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Combining Latent Learning with Dynami Programmingin the Modular Antiipatory Classi�er SystemPierre Gérard �;��, Jean-Arady Meyer �, Olivier Sigaud �� LIP6, AnimatLab �� Dassault Aviation, DGT/DPR/DESA8, Rue du Capitaine Sott 78, Quai Marel Dassault75015 Paris 92552 St-Cloud CedexAbstratLearning Classi�er Systems (LCS) are rule based Reinforement Learning (RL) systemswhih use a generalization apability. In this paper, we highlight the di�erenes between twokinds of LCSs. Some are used to diretly perform RL while others latently learn a model ofthe interations between the agent and its environment. Suh a model an be used to speed upthe ore RL proess. Thus, these two kinds of learning proesses are omplementary. We showhere how the notion of generalization di�ers depending on whether the system antiipates (likeACS, Antiipatory Classi�er System and YACS, Yet Another Classi�er System) or not (likeXCS). Moreover, we show some limitations of the formalism ommon to ACS and YACS, andpropose a new system, alled MACS (Modular Antiipatory Classi�er System), whih allowsthe latent learning proess to take advantage of new regularities. We desribe how the modelan be used to perform ative exploration and how this exploration may be aggregated withthe poliy resulting from the reinforement learning proess. The di�erent algorithms arevalidated experimentally.1 IntrodutionThe Reinforement Learning (RL) framework [KLM96, SB98℄ onsiders adaptive agents involvedin a sensory-motor loop (see �gure 1). Suh agents pereive situations through their sensors, anduse these pereptions to selet the ation they will perform in the environment. As a result pftheir ation, the agents reeive a salar reward from the environment and they pereive a newsituation. The task of the agents is to learn the optimal poliy � i.e. how to at in every situationin order to maximize the umulative reward on the long run � in an unknown environment.This lassial Situated Arti�ial Intelligene problem is an optimization problem whose formalfoundations are drawn from Dynami Programming [Bel57℄ and whih addresses several issues inthe �eld of Operational Researh. In partiular, learning inrementally how to at aording topereptions is a partiular lassi�ation problem whih an be solved by loal searh algorithmslike Geneti Algorithms (GAs) as evidened, for instane, by the appliation of Learning Classi�erSystems (LCSs) to Data Mining problems [BXM01℄. Other onnetions between Situated Arti�ialIntelligene and Operational Researh onern Multi Criteria Deision Problem [RV81, GSH99℄,when the agent has to selet ations giving rise to di�erent kinds of rewards.The originality of Reinforement Learning with respet to other Arti�ial Intelligene learningtehniques is that the agent has to improve its behavior by drawing information from its intera-tions with the environment, without being expliitly taught what to do by an external teaher. Inthis framework, the learning proess annot rely on any tagged sample dataset. On the ontrary,the agent must learn in an inremental way, by taking into aount the information provided by itssensors along its ations. In partiular, the neessity to adapt to a possibly hanging environmentprevents it from relying too muh on the memory of its past experiene.1
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Figure 1: In Reinforement Learning (RL) problems, the agent is situated in an a priori unknownenvironment. At eah time step, it pereives its situation through its sensors and an perform anation thanks to its e�etors before a new time step starts. The goals of the agent are de�ned bysalar rewards provided by the environment. In this example, the agent gets a reward as soon asit reahes the ell F that provides food. The task of the agent onsists in learning the optimalbehavior. Here, the agent must learn how to reah the food by performing as few suessive ationsas possible, starting from any ell. RL takles problems whih an be represented as �nite-statediagrams. Maze problems are well suited to study suh problems sine they provide an intuitiveview of suh diagrams.Trying to improve the poliy does not impede extrating knowledge about the problem thatthe agent has to solve. Indeed, a way to speed up the poliy learning proess is to simultaneouslylearn a model of the dynamis of the interations between the agent and its environment [SB98℄.In this artile, we will mainly fous on the problem of extrating suh a model.This idea reahes far bak in psyhology. In sharp ontrast with behaviorist theories, Tolman[Tol32℄ proposed that learning is the proess of disovering what leads to what � i.e. that animalsdevelop a sort of internal representation of the world. Seward [Sew49℄ provided further empirialevidenes of suh latent learning, whih is de�ned as learning without environmental reward orpunishment. Suh a representation of the environment an be used to antiipate the onsequenesof an ation in a given situation.Computational models of learning are also onerned by suh evidenes of latent learning.When an agent interats with its environment, the onsequene of an ation does not only onsistin a possible reward, but also in a resulting new situation. Thus the agent may learn latently whathappens immediately after the exeution of an ation and may build a model of the transitionsbetween situations pereived suessively. This model of the transitions makes it possible toantiipate and this apaity an be used either for planning thanks to Dynami Programmingtehniques, or for speeding up the RL proess by simulating ations aording to the model, asshown in [SB98℄. In other words, learning latently a model of the dynamis of the interationsbetween the agent and its environment is independent from the reward but helps to improve theoverall RL proess.In this paper, we study how generalization apaities may expedite latent learning in a LearningClassi�er System (LCS) devoted to antiipation. The problem to be solved is that of extratingknowledge about the dynamis of the interations between the agent and its environment. It is alassi�ation problem sine the agent must learn a model that distinguishes situations whih leadto di�erent e�ets.More spei�ally, we study how to aquire and to use antiipation apabilities in order to solvethe ation deision problem faed by the agent. In partiular, we desribe how to use DynamiProgramming tehniques in order to build two di�erent poliies: one for ative exploration andone for umulative reward maximization. These two poliies de�ne two riteria that the systemhas to ombine in order to solve the overall RL problem stated above.In setion 2, we brie�y present the usual LCS approah to generalization as an extension ofQ-learning [Wat89℄. In setion 3 we introdue the formalism used in the so-alled Antiipatory2



