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Abstract

In this paper, we present a case study
showing why the modeling effort of computa-
tional neuro-sciences must call upon interac-
tions with an environment when developmen-
tal phenomena are investigated. More specif-
ically, in the context of a model of the spatial
organization of a repertoire of postures, we
show that calling upon a realistic simulation
of the human kinematics (i) results in raising
the question of the nature of information en-
coded in this repertoire ; and (ii) reveals that
some previous assumptions about the func-
tional organization of this repertoire were not
necessary. Finally, we point out that con-
versely, robotics can benefit from such stud-
ies by using the suggested principles to design
more adaptive control architectures.

1. Introduction

Given the complexity of tasks that humans and ani-
mals can address in contrast to the limited cognitive
and motor capabilities of robots, an emerging line
of research consists in building developmental and
neuro-computational models of biological systems,
with the hope to understand some underlying princi-
ples that may then be re-used to design robot control
architectures. In particular, a way of understanding
the principles of the generation of movement in the
corresponding specific neural structures (some parts
of the motor cortex, the cerebellum and basal gan-
glia) consists in building computational models im-
plementing these principles and investigating their
functional properties. But, in order to evaluate these
models, we will exemplify in this paper the impor-
tance of embedding the neuro-computational model
into a physical body or at least a realistic simulation,
particularly when the model calls upon developmen-
tal processes. Indeed, we will show through a case
study how taking into account the kinematics of the
physical system can both reveal important questions
ignored by models that did not simulate thiskinemat-

ics and point out unnecessary assumptions made by
these previous models.

More specifically, our starting point is Aflalo and
Graziano’s model (Aflalo and Graziano, 2006b),
which addresses the emergence of a repertoire of
motor primitives representing final arm postures
corresponding to experimental observations. Indeed,
Graziano and his team have observed through
intracranial stimulations of the Macaque monkey
that the hand reaches particular spatial configu-
rations independently of its initial configuration
when particular groups of neurons are stimulated
(Graziano et al., 2002a, Graziano et al., 2002b,
Graziano et al., 2003, Graziano et al., 2004). The
stimulated area lies within the precentral gyrus. It
contains parts of the primary motor cortex (M1), the
caudal part of the dorsal premotor cortex (PMdc)
and the ventral premotor cortex (areas F4 and F5
in the monkey), as shown in Figure 1.

Figure 1: The areas involved in the monkey’s brain: pri-

mary motor area and subparts of the premotor area. The

stimulated areas are in grey [from Graziano et al., 2005]

Later on, through recording the neural activity
in the monkey during free movement of superior
limbs, (Aflalo and Graziano, 2006a) have shown that
the relevant neurons were mainly, though non exclu-



sively, tuned for the final posture in terms of artic-
ular angles. Other parameters previously considered
as encoded in the premotor cortex, such as move-
ment direction (Georgopoulos et al., 1986), speed,
torques, hand position, seem less correlated to the
variability observed in the neural firing rate.

In (Graziano et al., 2004), the authors claim that
groups of neurons involved in arm movement form a
map of final hand positions, where the tuning of neu-
rons reflects the behavioral repertoire of the animal.
Finally, it is suggested in (Graziano et al., 2005) that
the organization of this map is not only based on
the spatial position of the hand, but also on the so-
matotopy and the “ethological category” of the pos-
ture (i.e. the monkey “reaches”, “eats”, “climbs”
etc.). Those three parameters would compete and
the competition would result in a complex organiza-
tion where all three representations overlap.

Aflalo and Graziano’s model is based on a Ko-
honen map (Kohonen, 1984, Kohonen, 2001). Very
shortly, Kohonen maps are a family of neural net-
works with self-organizational properties, where the
activated cell is the one that matches some input
the most closely. Training a map with a set of in-
puts composed of a vector of values results in the
property that neighbor cells according to some low-
dimensional topology get activated for similar data
in the higher dimensional space of inputs.

