on E1.

On the contrary, other environments like E2 and Maze10 should be called
�highly non-Markov�, since reactive policies perform very poorly on such prob-
lems, due to the location and the number of aliased situations.

Our comparative study has revealed that ACS performs very well on E1 and
relatively poorly on E2, while ATNoSFERES performs consistently on both
environments. In the remainder of this discussion section, we will try to explain
why that is so.

5.2 Limits of classi�er-chaining

The �rst point to explain is the fact that ACS performs relatively poorly
on E2. On �rst thoughts, one might consider that the maximal length of
sequences in ACS is the key. One could expect that setting BSmax to more
than 3 in E2 could �x the problem. A closer examination, however, reveals
that this is not so.

In [38], the authors show that setting BSmax to 3 is enough to let ACS build
a completely reliable model of E2, under the form of a list of (situation,
action, next situation) classi�ers. They mention that increasing the max-
imum length of the behavioral sequence �does not improve the `steps to food'
performances�.

One explanation of the fact that building longer action sequences does not im-
prove the performance is that these sequences specify a blind series of actions
performed without interruption and without checking the situation perceived
before its end. Once a sequence is elected, the agent will at least perform the
number of actions speci�ed in the sequence, unless it �nds the food during
the sequence. Since the number of steps to food given by the optimal pol-
icy in E1 and E2 is generally less than 4, it is very unlikely that letting the
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agent perform sequences of 4 actions or more will help reaching the optimal
performance.
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Fig. 18. Optimal policies beginning in the E1 and E2 environments presented in
�gure 6, page 18, on the aliasedX (resp.C) cell. Edges represent transitions, labelled
by the performed action. Nodes represent observations, labelled by the cell identi�er
given in �gure 6. Doubly-circled nodes represent next to �nal observations, linked to
the �nal F cell, which is not represented here for readability purpose. The complete
policy structures starting from all ambiguous cells would be unreadable, but all local
policies share a similar structure for both problems.

A second explanation of the relatively poor performance of ACS on E2 with
respect to E1 comes from an analysis of �gure 18. This �gure shows one
optimal policy among several from selected ambiguous cells in the E1 and E2
environments. As it can be seen, optimal performance with a classi�er-chaining
mechanism is not possible in E2 because the following happens:

• either we call upon 1-classi�er-long sequences in the initial situation but the
optimal policy also requires at the next time step classi�ers with the same
condition part (see the Cc node on �gure 18).
• or we call upon longer sequences starting with the same condition part.

In both cases, the agent cannot choose the correct decision unit from the
ambiguous situation. Thus the classi�er-chaining mechanism is formally un-
suitable in front of such structures since the agent must decide in advance
which sequence of classi�ers will be �red before having encountered the per-
ceptions informing it of the correct choice. On the contrary, this mechanism
is appropriate in the case of E1 where the structure of the optimal policy is
a simple list of action sequences connected to the same root node.

Indeed, in small environments like Maze10, E1 and E2, the main issue for
the agent consists in discovering as fast as possible where it is from an initially
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ambiguous situation and then follow the shortest path to the goal. In E1 this
can be achieved with a list of classi�er-chains while this is not the case in E2.

5.3 One-to-one versus many-to-many associations

As clearly explained in [58], associations in CXCS are direct and one-to-one
while they are many-to-many in XCSM(H). More generally, in all systems
relying on a classi�er-chaining mechanism, the association can be said one-
to-one because the corporation mechanism connects only one classi�er to an-
other. By contrast, an explicit internal state management mechanism builds
many-to-many associations since all classi�ers sharing the same [Internal

condition] part can be �red after all classi�ers that specify the correspond-
ing [Internal action] part. When one compares the mechanisms in CXCS
to the one in XCSM(H), one might consider that a one-to-one association gives
a greater control on the dynamics of the internal state than a many-to-many
association.

Indeed, in XCSM(H), the internal state value is very unstable and in [33] some
special purpose mechanisms in XCSMH had been designed so as to overcome
this problem. But our design of ATNoSFERES reveals that the problem does
not come from many-to-many associations per se, but from the way they
are represented in XCSM(H). Indeed, ATNoSFERES is clearly able to build
many-to-many associations (when more than two edges are connected through
the same node), as well as one-to-one associations (when just two edges are
connected through the same node).

Thus ATNoSFERES combines the advantages of both approaches.

• Like XCSM(H), it is able to build many-to-many associations and we have
seen in the previous section that this property is necessary to yield an
excellent performance on environments like E2 and Maze10.
• Like CXCS and ACS, it is endowed with a good control over the internal
state dynamics, and can eventually build one-to-one associations, which
makes the ad hoc mechanisms added in XCSMH unnecessary.

Being able to build both kinds of associations, ATNoSFERES is also able
to select the most appropriate combination of them thanks to the GA. This
explains why ATNoSFERES can outperform both XCSMH on some environ-
ments and ACS on others. But the fact that ACS with BSmax = 2 outperforms
ATNoSFERES on E1 seems to imply that ATNoSFERES encounters more
di�culties to build e�cient one-to-one associations when they are the most
necessary, i.e. in nearly Markov problems. This can be easily explained since
building exactly two edges connected by one node requires a lot of precise
constraints on a genotype.
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5.4 Reinforcement Learning and Classi�er Selection

In our results, the behavior obtained on all environments with all systems are
never fully optimal, despite the relative simplicity of these environments. Thus
a performance comparison must consider two dimensions:

• how close to the optimum did the system get?
• how long did it take to get there?