Classi�er System ACS [Sto98, BGS00℄ and YACS1 [GS01b, GSS02, GS01a℄ so as to ombinegeneralization and latent learning. We also disuss a variety of regularities in the interationsbetween the agent and its environment that neither ACS nor YACS are able to onsider. Then,we propose a new formalism to deal with that kind of regularities, thus making it possible to learna more ompat model. In setion 4 we desribe MACS2: a new LCS using this formalism to learnthe model that is required to use iterative planning tehniques from Dynami Programming. Insetion 5 we show how MACS uses this model to build separate poliies for ative exploration andexploitation, and how these poliies are ombined. Setion 6 provides experimental omparisonsof MACS and YACS with respet to their latent learning abilities. The results demonstrate theapaity of MACS to use the model of the transitions to solve plain RL problems, by ombiningexploration and exploitation riteria. In setion 7, we enlight some limitations of MACS, and welaim that the bene�ts of antiipation apabilities ould be also obtained with non-spei�allydediated systems.2 Generalization in Learning Classi�er SystemsThe main advantage of Learning Classi�er Systems (LCS) with respet to other ReinforementLearning (RL) tehniques like Q-learning [Wat89℄ is to a�ord generalization apabilities. Thismakes it possible to aggregate several situations within a ommon desription so that the repre-sentation of the RL problem gets smaller.The �rst proposals for a LCS devoted to RL problems are presented in [Hol76℄. The �rstimplementation of an atual LCS, alled CS1, an be found in [HR78℄. Wilson [Wil95℄ introduedin LCSs a learning algorithm similar to Q-learning [Wat89℄ to replae the traditional BuketBrigade algorithm [Hol85℄. This work led to a revival of LCS researh sine the new auray-basedapproah in XCS overomes the over-generalization problems found in previous LCSs [Wil89℄.The usual formal representation of RL problems is a Markov Deision Proess (MDP) whihis de�ned by:� a �nite state spae S;� a �nite set of ations A;� a transition funtion t : S�A! �(S) where �(S) is a distribution of probabilities over thestate spae S;� a reward funtion r : S�A�S ! < whih assoiates an immediate reward to every possibletransition.One of the most popular RL algorithm based on this representation is Q-learning [Wat89℄.This algorithm updates a Q-table whih represents a quality funtion q : S � A ! <. Thus, thequality q(s; a) represents the expeted payo� when the agent performs the ation a in the state s,and follows the best poliy thereafter.At time step t, the qualities are updated aording to the following formula based on theBellman equation used in Dynami Programming:q(st�1; at�1) (1� �)q(st�1; at�1) + �(rt + maxa2A q(st; a)) (1)where st is the state resulting from taking the ation at�1 in the previous state st�1 and rt isthe assoiated immediate reward. � is the learning rate of a Widrow-Ho� delta rule3.  is thedisount fator used in the Bellman equation [Bel57℄. The e�et of this equation is to assign lowqualities to states that are �far� from a set of distant reward soures.1Yet Another Classi�er System2Modular Antiipatory Classi�er System3The Widrow-Ho� delta rule uses a learning rate � 2 [0; 1℄. A salar x is inreased with suh a rule with respetto the formula: x (1 � �)x+ �. It is dereased aording to the formula: x (1� �)x3
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Figure 2: A Learning Classi�er System is an agent haraterized by a list of lassi�ers. It pereivesa situation as an aggregation of several attributes. In this example, the agent is situated in a mazeand pereives the presene or absene of a blok in eah of the eight surrounding ells. It pereivessymbol 1 when there is a blok in that ell and symbol 0 when there is not. The eight pereivedattributes are onsidered lokwise, starting with the ell in front of the agent. The agent hasto deide whether to rotate right [r℄ or left [l℄, or to move forward [f℄. From the ell it isurrently loated in, and aording to its orientation, the agent pereives [01010111℄. Amongthe lassi�ers learned during its past experiene � eah haraterized by a ondition � an ation anda payo� predition, the LCS selets those whose onditions math the urrent situation. Amongthis mathing set, the LCS selets stohastially a lassi�er with a high predition of the long termpayo� (here 0.7). The ation proposed by this lassi�er is hosen and atually performed in theenvironment. In this example, the agent rotates right.The problems takled by LCSs are haraterized by the fat that the so-alled states in the MDPframework are de�ned by several attributes representing pereivable properties of an environment.For instane, one an de�ne a grid world in whih the agent pereives eight features, one for eahadjaent ell (see �gure 2). Then, a situation is an ordered set of several disrete values, one foreah of the pereived attributes of the environment. Ations are haraterized by a single attributethat represents di�erent possible e�etors.In [Lan00℄, Lanzi shows how it is possible to shift from a tabular representation of a RL problemto a lassi�er-based representation. While tabular Q-learning onsiders triples (s; a; q) 2 S�A�<,LCSs like XCS onsider C-A-p rules (Condition-Ation-payo� lassi�ers). During the learningproess, the LCS learns appropriate general onditions and updates the payo� predition.Within the LCS framework, the use of don't are symbols �#� in the ondition parts of thelassi�ers permits generalization, sine don't are symbols make it possible to use a single desrip-tion to desribe several situations. Indeed, a don't are symbol mathes any partiular value ofthe onsidered attribute. Therefore, hanging an attribute into a don't are symbol makes theorresponding ondition more general (it mathes more situations). For instane, assuming thatthe attributes that haraterize situations may only take values 0 or 1, the ondition [#01℄ isgeneral and mathes the speialized situations [001℄ and [101℄. Likewise, the ondition [#0#℄mathes 4 situations: [000℄, [001℄, [100℄ and [101℄.Thanks to the don't are symbols, it is possible to build a model of the expeted payo� witha smaller number of lassi�ers than the number of possible triples in a tabular representation.Usually, the payo� preditions p of the lassi�ers are learned aording to di�erent propagation of4



delayed reward algorithms, like Buket Brigade [Hol85℄ or Q-learning, as in XCS [Wil95℄.The main issue with generalization is to learn to organize C parts (onditions) and A parts(ations) so that the don't are symbols are well plaed. To do so, LCSs usually all upon aGeneti Algorithm (GA) to evolve a population of lassi�ers. Eah lassi�er is an individual whihis evaluated through the interation of the agent with the environment all along its life time. Thesealgorithms use lassial geneti operators like rossover4 or mutation5. These operators serveto orretly position don't are symbols and speialized values in the C parts of the lassi�ers.Classial LCSs use a seletion mehanism relying on �tness values and lassi�ers with a low �tnesstend to be suppressed from the lassi�er list. Suh GAs reate lassi�ers randomly and evaluatethem afterward. Alternatively, in setion 4, we propose devoted estimates and heuristis to drivethe reation of lassi�ers.3 Formalisms for transitions modeling in Learning Classi�erSystemsIn multi-step problems, the agent needs to at more than one so as to solve the problem. In suhonditions, in addition to a reward, the agent also reeives a new situation as a result of its lastation. Then, it makes sense to use LCSs to learn a ompat model of the dynamis between theagent and its environment.3.1 Representing regularities with ACS and YACSEarly LCSs [Hol90℄ ations ould deposit internal messages on a so-alled message list instead ofsuggesting an atual ation in the environment. With suh internal messages, it was possible touse tags that spei�ed if a urrent �ation� posted to a message list diretly suggested an ationor partiipated in an internal reasoning proess. Riolo [Rio91℄ implemented suh apaities inCFSC2 and demonstrated how they an be used for latent learning.In ontrast with this approah, the ALP (Antiipatory Learning Proess) used in ACS [Sto98,BGS00℄ is a development of the Antiipatory Behavioral Control theory introdued in psyhologyby Ho�mann [Hof93℄. YACS [GS01b, GSS02, GS01a℄ is a similar approah and both systems allupon expliit ondition-ation-effet lassi�ers, noted C-A-E. This formalism is similar toSutton's DynaQ+ [Sut91℄ approah or to Dresher's ontext-ation-result rules [Dre91℄, butit a�ords generalization apabilities.In suh lassi�ers, the E part represents the e�ets of ation A in situations mathed byondition C. It reords the pereived hanges in the environment. In both ACS and YACS, a Cpart is a situation whih may ontain don't are symbols �#� or spei� values (like 0 or 1), asin XCS (see setion 2). An E part is also divided into several attributes and may ontain eitherspei� values or don't hange symbols �=�. Suh a don't hange symbol means that the attributeof the pereived situation it refers to remains unhanged when ation A is performed. A spei�value in the E part means that the value of the orresponding attribute hanges to the valuespei�ed in that E part.For instane, let us onsider the lassi�er [#0#1℄ [0℄ [=10=℄. It antiipates the e�ets of theation [0℄ in 4 possible situations ([0001℄, [0011℄, [1001℄ and [1011℄) thanks to the don't aresymbols in the C part. Aording to the E part, and if the lassi�er is aurate:� the �rst attribute remains unhanged, whatever the initial value is (0 or 1 beause of thedon't hange symbol in the C part);� the seond attribute will hange from 0 to 1;� the third attribute will hange to 1, whatever the initial value is;4A new lassi�er is a ombination of di�erent segments of its parents.5Any attribute of a new reated lassi�er may be randomly hanged to any spei� value or to a don't aresymbol. 5