In the case of Aflalo and Graziano’s model, each
input of the Kohonen map is a vector in three parts
representing the limbs involved, the ethological cat-
egory of the corresponding movement and the posi-
tion of the hand. The first part is a binary vector
of length 10 (one bit for each limb) where a 1 indi-
cates that the corresponding limb is involved. The
second part is a binary vector of length 5 that codes
for the 5 possible categories (one bit for each etho-
logical category). The third part is a real number
vector of length 3 coding for the spatial coordinates
of the hand in 3 dimensions.

Aflalo and Graziano initialize their Koho-
nen map with a simple somatotopic representa-
tion of the primary motor cortex drawn from
(Woolsey et al., 1952). They show how training the
map with a large set of handcrafted inputs results
in a spatial organization similar to the one they ob-
served on the surface of the cortex of the monkey by
stimulating it. Nevertheless, the ad hoc encoding of
information they used is questionable. In particular,
one may wonder how the encoding of the ethological
category of the movement could be so explicit in the
neural system of the monkey.

Based on this work, (Ognibene et al., 2006a) have
proposed another model of the constitution of a
repertoire of postures. In (Ognibene et al., 2006b),
they used a Kohonen map as well, but their model is
trained in the context of a system learning to interact

with its environment.
Our work shares some similarities with Ognibene

et al.’s but, where their system only consists of a sim-
ple arm model with two degrees of freedom (dofs) in
the context of a simple reaching task, we use a more
complicated 24 dofs human-like system realizing a
more complete repertoire of movements. Address-
ing this more complex system raises the issue of the
most efficient encoding of the postural information
within the Kohonen map. In particular, we compare
an encoding based on articular parameters with an
encoding based on spatial positions of the extremities
of relevant body parts. More importantly, we show
that, just by rewarding some postures in some con-
texts and combining a reinforcement learning pro-
cess with a self-organizing process, we can obtain
a topological organization of the map reflecting the
ethological categories of movement that Aflalo and
Graziano were giving explicitly to their system.

The paper is organized as follows. First, we
present the global architecture and principles of our
model. We describe how these principles are imple-
mented and our experimental procedure in section 3.
Results comparing the coding with angles to the cod-
ing with positions are described in section 4. We dis-
cuss these results and more general features of our
model in section 5. Finally, we conclude and present
some directions for future research.

2. Our computational model

Our model consists of three elements (see Figure 2):

• an environment specifying a sequence of con-
texts where our system must fulfil successive con-
straints on postures in order to get rewarded (see
table 1) ;

• a human-like manikin simulation providing a re-
alistic kinematics where one can check at any mo-
ment whether the current posture corresponds to
a rewarded posture in a given context or not ;

• a control architecture based on a Kohonen map,
which must be trained to code for the relevant
rewarded postures.

2.1 Environment

Our model of the environment reflects very ab-
stractly the situation of a monkey motivated by
hunger in the presence of a fruit. The monkey must
successively catch the fruit, manipulate it, bring it
to its mouth and defend itself against an opponent
(Figure 3 right). This simplified environment is di-
rectly inspired by (Graziano et al., 2005) (see Figure
3 left). The constraints that a posture must fulfil to
be rewarded are given in table 1.



Context Goal of action Constraints on final posture
(C1) fruit in range catch fruit dhb > 64cm
(C2) fruit in hand manipulate fruit dhh < 16cm, dhb < 40cm, h in front of b
(C3) fruit peeled eat fruit dhm < 14cm
(C4) aggression defense dhh < 15cm, daa < 22cm, daf < 19cm

Table 1: Specification of rewarded postures corresponding to the contexts. In the last column, d = distance, h = hand,

m = mouth, b = body, a = arm, f = face, thus daf means distance from arm to face, for instance

Figure 2: Model architecture: environment, Kohonen

map and simulated manikin. Context C1 (see table 1)

activates the marked neuron (1) which codes for the rep-

resented goal posture (2). Movement from the initial

posture to the goal posture is shown at the bottom from

left to right (3). The forth posture satisfies the context

rewarding constraints, thus the link between C1 and the

most active cell is reinforced (4). Finally, the Kohonen

map is trained with this posture and a subsequent one

towards the goal posture corresponding to C2 (5)