We have shown that, with respect to the �rst point, ATNoSFERES can be
compared favorably with the LCSs studied here. But, with respect to the
second point, one important advantage of LCS over ATNoSFERES is that
LCSs learn to act thanks to an RL algorithm.

Indeed, if we compare the number of elementary runs necessary to reach a
good performance with LCSs against ATNoSFERES, the di�erence is clear
(see table 3). In this table, the LCS column gives the average number of
elementary runs after which the LCSs converge to the performance indicated,
known as the best performance of the corresponding system (see � 4).

envir. LCS type perf. LCS PR(%) NG NT NT/LCS

Maze10 XCSM 15.1 7,000 100 8.42 45,000 6.42

Maze10 XCSMH 6.12 6,500 7.30 4909 360.106 55,400

E1 ACS (BSmax = 1) 4 4,400 30.92 5115 218.106 50,000

E2 ACS (BSmax = 2 or 3) 6.5 2,000 83.84 835 14.106 7,000

Table 3
Comparison between ATNoSFERES and LCSs on the basis of the average number
of trials necessary to reach the performance given in column �perf.�. PR is the
percentage of evolution runs with ATNoSFERES that outperform the corresponding
LCS. NG is the average number of generations after which this happens (see �gure 9,
but the average has been computed from an exhaustive computation on all the runs
presented on �gures 5, 7 and 8). Thus, with 300 individuals per generation, the
average number of evaluation runs necessary to outperform the corresponding LCS
is NE = 300∗NG∗100/PR, and the average number of elementary runs NT for an
environment with NS start cells (NS = 18 for Maze10, 44 for E1 and 48 for E2)
is: NT = NS ∗NE. Thus NT gives the average number of elementary runs needed
by ATNoSFERES to outperform the corresponding LCS. Finally, NT/LCS gives
a good approximation of the factor by which the corresponding LCS is faster than
ATNoSFERES to reach its best performance. Note that no performance comparison
is given on E1 against ACS with BSmax = 2 since ATNoSFERES never outperforms
it.

From this table it is clear that ATNoSFERES still needs several orders of mag-
nitude more runs than XCSMH and ACS to converge (from 7000 to 200,000
times more).
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This can be easily explained by the fact that ATNoSFERES evolves automata
thanks to a blind GA process while ACS and XCSMH rely on an RL algorithm
extracting information about the environment from its experience. From this
comparison, it is clear that a direction for improving ATNoSFERES consists
in endowing it with RL capabilities. This is our immediate agenda for future
work.

A source of inspiration in that direction comes from the Samuel system [13].
Like ATNoSFERES, Samuel is a Pittsburgh style system based on a single
chromosome GA, but it also includes Lamarckian operators that endow it with
basic learning capabilities. As a result, as claimed by the author, �Samuel
represents an integration of the major genetic approaches to machine learning,
the Michigan approach and the Pittsburgh approach�. Most of the operators
used in Samuel can be transposed in ATNoSFERES, the main di�erence
being that ATNoSFERES does not provide a high level symbolic represen-
tation and that Samuel does not include any dedicated mechanism to solve
perceptual aliasing problems.

6 Conclusion

In previous papers, we have emphasized some advantages of ATNoSFERES
over LCSs. In particular, ATNoSFERES builds minimal controllers, which
results in their improved readability.

In this paper, we have applied ATNoSFERES to non-Markov benchmark en-
vironments that have been investigated with ACS, XCSM and XCSMH. This
study gave us the opportunity to compare two mechanisms designed to deal
with non-Markov problems, namely explicit internal state management and
classi�er-chaining. We have explained why the second was formally unable to
reach optimality in some environments.

From that comparison, a new advantage of ATNoSFERES over the LCSs stud-
ied here is revealed. Since its representation has enough expressive power to
include both one-to-one and many-to-many associations to solve non-Markov
problems, the GA can select the most suitable approach or combination of
approaches depending on the nature of the problem at hand.

This explains why ATNoSFERES can outperform both ACS and XCSMH on
di�erent environments. But the price to pay with that richer formalism is
probably a slower convergence to good solutions. However, as long as no RL
mechanism is included in ATNoSFERES, a fair comparison along that line
cannot be provided. We are actively working on integrating RL mechanisms
into ATNoSFERES, so we hope to provide more accurate comparisons soon.

30



Finally, we would like to highlight the fact that the comparative studies we
have carried out with ATNoSFERES in this paper were indirect. We have
compared ATNoSFERES with XCSM and XCSMH on one environment and
ATNoSFERES with ACS on other environments, relying on the experiments
presented in the available literature. A more direct performance comparison
between XCSMH and ACS on the same environments would certainly be of
interest, but results with these systems have never been published yet. A lot of
work deserves to be done to provide more global comparisons between several
classes of systems, including LCSs. We strongly believe that such comparisons
would greatly enhance the understanding of the current state of the art in
LCS research and, more generally, in the evolutionary computation approach
to multi-step problems in information sciences.
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