Classi�er[#0#1℄     [0℄ [=10=℄[0011℄         [0101℄[1011℄         [1101℄Situations         AntiipationsTable 1: Illustration of the antiipation mehanism in YACS� the last value of the attribute remains 1.These ases are illustrated in table 1.This formalism permits the lassi�ers to represent regularities in the interations with theenvironment, like for instane �In a grid world, when the agent pereives a wall in front of it,whatever the other features of the urrent ell are, trying to move forward entails hitting the wall,and no hange will be pereived in the ell's features�.The latent learning proess is in harge of disovering C-A-E lassi�ers with maximally generalC parts that aurately model the dynamis of the environment. A lassi�er is said to bemaximallygeneral if it annot ontain any other don't are symbol without beoming inaurate. It is saidto be aurate if, in every situation mathed by its ondition, e�eting the orresponding ationalways leads to the same hanges in the pereived situations.Thus, generalization is not the same proess in ACS or YACS than in XCS [Lan97℄. Indeed, inACS and YACS, generalization is a�orded by the joint use of don't are and don't hange symbolsand makes it possible to represent regularities in the transitions between suessive situations.Moreover, it provides the system with:� a kind of seletive attention, when some situations an be identi�ed by paying attention tosome attributes only;� the ability of onsidering several situations de�ned by the same ondition, thus reduing thesize of the model that desribes the dynamis of the environment.As YACS does not generalize with respet to a payo� predition, it is able to generalize oversituations with di�erent expeted payo�s. As a result, it does not make sense to store informationabout the expeted payo� in the orresponding lassi�ers. Therefore, the list of lassi�ers onlyserves to model environmental hanges.3.2 Representing more regularitiesGeneralization makes it possible to represent regularities in the dynamis of the interations withthe environment. However, if ACS and YACS are able to detet if a partiular attribute is hangingor not, their formalism annot represent regularities aross di�erent attributes beause it onsiderseah situation as an unseable whole. To make this point lear, let us onsider an agent in a gridworld as in �gure 2. Turning right results in a two-positions left shift of the attributes. Forinstane, the agent may experiene transitions like [11001100℄ [y℄ [00110011℄.In suh a ase, every attribute is hanging. Thus, the formalism of ACS and YACS is notable to represent any regularity. Nevertheless, the shift in the pereived situation is atually aregularity of the dynamis of the interations: whatever the situation is, when the agent turnslokwise, the value of the 1st attribute omes to the last value of the 3rd, the value of the 2ndbeomes the 4th one et.The partiularity of suh a regularity is that the new value of an attribute depends on theprevious value of another one. Expressing generalization with don't hange symbols only forbidsto represent suh regularities. In the ACS/YACS formalism, the new value of an attribute mayonly depend upon the previous value of the same attribute, a situation whih is seldom enounteredin pratie. 6



[11001100℄  Situation[1#######℄ [y℄ [??????1?℄[#1######℄ [y℄ [???????1℄[##0#####℄ [y℄ [0???????℄[###0####℄ [y℄ [?0??????℄[####1###℄ [y℄ [??1?????℄[#####1##℄ [y℄ [???1????℄[######0#℄ [y℄ [????0???℄[#######0℄ [y℄ [?????0??℄[#######0℄ [y℄ [?????1??℄Antiipations ! [00110011℄[00110111℄Table 2: During the integration proess, the LCS proposed in setion 3.2 sans the E parts andselets those lassi�ers whose A parts math the ation and whose C part math the situation.The integration proess builds all the possible antiipated situations with respet to the possiblevalues of every attribute. Here, the system antiipates that using [11001100℄ as a urrent situationshould lead to [00110011℄ or to [00110111℄. If all the lassi�ers were aurate, this proess wouldgenerate only one possible antiipation.To overome this problem, it is neessary to deorrelate the attributes in the E parts, whereasACS and YACS lassi�ers antiipate all attributes at one. To this end, we propose to desribethe expeted situations E, not with don't hange symbols, but with new don't know symbols �?�.This way, the aurate lassi�er [####1###℄ [y℄ [??1?????℄ means that �just after turningright, the agent always pereives a wall at his left when it pereived a wall behind, whatever theother attributes were�. This lassi�er does not provide information about the new values of otherattributes (as denoted by the �?� symbol). Thus, thanks to these new don't know symbols, alassi�er may antiipate a few attributes only and the overall system gains the opportunity todisover new regularities.Again, this proposal for a new formalism leads to a new oneption of generalization. As usual,a lassi�er is said to be maximally general if it ould not ontain any additional don't are symbolwithout beoming inaurate. But it is now said to be aurate if, in every situation mathed byits ondition, taking the proposed ation always atually leads the attributes to take the valuesspei�ed in the e�et part, when suh attributes are not don't know symbols.As a result, the antiipating unit is no more the single lassi�er but the whole LCS. Given asituation and an ation, a single lassi�er is not able to predit the next situation: it just desribesa partial view of it, whih is foused on a few attributes only. The system aordingly needsan additional  mehanism whih integrates these partial views and builds a whole antiipatedsituation, without any don't know symbol in its desription, as shown in Table 2.4 Latent Learning in MACSAs de�ned in setion 3.2, an E part may ontain several don't know and several spei� attributevalues. In the present work, we adopted a simpli�ed point of view by allowing one and onlyone spei� value in an e�et part. Thus, every lassi�er is able to predit the value of a singleattribute only.In this setion we detail the latent learning mehanisms of MACS, a new LCS designed to takeadvantage of the formalism just proposed.
7



4.1 Evaluation and seletion of the aurate lassi�ersThis part of the system is in harge of evaluating the auray of eah lassi�er and of suppressingsome of them if neessary. Two integer values g and  b are assoiated to eah lassi�er:� g for storing the number of good antiipations sine the reation of the lassi�er;� b for storing the number of bad antiipations sine its reation.MACS keeps a memory of the last pereived situation and the last performed ation. Thus, itknows the urrent situation st resulting from the ation at�1 in the situation st�1 at eah timestep.With this information, YACS sans the lassi�er list and selets the lassi�ers whose  C partmathes st�1 and whose A part mathes at�1. For eah suh lassi�er:� if its E part mathes st6, then the lassi�er antiipated well and its g value is inreased byone unit;� if its E part does not math st, then the lassi�er antiipated badly and its b value isinreased by one unit;A lassi�er whih always antiipates badly during a given number of evaluations is onsideredinaurate and is suppressed. This number of evaluations is a parameter of the system, noted er.A lassi�er is suppressed when g= 0 and b= er. Another parameter ea of the system monitorshow many evaluations are needed to assume that a lassi�er is aurate.4.2 Speialization of onditionsAs in YACS, a lassi�er whih antiipates sometimes well, and sometimes not, is said to osillate.Beause its ondition part is too general and mathes too many situations, it must be speialized.Here again, this proess is not driven by a GA but by heuristis whih take advantage of spei�estimates as desribed below.4.2.1 The estimates used by the speialization proessAn expeted improvement by speialization estimate is is assoiated to eah general attribute ofthe C part of eah lassi�er � i.e to eah don't are symbol. This variable estimates how muhthe speialization of the attribute would help splitting the situation set overed by the C part intoseveral subsets of equal ardinality.Let us onsider a lassi�er whih tries to antiipate the onsequenes of an ation in severalsituations. If the value of a partiular attribute of the situation when the lassi�er antiipateswell is always di�erent from the value of that attribute when the lassi�er antiipates badly, thenthis attribute is very relevant for distinguishing the situations overed by the C part. Thus, theC part must be speialized aording to this partiular attribute, and the orresponding estimateis should get a high value.In order to ompute the estimates is, eah lassi�er memorizes the situation sb preeding thelast antiipation mistake, together with the situation sg preeding the last antiipation suess.Eah time a lassi�er is suh that its C part mathes st�1 and its A part mathes at�1, its aurayis heked:� if the lassi�er antiipates well, for eah attribute:� if a partiular attribute of sb equals the orresponding attribute of st�1, then theorresponding estimate is is dereased;� if a partiular attribute of sb di�ers from the orresponding attribute of st�1, then theorresponding estimate is is inreased;6a don't know symbol mathes any value. 8



� if the lassi�er does not antiipate well, for eah attribute:� if a partiular attribute of sg equals the orresponding attribute of st�1, then theorresponding estimate is is dereased;� if a partiular attribute of sg di�ers from the orresponding attribute of st�1, then theorresponding estimate is is inreased.The is estimates are inreased and dereased aording to a Widrow-Ho� delta rule. The initialvalues are 0:5. A speialized attribute is given the same default is value of 0:5.4.2.2 The speialization proess
Muspec

[###1] [0] [1???]