2.2 Simulated body: Arboris

We use a human manikin simulation named “Ar-
boris” (Collette, 2007). The poly-articulated model
of the system contains 5 branches: the trunk, both
legs and both arms (see Figure 4 left). The trunk
is split into two bodies, arms and legs are split into
three bodies. There are 36 dofs, expressed in artic-
ular parameters corresponding to angles. All bod-
ies and articular limitations are defined according
to anthropometric data adapted from the HuMAnS
manikin documentation (Wieber et al., 2006). We
restrict the manikin to 24 dofs on the upper part
of the model to avoid dealing with equilibrium con-
straints. The movement from one posture to another

Figure 3: Left: categories of movement targets [from

Aflalo and Graziano 2006]. Light blue: hand-to-mouth;

dark blue:reach; red:protect oneself; green:manipulate;

pink:climb. Right: equivalent in our simulation. Dark

blue:catch; green:manipulate; light blue:eat; red:defense

Figure 4: Virtual manikin used in our simulation. left:

Numbers indicate the numbers of degrees of freedom.

right: Orientation of the reference frame defining posi-

tions of body part extremities

is obtained by a mere spline interpolation, imposing
a bell-shaped velocity profile as observed in natural
motion. The number N of intermediate postures be-
tween the initial and final null speed postures is a
parameter of our system (here we take N = 5).

2.3 Posture representation

Like (Aflalo and Graziano, 2006b) and
(Ognibene et al., 2006b), our encoding of a reper-
toire of postures is based on Kohonen maps
(Kohonen, 1984, Kohonen, 2001). But our use of a
complex virtual manikin highlights a problem that
neither of these authors addressed. Indeed, building



our model implies finding a good match between
three languages: the specification of rewards associ-
ated to each context, the encoding of goal postures
in the repertoire, and the encoding of the current
posture in the manikin simulation.

The goal of the repertoire learning process is to
ensure that Kohonen cells representing goal postures
code as precisely as possible for rewarded postures of
the manikin. Aflalo and Graziano did not face this
question because their model does not call upon a
simulation, and Ognibene’s two-dimensional model
being too simple, the transformation from angles to
positions and vice-versa is trivial.

In our case, the movement of the manikin is de-
fined by the articular parameters of the initial and
final postures, thus coding postures with angles, as
we do in a first model, seems the most appropri-
ate. But representing rewarded postures is simpler
with positions of body parts or cartesian distances
between these parts than with angles. For instance,
when the manikin must eat, the relevant feature is
the relative position of one hand with respect to the
mouth and specifying that with a chain of articu-
lar angles is complex. The underlying question is
whether the brain codes for postures in a language
adapted for controlling the body or adapted for spec-
ifying the goals, or even something else.

As a consequence, we designed a second model
where the topology of the Kohonen map is based
on positions rather than on angles. We extracted 24
coordinates corresponding to the spatial position of
eight body parts: both shoulders, elbows, wrists and
hand tips. These positions are expressed in a refer-
ence frame based on the eyes, as shown in Figure 4
right, so as to be able in future work to integrate vi-
suomotor transformations in the context of a wider
model calling upon a visual loop and a motor loop
as suggested by (Nakahara et al., 2001).

In order to implement this second model, we must
transform a goal position defined with spatial co-
ordinates into a goal posture defined with angles,
which is necessary to control the manikin. In our
context, we cannot directly use inverse kinemat-
ics solution schemes, since we specify the position
of only a subset of body parts: there exists in-
finitely many corresponding angular configurations.
(Ognibene et al., 2006b) solved this problem with a
“direct inverse modeling” method by learning simul-
taneously two associations through a large set of 2D
postures: first, the association between articular an-
gles (outputs) and the activation of the Kohonen
map and second, the association between a perceived
position and the activation of the Kohonen map. The
articular angles can then be retrieved by a mere ac-
tivation of the map. However, what they did on a
simple two-dimensional problem cannot be straight-
forwardly extended to our 24 dofs context.