[#0#1] [0] [1???] [#1#1] [0] [1???]Figure 3: In this example, the mutspe operator speializes the C part of a lassi�er aording tothe seond attribute. The original lassi�er is replaed by two new speialized versions.A lassi�er is said to osillate when g+b>eo and g�b> 0, where eo is a parameter of thesystem that represents the number of evaluations neessary to detet that a lassi�er osillates.As soon as suh a lassi�er is identi�ed, the mutspe operator [Dor94℄ is applied (see �gure 3).This operator replaes the osillating lassi�er by several more speialized versions. Some of thelassi�ers thus produed by the mutspe operator will always antiipate badly, but they will beeliminated by the seletion of aurate lassi�ers proess. Some of the lassi�ers reated by themutspe operator will still osillate and will be speialized again. Finally, a new lassi�er whihdoes not math any of the already pereived situations is not added in the set. This property anbe heked thanks to the set P of every pereived situation enountered during the lifetime of theagent. This set only ontains one single instane of eah already pereived situation7.In ontrary to usual mutspe pratie [Dor94℄, the attribute to speialize in MACS is not hosenrandomly, but thanks to the is estimates. The speialized attribute is the one with the highest isvalue, assuming suh hange is the most likely to improve the system.4.3 Generalization of onditionsThe speialization proess may produe lassi�ers with a C part at a sub-optimal level of gen-erality, espeially in the ase of loal exploration, when the agent only experiened a part of theenvironment. Thus, MACS needs a generalization proess whih is in harge of reonsideringearly sub-optimal speializations. As it is the ase with the speialization proess, estimates igand dediated heuristis are used in order to take advantage of experiene for driving the proessof generalization.4.3.1 The estimates used by the generalization proessIn order to ompute the ig estimates, MACS selets at eah time step eah lassi�er whose A partmathes at�1 and whose C part does not math st�1.Considering suh lassi�ers, for eah speialized attribute in the C part, MACS heks if theC part of the lassi�er would math st�1 if the onsidered attribute were general. In this ase,the onsidered ig estimate is updated:7The set P only ontains the atually pereived situations, not all the virtually possible situations resultingfrom the number of attributes and the number of values they an take. In a problem like the multi-agent Sheepdogproblem desribed in [SG01℄ for instane, the number of atually enountered situations is 290 while the numberof virtually possible situations is 8192. 9



� if the E part of the lassi�er mathes st, then a lassi�er with a more general C part wouldhave an aurate E part and the onsidered ig estimate is inreased;� if the E part of the lassi�er does not math st, then a lassi�er with a more general C partwould have an inaurate E part and the orresponding ig estimate is dereased.The ig estimates are inreased and dereased aording to a Widrow-Ho� delta rule. The initialvalues are 0:5. A general attribute is given a default ig value of 0:5.Up to that point, aording to suh a mehanism, MACS is able to hek if an attribute of aC part should be generalized or not.4.3.2 The generalization proess
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Figure 4: The generalization proess in MACS. See text for explanations.Eah time step, aording to the way they are updated, the ig estimates only inreased forthe lassi�ers whose A part mathes at�1 and whose E part mathes st. They are seleted byMACS in the list of all lassi�ers. In the example of �gure 4, these seleted mathing lassi�ersare identi�ed as Set A.The lassi�ers of Set A are grouped by similar e�ets in Set B. In our example, we only onsiderone of the resulting Set B, but the following proess is repeated for eah Set B that orresponds tosimilar E parts and similar A parts. Set B is only proessed to build the Set C of general lassi�ersif all the lassi�ers of Set B are aurate. This way, only aurate lassi�ers are generalized.With Set B, MACS builds a new Set C of lassi�ers whih are either more general or mererepliates of the original ones. For eah lassi�er of Set B:� if every estimate ig of the lassi�er is lower than 0.5, then it is not a good andidate for thegeneralization and it is added without modi�ations in Set C;� otherwise, a new lassi�er is added to Set C. The attribute of the C part with the highestestimate ig is generalized.In our example, unless the estimates do not appear on �gure 4, they are used to deide that theC parts of the seond and third lassi�ers should be generalized aording to the fourth attribute.Indeed, this attribute is not relevant sine both lassi�ers are aurate and antiipate the samevalue 1 for the fourth attribute. The �rst lassi�er remains unhanged and the two other ones aregeneralized aording to the fourth attribute.At this point, eah lassi�er of Set C is heked for on�its with other lassi�ers of the globallist. Two lassi�ers are in on�it if they antiipate a di�erent value for the same attribute, given10



an initial mathing situation and ation. If a lassi�er of Set C is involved into a on�it, theorresponding original lassi�er of set A is added to the new Set D. Otherwise, the lassi�er of SetC is added. Two lassi�ers are on�iting if their C and A parts are ompatible, but if their Eparts are not. Two E parts are inompatible if they do not math � i.e if the values of the symbolsthat are not don't know are di�erent. Two C parts are ompatible if they math and if at leastone possible situation is mathed by both C parts. MACS �nds the possible situations in the setP of every pereived situation enountered during the lifetime of the agent (see setion 4.2.2).In order to only keep the most general lassi�ers in set D, MACS heks iteratively everypossible pair of lassi�ers in that set. When the C part of a lassi�er is more general that ofanother lassi�er, the former lassi�er is kept and the latter is suppressed. In our example, MACSonly keeps one of the two last lassi�ers.Up to that point, MACS has build a new Set D of lassi�ers whih are equal or more generalthan the original ones in Set A. The lassi�ers of Set A are replaed in the list of lassi�ers of thesystem by the lassi�ers of Set D.This proess make it possible to replae several lassi�ers with a smaller or equal number oflassi�ers. The C part of the new lassi�ers over the same situations. Thus they do not on�itwith other lassi�ers in the system (lassi�ers with inompatible E parts are not overlapping).4.4 Transition overingTo fully desribe a given environment, a model needs to over every enountered transition in thisenvironment. This may not be the ase in the following irumstanes:� the system is initialized with an empty list of lassi�ers;� the seletion of aurate lassi�ers may eliminate inaurate or osillating lassi�ers beauseof loal exploration, when the agent experiened only a part of the environment.;� the ondition speialization proess reates a speialized lassi�er only when suh lassi�ermathes at least one already pereived situation. As long as the agent does not experieneevery possible situation, relevant lassi�ers may not be added to the lassi�er list.To summarize, eah time step, the system overs the transitions de�ned by st�1, at�1 and st.For eah attribute f of st, it onsiders an hypothetial part Ef of E suh that its single spei�attribute (whih is not a don't know symbol) is set to its value in st. Among the lassi�ers withan A part orresponding to at�1, the system heks whether there is at least one suh lassi�erwhose C part mathes st�1 and whose E part equals to Ef . If it is not the ase, the system oversthe transition by adding a new lassi�er in the lassi�er list.The A part of this overing lassi�er is set to at�1, its E part is set to Ef , whereas its C partis set as general as possible with regards to the following onstraint: its C part does not matheah of the C parts of the lassi�ers with the same E and A parts, but its C part mathes st�1.5 Combining Latent Learning and Dynami ProgrammingIn setion 4, we desribed how MACS learns a model of the dynamis of the environment withantiipating lassi�ers. In this setion, we show how this model is used in a Dyna arhiteture[Sut91℄ to de�ne a poliy. In suh arhitetures, as illustrated in �gure 5, the latent learning proesstakes plae independently from the reward, and permits to build a model of the environment.This model is then used to improve the learning speed of a poliy, thanks to methods inspired byDynami Programming.In the �rst part of this setion, a desription of how MACS uses a partial and inauratemodel of the transitions to drive the exploration proess is given. The seond part is devoted tothe proess of learning a poliy to maximize the umulative reward provided by the environment.We also show how MACS ombines ative exploration and exploitation.11
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Figure 5: MACS uses a Dyna arhiteture [Sut91℄ to perform reinforement learning. In thiskind of arhiteture, the model of the environment is learned latently, i.e. independently from thereward. The informations about the rewards are stored apart, here in the list of pereptions P,and a deision module takes advantage of both informations to build a poliy.5.1 Ative ExplorationThe aim of ative exploration is to provide the agent with a poliy that maximizes the informationdrawn by the sensori-motor loop. This agent will aordingly selet ations that help improvingthe model.5.1.1 The internal immediate rewardIn order to be able to drive the behavior of the agent, we de�ne an internal reward funtioni : S�A! < whih estimates the immediate gain in information, given a situation and an ation.With this funtion, MACS is able to hoose the ation whih maximizes the information, in agiven situation.In a situation s0, when the system has to hoose an ation in order to maximize the immediateinformation gain, MACS selets every lassi�er suh that its ondition mathes s0. If the ationsuggested by any of suh lassi�ers was hosen by the system, the lassi�er will be evaluated atthe next time step: either the number of good evaluations g, or the number of bad evaluations b,will inrease (see setion 4.1).For eah of these lassi�ers that math s0, MACS omputes an evaluation level l 2 [0; 1℄. Thislevel depends upon the number of good evaluations g, the number of bad evaluations b, and thenumber of evaluations needed to delare a lassi�er as inaurate, aurate or osillating:� if b > 0 and g > 0, then the lassi�er needs to be evaluated further to gain informationabout the best way to speialize it and l = min((b+ g)=eo; 1);� if b = 0 and g > 0, then the lassi�er  may be aurate but further evaluations are neededto hek that point and l = min(g=ea; 1);� if b > 0 and g = 0, then the lassi�er  never antiipated well but requires further evaluationsto be suppressed and l = min(b=er; 1);� if b = g = 0, then the lassi�er has never been evaluated and l = 0.Thus level l is equal to 1 if the lassi�er does not need to be evaluated anymore before being sup-pressed, speialized or generalized. It is equal to 0 when the lassi�er needs additional evaluations.12



The lassi�ers that math s0 are grouped by ation. For eah possible ation a, MACS omputesthe set Ss0;a of the possible antiipated situations as desribed in setion 3.28. Only the antiipatedsituations whih belong to the set P of already enountered situations (see setion 4.2.2) areonsidered in Ss0;a. Eah triple (s0; a; s1), where s1 2 Ss0;a, is one of the possible transitions thatwould be experiened if ation a were performed in situation s0. We de�ne the evaluation levell(s0; a; s1) assoiated to this transition as the produt of the evaluation levels l of all the lassi�ers involved in this antiipation: l(s0; a; s1) = Y�(s0;a;s1) lThe lassi�ers  mathing (s0; a; s1) are suh that their C part mathes s0, their A part mathesa, and their E part mathes s1. If the transition ours, the assoiated immediate informationgain is: Ri(s0; a; s1) = 1� l(s0; a; s1)We de�ne the immediate information gain assoiated to a situation and an ation as the maximuminformation gain over the possible assoiated antiipations:Ri(s0; a) = maxs12Ss0;a Ri(s0; a; s1)If the model does not provide MACS with at least one antiipated situation s1, beause of inom-pleteness, then i(s0; a) is given the default value 1, whih is the maximum immediate informationgain.This value Ri(s0; a) is used as an immediate reward in order to ompute a poliy for ativeexploration. It is omputed by analyzing the model and does not rely on the environment. Thus,we all it an internal reward.5.1.2 Planning to maximize the information gain on the long runTo perform ative exploration, MACS has to maximize the umulative immediate informationgain on the long run. Therefore, the system must perform lookahead planning to be able to atin order to get information in the future, even if it urrently pereives a situation suh that noimmediate internal reward is available.The planning proess relies on the immediate internal rewards and on the urrent model ofthe dynamis of the interations with the environment. But, during the learning proess, thismodel of the transitions is not reliable and may be misleading. For instane, an agent may planon the bases of a transition whih annot be atually experiened. In that ase, it may happenthat the poliy resulting from the model leads the agent into an in�nite loop, with no hane ofreonsidering the misleading transition. Thus, the planning proess must be autious beause thedeision relies on inaurate information.During the learning proess, the model of the transitions improves, and the immediate internalrewards are hanging a lot. Thus, the exploration poliy of the agent is not stable at all oversuessive time steps.Nevertheless, beause we want to keep the agent reative, it is not suitable to ompute a wholeplan at eah time step. Therefore, we use an iterative planning approah similar to that of ValueIteration [SB98℄, and inspired from the Dynami Programming approah. Eah time step, MACSonly updates one the values assoiated to situations and the poliy improves over several timesteps and keeps near-optimal most of the time. However, sine the model is not aurate anyway,�nding an optimal poliy with respet to this model is not neessary. We only want that theresulting behavior makes the agent to learn a model more quikly than with a random poliy.Eah situation of the set P of already enountered situation is valued by the disounted in-formation gain whih an be expeted from this point. Thus, the valued pereption set P servesto store the values of the situations while transitions are omputed aording to the lassi�er list(see setion 3.2), and immediate internal rewards are assoiated to eah transition.8There may be several possible antiipated situations in the ase where the lassi�ers are not aurate.13