Figure 5: Second model architecture: one Kohonen map

coding for spatial positions of body parts extremities is

added with respect to Figure 2 and the correspondence

between angles and positions is ensured (see text)

Thus we rather used a second Kohonen map, as
shown in Figure 5. The second map codes for posi-
tions, and a cell in this map can be addressed from a
cell of the map coding for angles through a direct ge-
ometric transformation computing the position from
the angles. The neighborhood relationship is estab-
lished in the map coding for positions. Then, during
training, this relationship is “mapped” onto the map
coding for angles through a 25th variable coding for
distances between postures expressed as a set of posi-
tions of body parts. Then, the map coding for angles
is trained and the result is transferred again to the
map coding in positions, so as to preserve the one-
to-one correspondence. Through this process, we can
both use our interpolation mechanism and constrain
the modification of angles so as to ensure that artic-
ular limitations are not violated.

3. Model implementation and exper-
imental design

We used an implementation of Kohonen maps avail-
able on internet1. The cells of the Kohonen map
in our model code for goal postures (noted Pg) of
the manikin, which means that the vector of weights
associated to each cell contains information about a
posture (either with angles or with positions). These
maps of 16× 24 = 384 cells (noted c) are initialized
by training them with angles with 2 million random
postures, taken in different order, which results in
different maps.

After initialization of the Kohonen map and selec-
1at http://www.cis.hut.fi/projects/somtoolbox



Parameters: {C1, ...Cn}, N(hereN = 5)

1. Pc(0)← random posture

2. for k = 1 to n //index of current context

3. for i = 1 to N //index of current posture

(a) Pg ← maxc (e
Q(c,Ck)

T )/(Σje
Q(cj,Ck)

T )

(b) Pc(i + 1)← interpolate(Pc(i), Pg)

(c) if (Pc(i + 1) rewarded)

• Q(Pc(i+1), Ck) = (1−α)Q(Pc(i+1), Ck)+αR
with R = 1

• train Kohonen map,

(d) if ((Pc(i + 1) not rewarded) and (Pc(i + 1) = Pg))
Q(Pc(i + 1), Ck) = (1 − α)Q(Pc(i + 1), Ck) + αR
with R = −0.3

4. end for

5. end for

Figure 6: The main algorithm (implemented in Matlab)

tion of an initial random posture (Figure 6, line 1),
we present to the system the sequence of contexts
(noted C) that appears in table 1, starting on the
top line. The system must learn to reach the corre-
sponding rewarded postures. Once the first rewarded
posture is reached, the second context is presented
and so on up to the fourth. If the system fails, a
new iteration starts: a new random posture is se-
lected and the system is reinitialized to the first con-
text. We consider that the goal posture correspond-
ing to a context is learned as soon as the system
reaches it during 10 successive iterations. We per-
form Ni = 1000 iterations of the algorithm in Fig-
ure 6 for each test.

We do not model context perception: a “context
cell” is simply set to “on” in the corresponding con-
text. In order to learn the correspondence between
contexts and goal postures, we define a set of links
(noted Q(c, C)) between each context cell and each
cell in the Kohonen map. The active goal posture
Pg will tend to be the one whose link to the current
context cell is the strongest, provided that we use
some exploration. ere, our exploration mechanism
is a classical Boltzmann law (Figure 6, line 3a) that
explores all the more than the constant temperature
T is higher and we take T = 0.03. All links are
initialized to 0 at the beginning of a test.

Given an initial posture and a goal posture, the
manikin control system will generate a sequence of
current postures Pc through a simple interpolation
mechanism. If a current posture satisfies the con-
straints corresponding to the current context, the
link Q(Pc, C) is reinforced (Figure 6, line 3c). If
the current posture is the goal posture and the pos-
ture is not rewarded, the link Q(Pc, C) is weakened
(Figure 6, line 3d).

Furthermore, a second learning process consists in
training the Kohonen map so as to represent opti-

mally the set of postures that are rewarded in a given
context. The training data are the postures corre-
sponding to the first rewarded posture in a given
context and the first posture after the next change
of context if this posture would have been rewarded
in the previous context. This latter posture is added
so as to drive the current goal posture towards the
next goal posture when it is possible. For instance,
when one manipulates before eating, it may be more
efficient to manipulate with the hands as close to the
mouth as possible. The system performs 15 standard
training iterations for each of these postures.

4. Results

We studied the influence of the type of coding, ei-
ther angles or positions, on the learning speed and
resulting organization.
Figures 7 and 8 were obtained from the same ini-
tial map, but in the former we coded postures with
angles whereas in the latter they were coded with
positions. From these figures, one can see that there
are already in the initial map a few cells (between
1 and 8 cells with a slightly different topology each
time) that code for a rewarded posture in each con-
text. And we noted that the convergence time is
highly dependent upon this number of initial “cor-
rect” cells.

Our learning process results from the combination
of two tightly coupled learning and self-organization
processes. First, the system learns to bind to each
context the cell representing an adequate goal pos-
ture in this context so as to drive the manikin to-
wards this posture. Second, the Kohonen map is
trained so that each goal cell codes as precisely as
possible for the domain in which the corresponding
postures are rewarded.

If we restricted the model to the first learning pro-
cess, it would consist in finding through a random
trial-and-error process that activating those initially
adequate goal cells in adequate contexts results in
receiving some reward. Then the link between the
corresponding cell and context would be reinforced
and this cell would get a higher probability of getting
activated when the same context is presented again.
Thus if there was no such cells coding for rewarded
postures in the initial map, this first learning process
would fail. This explains why the convergence time
depends so much on the initial conditions.

The second learning process comes into play be-
cause, each time the current posture is rewarded, the
Kohonen map is trained so that the active cell codes
more centrally for this rewarded posture in the future
(Figure 6, line 3c). In Figures 7 and 8, one can ob-
serve that this self-organization process results in a
global reduction of distances coded by neighbor cells
and in the formation of clusters of goal cells that code
adequately for rewarded postures. This is a key el-



Figure 7: Evolution of the repertoire of postures along iterations when postures are coded with articular parameters.

First and third lines: average distances between the postures represented by neighbor neurons (dark blue = very close,

red = very far). Second and fourth lines: cells coding for rewarded postures in different contexts are shown in color:

dark blue: catch ; green: manipulate ; light blue: eat; red: protect oneself .

ement in our work: thanks to this second process,
clusters corresponding to the ethological categories
of Aflalo and Graziano’s model are formed without
giving explicitly these categories as inputs.

Globally, whatever the encoding used, our algo-
rithm learns steadily to reach a sequence of rewarded
postures that are not given explicitly to the system,
but discovered through a trial-and-error process. On
average over 40 runs, it takes 100 iterations to learn
to reach steadily the next rewarded posture in the
sequence once the previous one is already learned.

The location of the cluster of neurons correspond-
ing to the ”catching” context is different between
Figures 7 and 8. These figures were chosen to il-
lustrate the fact that a cluster tend to be formed
around the neurons coding initially for a rewarded
posture. In the case of ”catching”, we can see that
in the initial map two regions are relevant for this
context, but with our learning algorithm only one
region is trained per run. So in two different runs,
this cluster can be at two different positions; but in
the same run, even if two different occurrences of
the same ethological posture are presented in the se-
quence, only one cluster is formed. By comparing
these figures, one can also observe that this cluster
formation process is slightly faster and clearer when
postures are represented with articular parameters,
though the difference in speed is not significant.

5. Discussion

While (Aflalo and Graziano, 2006b) were trying to
reproduce the complex spatial organization of neu-
rons coding for a repertoire of postures in the pre-
central gyrus of the monkey that they had observed

through stimulation and recording, our standpoint
was rather to look for general organizational princi-
ples that may explain the constitution of this reper-
toire through learning in interaction with an envi-
ronment.

As a consequence, our work led us to question some
of the methodological assumptions underlying Aflalo
and Graziano’s model. In particular, the organiza-
tion they get in their Kohonen map directly results
from an ad hoc encoding of the inputs of this map.
In that respect, we have shown how one can obtain a
spatial organization into clusters coding for relevant
ethological categories without explicitly representing
these categories in the inputs of the repertoire.

Furthermore, whereas in Aflalo and Graziano’s
model the cells of the Kohonen map only keep track
of the position of one hand, the fact that we con-
sidered a complex representation of postures with 24
dofs led us to face the problem, biologically relevant,
of the nature of information used to code for these
postures.