Eah time step, MACS performs one simulated ation for eah situation s0 of the pereptionset P . For eah ation a, the immediate reward assoiated to s0 and a is Ri(s0; a) (see setion5.1.1). The expeted future reward assoiated to a transition (s0; a; s1) is the disounted valueVi(s1) assoiated to s1 in the set P .Planning thanks to an inaurate model an result in a sub-optimal poliy and even to endlessyles in the behavior of the agent. In order to avoid this kind of problems, MACS is autiouswith respet to the expeted disounted reward Thus, given a situation s0 and an ation a, wede�ne the expeted information gain as : as:Ei(s0; a) = mins12Ss0;a Vi(s1)The min in this equation re�ets the autiousness of MACS. Indeed, for eah ation, the systemonsiders the minimum internal reward he should get, with respet to the model. With thisinformation, MACS omputes the quality assoiated to situation s0 and ation a:Qi(s0; a) = Ri(s0; a) + Ei(s0; a)Then, MACS updates the new value of s0:Vi(s0) = maxa2A Qi(s0; a)The  fator is the disount fator. It plays the same role as in equation 1. This way, at eahtime step, MACS updates several values in the pereption set and the poliy improves. Duringthe ation seletion proess, when the pereived situation is st, MACS hooses the ation thatmaximizes Qi(st; a).5.2 Reinforement Learning in MACSIn setion 5.1, we de�ned how MACS performs ative exploration thanks to iterative planningtehniques. In this setion, we show how MACS uses the model of the transitions to build a poliythat maximizes the environmental payo� on the long run.5.2.1 Learning a poliy for the environmental rewardEah time step, MACS reeives a salar reward rt and a new situation st from the environment,as the result of taking ation at�1 in situation st�1. This immediate environmental reward isassoiated to st in the pereption set P . We note it Rp(st). This funtion Rp represents the goalsde�ned by the environmental rewards of the system. Here again, we design an iterative planningmehanism whih permits MACS to take advantage of its model to reah the goals.As in setion 5.1.2, MACS simulates several suessive ations eah time step. When MACSsimulates an ation with the situation s0 as a starting point, it uses the model of transitionsprovided by the list of lassi�ers and the integration mehanism (see setion 3.2) to omputefor eah ation a the set of possible antiipations s1. A payo� value Vp(s) is assoiated to eahsituation s in the pereption set P . This value represents the desirability of the orrespondingsituation. The reinforement learning proess updates these values iteratively thanks to the modelof the transitions and to the immediate environmental rewards. Here again, the learning proessis autious beause along the latent learning proess, the model may be inaurate. First, givenall the possible transitions from s0, MACS omputes the qualities assoiated to the ations:Qp(s0; a) = mins12Ss0;a [R(s1) + Vp(s1))℄The  fator is the disount fator. It plays the same role as in equation 1. MACS omputes andupdates the new value of s0 with this information:Vp(s0) = maxa2A Qp(s0; a)14



During the ation seletion proess, when the pereived situation is st, MACS hooses the ationto maximize Qp(s0; a). This way, MACS builds an exploitation poliy that enables it to deidewhih ation to take in eah situation to reah the goals de�ned by its environmental reward.5.2.2 Combining the exploration and the exploitation poliySetion 5.1 and 5.2.1 respetively desribed how MACS omputes a poliy devoted to ativeexploration and how it omputes a poliy for reahing the goals de�ned by its environmentalreward. We now address the issue of ombining these poliies in order to generate a behaviorombining exploration and exploitation.This ombination takes plae during the ation deision proess. When MACS pereives thesituation st, it omputes for eah ation a the qualities Qi(s0; a) and Qp(s0; a) respetively as-soiated to the exploration and the exploitation, before aggregating them. In this ase, it doesnot make sense to aggregate these riteria by omputing a weighted sum beause none of the twoqualities are bounded. Indeed :� if there are many immediate gains of information, even if they all belong to [0; 1℄, thedisounted sums may be high;� the level of the environmental rewards annot be known by the system before the learningproess is atuated sine the environment is unknown.Thus, we annot selet adequate weights in advane. However, we still an de�ne a hierarhybetween the two riteria. As the optimality of the exploitation poliy relies on the reliability ofthe model, seeking information that helps improving the poliy is given the priority against thepayo� maximization. The seletion of an ation takes plae the following way (we note Anfa0g theset A, exluding a0) :� If 9a0 2 A tq. 9a 2 Anfa0g tq. Qi(st; a0) > Qi(st; a) then the hosen ation is a0� Otherwise, the hosen ation a1 is suh that Qx(st; a1) = maxa2AQx(st; a)This way, if the ations are equivalent with respet to the information gain, then MACS hoosesthe ation aording to the exploitation poliy.6 Experimental studyUp to that point, we desribed MACS, a new LCS that performs a new kind of generalizationwhen ompared with XCS, ACS or YACS. In [GS01a℄ and [GSS02℄, we ompared the ability ofYACS and ACS to build a model of the dynamis of the interations between the agent andits environment. We showed that YACS provides an improvement over Stolzmann and Butz'sACS, in terms of learning speed as in terms of number of disovered lassi�ers. In this setion,we provide experimental omparisons of YACS and MACS interating with the environmentsMaze228, Maze252, Maze288 and Maze324, desribed in setion 6.1.We also provide experimental results about the use of MACS antiipation apabilities to providethis system with non-random poliies. The results given in setion 6.2 are disussed in setion 6.3.6.1 The environments Maze228, Maze252, Maze288 and Maze324Like the Wilson woods problems that are usually used as benhmarks in the LCS framework,Maze228, Maze252, Maze288 and Maze324 are grid worlds.Eah ell in those grids may be empty or ontain either an obstale � or food F. The agent issituated in a ell and is oriented toward one of the four ardinal diretions. A pereived situationis desribed by nine attributes : eight orresponding to the adjaent ells and one to the ell theagent is situated in. An attribute may take three values: 0 (empty ell),  1 (�) or 2 (food)15



FFigure 6: The Maze228 environment FFigure 7: The Maze252 environment
FFigure 8: The Maze288 environment FFigure 9: The Maze324 environmentThe agent an hoose between three ations: turning 90o left, turning 90o right or moving oneell ahead. In this ase, if the ell in front of it ontains an obstale, the agent remains in itsurrent ell.Grid worlds are usually used as understandable representations of �nite state automatons. Inthese automatons, ations imply transitions among states, represented as graph nodes. Suh au-tomatons make it possible to represent any reinforement learning problem with disrete statesand ations. Even if grid worlds an only represent a sub lass of reinforement learning problems,they an help to apprehend omplex environments. In partiular, they provide an easy way torepresent attributes. Moreover, maze problems provide regularities whih may be used for gener-alization. In MACS as in YACS, we did not make any assumption onerning the partiularitiesof grid worlds over general �nite state automatons.The topologies of Maze228, Maze252, Maze288 and Maze324 are respetively illustrated in�gures 6, 7, 8  and 9. Maze228 ontains 19 non-terminal ells and 19�4�3=228 transitions maybe experiened in the environment. As maze 252 ontains 21 non-terminal ells, it is possible forthe agent to experiene 252 transitions in it. Likewise, Maze288 and Maze324 respetively ontain25 and 26 empty ells and thus, 288 and 324 possible transitions.From a qualitative point of view, the partiularity of Maze288 is that it is less �open� than theothers. Its left part atually ontains two dead ends beause the agent annot move diagonally,while in the other environments, nothing equivalent exists. This originality of Maze288 leads anagent ating randomly to visit less often all the possible situations.The experiments are divided into trials. The agent starts a trial in a free ell hosen randomly.A trial ends when the agent reahes the ell with food, regardless of its orientation. In that ase,the agent reeives a reward of 1.0, it pereives the new situation to learn about the last transition,and a new trial starts.6.2 Experimental resultsIn order to estimate the evolution of the auray and ompleteness of the model of the transitionsprovided by the lassi�er list and the integration mehanism (see setion 3.2) over suessive timesteps, we use a measure of the perentage of knowledge provided by the model. For eah possibletransition in the environment, we hek if the lassi�er system is able to model aurately thetransition � i.e. if it antiipates a single situation only, and if this situation is the atual one. Theperentage of knowledge is the ratio of transitions aurately modeled by the system against the16



  Time to onverge Nb. Classi�ers  Average Std. Dev. AverageMaze228 - YACS (random) 9 295 1 787 199Maze228 - MACS (random) 4 960 1 737 184.8Maze228 - MACS (ative) 3 001 1 006 181.8Maze252 - YACS (random) 11 466 2 286 219Maze252 - MACS (random) 6 695 2 353 193.8Maze252 - MACS (ative) 3 716 1 306 190.2Maze288 - YACS (random) 20 983 7 114 249Maze288 - MACS (random) 8 473 3 078 205.3Maze288 - MACS (ative) 4 379 1 686 204.4Maze324 - YACS (random) 15 740 3 558 283Maze324 - MACS (random) 11 398 4 538 229.6Maze324 - MACS (ative) 5 518 2 084 227.2Table 3: Summary of the experimental results
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Figure 10: Number of lassi�ers against the sizeof the environment  0
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Figure 11: Time to onverge against the size ofthe environmenttotal number of transitions to be modeled by the system. This perentage annot be measuredin real world experiments sine it requires a perfet knowledge of the environment. However, itsevaluation is only possible in simulated environments.For YACS, as de�ned in [GSS02℄, the memory size m is set to 5 and the learning rates areset to 0:1. For MACS, we also used learning rates of 0:1 and eo, er and ea were all set to 5 (seesetion 4). The disount fator  was set to 0:9.We tested YACS in random exploration and MACS both in random and ative explorationin eah of the four environments. Table 3 summarizes the results of the di�erent experienes.It shows the average over 100 experienes (and the assoiated standard deviation) of the time toreah a perfet knowledge of the environment. It also shows the average of the number of lassi�ersthe systems needed to model the dynamis of the interations with the environment.Unilateral statistial Wiloxon tests permit to hek, with a given on�dene, the hypothesisof the equivalene of onvergene time distributions, against the the hypothesis stating that theonvergene times for one set of experiments are lower than the times for another set. For eahenvironment, onsidering one 100 valued sample per experiment, the Wiloxon tests aept, withthresholds lower than 10�5, the hypothesis that MACS onverges more quikly than YACS inrandom walk, and that MACS onverges faster with ative exploration.  Figures 10 and 11 show the relationships between the size of the environment on the one side,and the average number of lassi�ers and the average time to onverge, on the other side.17
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Figure 12: Evolution of the perentage ofknowledge in Maze228  0
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Figure 13: Evolution of the number of lassi-�ers in Maze228
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Figure 14: Evolution of the perentage ofknowledge in Maze252  0
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Figure 15: Evolution of the number of lassi-�ers in Maze252Figures 12, 14, 16, and 18 show the evolution of the perentage of knowledge when YACS andMACS interat with the di�erent environments. Figures 13, 15, 17, and 19 show the evolutionof the number of lassi�ers in the same experiments. All these results are averaged over 100experiments.Figures 20, 21, 22 and 23 show how the the average number (over 100 experiments) of timesteps required by MACS to reah the food evolves along  suessive trials, when exploration andexploitation are jointly used.6.3 Experimental results analysis6.3.1 MACS vs. YACS in random explorationThe semantis of the lassi�ers are di�erent in YACS and in MACS. With the YACS formalism,lassi�ers model transitions as a whole while, in the MACS formalism, eah lassi�er predits thevalue of a single attribute only. In environments supplying few regularities aross attributes, thenumber of rules disovered by MACS should be higher.Moreover, there are no don't are symbols in the formalism of MACS. As a result, regularitieslike �moving toward a wall does not make the situation hange� are represented with more lassi�ersin MACS than in YACS � one lassi�er for eah value of eah attribute � by taking advantage ofits ability to represent regularities involving di�erent attributes of the situations. But the numberof suh lassi�ers remains the same whatever the size of the grid world is.Despite this, in Maze228, like in Maze252, Maze288 and Maze324, MACS onverges toward18
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Figure 16: Evolution of the perentage ofknowledge in Maze288  0
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Figure 17: Evolution of the number of lassi-�ers in Maze288
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Figure 18: Evolution of the perentage ofknowledge in Maze324  0
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Figure 19: Evolution of the number of lassi-�ers in Maze324a smaller number of lassi�ers than YACS, thanks to the new regularities taken into aount inthe MACS formalism. Indeed, the larger the environment, the more MACS outperforms YACSwhen onsidering the ratio between the number of disovered lassi�ers and the number of atualtransitions. MACS exhibits an ability to represent many regularities whih are independent fromthe partiular topologies of the mazes, but that onern mazes in general:� In MACS, every transition involving a turning ation is modeled with the same number oflassi�ers regardless of the number of ells in the grid world. As YACS is not able to representregularities aross attributes, more lassi�ers are required to model these transitions as thesize of the environment grows.� The only attributes whih are di�ult to predit for MACS orrespond to the ells in frontof the agent, when it moves forward and when there is no wall in front of it. Whether suhsituations our frequently or not depend on the topology of eah partiular maze, not onthe general struture of mazes. In that ase, the latent learning proess has to take intoaount regularities whih our less frequently. In order to redue the number of lassi�ersneessary to predit suh attributes, a solution ould be to provide MACS with a mehanismmaking it possible to build E parts with several spei� symbols, as initially proposed in theformalism (see setion 3.2).Regularities of the �rst kind are quikly disovered by MACS. Indeed, in the �rst 1000 timesteps of the experiments (in any of the tested environments), the perentage of knowledge grows19
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Figure 20: Evolution of the number of timesteps to ahieve suessive trials in Maze228  0
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Figure 21: Evolution of the number of timesteps to ahieve suessive trials in Maze252
 0

 100

 200

 300

 400

 500

 0  20  40  60  80

nu
m

be
r 

of
 ti

m
e 

st
ep

s

trial

MACS in Maze288

Figure 22: Evolution of the number of timesteps to ahieve suessive trials in Maze288  0
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Figure 23: Evolution of the number of timesteps to ahieve suessive trials in Maze324very fast before slowing down and the omplete model is learned more quikly in MACS than inYACS.Suh learning speed of rotation ations is due to the fat that, despite the random exploration,there are many relevant examples to drive the learning proess, sine the onerned regularitiesare independent from the partiular topology of eah environment. This is very di�erent whenregularities that rely on the topology are onerned. In that ase, the more the lassi�ers are spe-ialized, the more the system experiments transitions that do not provide additional information,and the learning proess aordingly slows down.Despite this random exploration, the learning speed of MACS is linear in the size of the testedenvironment while the partiular topology of Maze288 is problemati for YACS (see setion 6.1).6.3.2 MACS with ative exploration and payo� maximizationWhen MACS uses ative exploration, the average time to reah a omplete knowledge is improvedover the situation of random exploration. Moreover, as shown in �gure 11, the improvement getshigher as the size of the environment grows. The evolution of the onvergene speed is better thanlinear in the size of the environment. In addition, the number of lassi�ers stabilizes quiklier.MACS also demonstrates its ability to use the model of the dynamis of the environment inorder to learn a poliy with respet to the payo�. In this respet, the learning proess an bedivided into several parts.During the very �rst trials, MACS mostly learns the transitions that orrespond to the rota-20