Indeed, we observed that coding with articular pa-
rameters results in a clearer organization of clusters
than with body parts positions. The distances be-
tween encoded goals outside of clusters is more uni-
form and this distance decreases faster, resulting in
a faster cluster formation process in the former case.
As a result, coding with angles seems more advanta-
geous, since it is also computationally less expensive:
it does not call upon the costly transformation from
articular angles to positions and back.

These arguments in favor of coding with angles
obtained in a simulation study must be recon-
sidered in the light of the neuro-physiological
debate. Indeed, some experimental studies



Figure 8: Same information as in Figure 7, but cells code for body parts positions instead of articular parameters.

inspired by the “target position hypothesis”
(McNeilage, 1970, Russel, 1976) clearly speak
in favor of a “global” reference system ex-
pressed with positions (Georgopoulos et al., 1981,
Baud-Bovy and Viviani, 1998). But other
studies like (Scott and Kalaska, 1997) or
(Rosenbaum et al., 1999) have shown that mo-
tor cortical neurons fire in function of initial and
final angular postures of a movement. Thus it seems
that both kinds of information are used in the brain.
The kind of representation used may depend on the
task, or there might be some redundant encoding
in the motor system, as (Haggard et al., 1995) and
(Kawato, 1996) suggest. A control strategy based
on this redundancy still awaits to be studied.

Another possibility would be that the postures are
coded in a visual reference frame. There is an im-
portant body of literature about the different refer-
ence frames and transformations between them that
are used in visuomotor control (Brotchie et al., 1995,
Pouget et al., 2002). Taking this dimension into ac-
count would also open the possibility to distinguish
two learning mechanisms, one in the visual system
and one in the motor system (Nakahara et al., 2001).

6. Conclusion and future work

In this paper, we have shown that using a simulation
of a sophisticated human-like manikin may be nec-
essary to design more accurate models of the neuro-
physiological processes that take place in the con-
trol of complex movements in humans and animals.
First, such a choice revealed the importance of the
nature of information encoded in the repertoire of
postures that was not addressed by simpler models
lacking this simulation dimension. Second, it was
made possible to show that the assumption of an ex-
plicit encoding of the ethological category was not

necessary to obtain the expected organization. In-
deed, since the repertoire of postures obtained was
resulting from the combination of a self-organization
process and a reinforcement learning process involv-
ing interactions with an environment, a simulation of
this interaction was necessary to observe the emer-
gence of these ethological categories.

Thus we have shown how human-like simulations
can contribute to modeling activities in life sciences.
Conversely, our study illustrates how drawing inspi-
ration from neuro-physiological studies to model de-
velopmental processes that take place in motor con-
trol can result in the design of efficient control ar-
chitecture for virtual manikin and humanoid robots.
Indeed, from the repertoire of postures that we ob-
tained, one can design or learn complex sequences of
simple actions that may result in the achievement of
diverse robotics tasks.

Like Aflalo and Graziano’s, our model was focused
on learning a repertoire of postures. Even if our
study is concerned with sensorimotor learning, here
we did not address numerous aspects of the motor
learning system such as the constitution of sequences
of actions or motor adaptation.

In order to address biological relevance further, in
the immediate future we have to replace the sim-
ple interpolation mechanism used in our model by a
more accurate low level control law taking into ac-
count the dynamics of the system and some equilib-
rium constraints that must be satisfied to prevent
the manikin from falling. In parallel, we are investi-
gating the automatic learning of a dynamical model
that may take place in the cerebellum.

Furthermore, the structure of the sequence of goals
learned here is extremely simple, it is a mere suc-
cession of associations between a set of predefined
contexts and constraints on postures. In order to



address more general robotics tasks, we will have
to focus in the future on a more accurate model of
sequence learning and goal processing architecture,
drawing inspiration from computational models of
basal ganglia that try to elucidate the mechanisms
of reinforcement learning and sequence formation. A
true robotic implementation will then be necessary
to qualify the robustness of the global architecture
to sensors and actuators noise.
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