tions. Beause the model is highly inaurate, MACS annot propagate the internal reward verywell and the system does not take muh advantage of the Value Iteration algorithm. The resultingbehavior almost looks like a random behavior.One the �rst regularities have been learned, MACS beomes able to plan one step ahead whenperforming rotation ations, and it is more likely to learn what is happening when moving ahead.Thus, the behavior mostly onsists of long straight lines and MACS experienes many di�erentsituations. As a result, it reahes the goal more often : the number of time steps to ahieve thesuessive trials dereases.As the knowledge of MACS about what leads to what when moving ahead improves, thesystem beomes able to build more omplex exploration poliies and therefore stays longer withoutreahing the goal. Thus, the time to reah the goal inreases until there is almost no informationto gain.At this point, thanks to the aggregation method of exploration and exploitation poliies, MACSstarts to maximize the payo�. The behavior beomes optimal with respet to the payo�, althoughit may happen that MACS reonsiders early suboptimal speializations. In that ase, the newlassi�ers must be validated and MACS swithes temporally bak to ative exploration. Thisphenomenon explains the peaks in the late trials.7 Disussion7.1 Latent learning in MACS and the unertainIn [GSS02℄, we showed that the mehanisms of YACS improve the learning speed over ACS. Inthis paper, we proposed a new formalism for the problem of antiipation in the LCS framework.We showed how MACS, whih uses this formalism, improves the learning speed over YACS, thenover ACS.Nevertheless, we pointed in [GSS02℄, that extensions have been added to ACS in order to dealwith the unertain9, while YACS only deals with markov and deterministi environments. Suhextensions do not exist for MACS either.The outomes of an ation in a partiular situation may be unertain beause:� the environment is stohasti. In that ase, the pereptions or the ations may be noisy, andthe outomes of an ation in a given situation are not always the same. This ase may ourwhen the sensors or the e�etors are not absolutely reliable;� some pereptions are ambiguous. In that ase, the agent pereives the same situation indi�erent states of the environment (see �gure 24). Then, the information provided by theurrent pereption is not su�ient to deide the optimal ation, and the problem is told non-markov. The agent must deal with an internal state to disambiguate the aliased pereption.The internal state is de�ned by an information about past situations and ations.In order to deal with stohasti environments, ACS [BGS01℄ uses multiple e�et parts perlassi�er, eah valued by a probability measure. Some spei� heuristis have been added to ACSto deal with this new feature. In MACS, as in YACS, the heuristis presented in setion 4 shouldalso be modi�ed to takle stohasti environments, but the estimates ould be kept. Indeed, MACSestimates are robust to noise, beause they use Widrow-Ho� equations. Rather than designingnew heuristis, the estimates ould also be used to bias usual geneti algorithms.In order to deal with ambiguous pereptions, ACS uses ation sequenes. In the LCS frame-work, several other ways have been explored. CXCS10 [TB00℄ builds sequenes of lassi�ers andXCSM11 [Lan98℄ uses expliit memory registers to de�ne internal states. In the general Rein-9The learning speed improvements of YACS over ACS have been shown by onsidering ACS without theseextensions.10CXCS stands for Corporate XCS11XCSM stands for XCS with Memory 21
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Figure 24: In this environment, the agent always faes north and pereives the eight surroundingells. The agent an move to any of the eight surrounding ells. Many of the ells are ambiguous.For instane, the agent pereives the same situation in the ells marked a, b and . The onse-quenes of an east movement in any of these ells are di�erent. Inside eah of the highlightedzones, there are no aliased situationsforement Learning framework, Wiering [WS97℄ and Sun [SP00℄ propose to learn how to divide anon-markov problems into several markov ones (see �gure 24).These tehniques all require that information about internal state hanges an be assoiated totransitions. Unfortunately, MACS lassi�ers do not represent whole transitions, but provide onlypartial antiipations, thus a partiular lassi�er may be involved in several transitions. Therefore,the solutions mentioned above ould be adapted to YACS, but the partial antiipations of MACSforbid to use suh tehniques.7.2 Relations between Dyna and MACS
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Figure 25: YACS arhi-teture for latent learn-ing.
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IntegrationFigure 26: MACS arhiteture for latent learning.In setion 5, we desribed MACS as a Dyna arhiteture [Sut91℄. The main di�erene withMACS and DynaQ+ is the model of the environment whih is learned. In DynaQ+, this modelonsists of an exhaustive list of (st�1; at�1; st) triples, eah speifying a whole transition, i.e. theexpeted value of every attribute. ACS and YACS improve the model by adding generalizationin the triples, but eah lassi�er still speify omplete transitions. Conversely, in MACS, eahlassi�er only provides a predition onerning one attribute.22



Due to onditions, eah lassi�er of YACS (or (st�1; at�1; st) triple of DynaQ+) is a subfuntionof the global transition funtion T : s1�:::�sd�a1�:::�ae ! s1�:::�sd12. Conversely, in MACS,eah lassi�er is a subfuntion of a partial transition funtion Ti : s1 � :::� sd � a1 � :::� ae !si. Then, it is possible to onsider groups of lassi�ers, eah group antiipating one partiularattribute. The global transition funtion an be obtained by integrating the partial antiipations.The MACS arhiteture illustrated in �gure 26 shows how the latent learning part of MACSan be onsidered as a modular system, eah module antiipating one attribute. By ontrast, �gure25 shows the monolithi arhiteture of a DynaQ+ or ACS/YACS model. Eah of this moduleprovides an approximation of one partial transition funtion, eah prediting one single value.This arhiteture suggests that one ould replae MACS modules by any funtion approximationsystem. This way, it should be possible to take advantage of usual LCSs (whih do not use speiale�et parts) to draw the bene�ts of antiipation in reinforement learning problems.For symboli funtions, it is possible to use well known systems as XCS for these partial anti-ipations. For numerial funtions, it should be possible to use numerial funtion approximatorsfrom the LCS �eld like XCSF [Wil01℄, Neural Networks, loally-weighted funtion approximatorsor any other, provided that it is inremental.8 ConlusionIn this paper, we desribed several LCSs, eah of them asting a new light on the onept ofgeneralization in the LCS framework. In partiular, we enlighted how most LCSs � like XCS �onsider generalization with respet to an expeted payo�, while other LCSs � like ACS or YACS� onsider it with respet to antiipated e�ets in terms of situations. We also enlighted somelimitations of the formalism of ACS and YACS. To overome these limitations, we proposed MACS,a new LCS whih uses a di�erent formalism. This formalism makes it possible to use additionalregularities for generalization, in the latent learning proess of the model of the dynamis in theinterations between the agent and its environment.Suh a model is a prerequisite for the appliation of Dynami Programming iterative algorithmsfor planning. With MACS, we used a Dyna arhiteture to separate the information about thetransitions, and the information about the reward. This kind of arhiteture makes it possibleto use tehniques from operational researh to speed up the reinforement learning proess. Thisway, MACS is able to ompute poliies for ative exploration and payo� maximization. Amongdi�erent methods for aggregating riterions, we have hosen a hierarhial aggregation in order totakle the exploration/exploitation tradeo�.MACS formalism for latent learning does not onsider situations as an unseable whole, but itdeorrelates the attributes, making it possible to represent regularities aross attributes. Experi-mental results demonstrated that the new formalism used by MACS atually a�ords more powerfulgeneralization apaities than the formalism of YACS, without any ost in terms of learning speed.In addition, we showed how deorrelating attributes in the e�et part, leads to onsider an anti-ipatory system as a modular system, omposed of several systems, eah of them prediting onesingle value. Then, it is possible to use regular and widely studied learning algorithms to learn amodel of the environment so that it beomes possible to take advantage of Dynami Programmingtehniques to speed up the reinforement learning proess.We now intend to design a general numerial funtion approximator with a learning lassi�ersystem whih makes use of estimates to drive the learning proess. This new system will next beintegrated in a MACS arhiteture. This way, we intend to build an antiipatory reinforementlearning system, for stohasti and ontinuous environments.Referenes[Bel57℄ R. E. Bellman. Dynami Programming. Prineton University Press, Prineton NJ, 1957.12where e is the number of e�etors, ans d is the number of pereived attributes23
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