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ABSTRACT

The XCSF classifier system solves regression problems it-
eratively online with a population of overlapping, local ap-
proximators. We show that problem solution stability and
accuracy may be lost in particular settings – mainly due to
XCSF’s global deletion. We introduce local deletion, which
prevents these detrimental effects to large extents. We show
experimentally that local deletion can prevent forgetting in
various problems – particularly where the problem space is
non-uniformly or non-independently sampled. While we use
XCSF with hyperellipsoidal receptive fields and linear ap-
proximations herein, local deletion can be applied to any
XCS version where locality can be similarly defined. For
future work, we propose to apply XCSF with local deletion
to unbalanced, non-uniformly distributed, locally sampled
problems with complex manifold structures, within which
varying target error values may be reached selectively.

Categories and Subject Descriptors

G.1.2 [Numerical Analysis]: Approximation—approxima-

tion of surfaces and contours, least squares approximation,

nonlinear approximation; I.2.6 [Artificial Intelligence]:
Learning

General Terms

Algorithms, Theory, Performance

Keywords

XCSF, function approximation, local deletion, unbalanced
problem sampling, manifold

1. INTRODUCTION
Most challenging function approximation problems arise

when the function class is unknown, which requires an on-
line approximation of the function surface from incoming
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samples. Many regression algorithms are furthermore chal-
lenged when the sampled values are non-uniformly or non-
independently distributed. While facing these challenges,
the applied regression algorithm is expected to yield results
of a desired accuracy with a representation that approxi-
mates the function highly compactly. XCSF is a system
that falls in this class of regression algorithms and that in-
deed also faces these challenges.

The XCS system was introduced in [13] and was extended
to the real-valued function approximation system XCSF in
[14]. In [1], XCSF was modified to develop hyperellipsoidal
receptive fields, that is, Gaussian kernels. In [4], XCSF with
hyperellipsoids was extended with effective mutation opera-
tors and compared to similar state-of-the-art machine learn-
ing techniques, such as the constructive incremental learn-
ing approach [8]. Most recently, it was shown that XCSF
yields performance comparable or superior [11] to the locally
weighted projection algorithm (LWPR) [12] – a well-known
tool in the learning robotics literature. Here, we investi-
gate the performance of XCSF further and compare stan-
dard XCSF with a modified version, in which GA deletion
is applied locally. The challenges we are facing are due to
observations that XCSF sometimes does not yield stable ap-
proximation surfaces – particularly while applying conden-
sation [13, 4]. Moreover, we are interested in approximating
functions whose problem spaces are sampled non-uniformly
or non-independently. We show that XCSF with local dele-
tion (referred to as XCSFld) yields more stable and accu-
rate function approximations in various problem settings.
Additionally, we study approximation performance in lower
dimensional manifolds, which are embedded in higher di-
mensional input spaces.

We now first motivate and detail the new local deletion
mechanism. Next, we provide results for various problem
sampling cases in the crossed-ridge function [8, 11] and in
the diagonal sine function [1]. It is shown that local deletion
yields performance that is either comparable or better than
that of XCSF with global deletion. We conclude that local
deletion is a powerful tool to avoid detrimental forgetting
and to focus local search in XCSF.

2. XCSF WITH LOCAL DELETION
The evolutionary algorithm in XCSF can be characterized

as a steady-state GA. Upon GA invocation, usually two clas-
sifiers are selected for reproduction in the current match set
[M ]t at iteration t. Sometimes, it can also be advantageous
to select a different amount of classifiers for reproduction



(cf. [9]). More importantly for this study, however, is the
fact that global deletion is applied [13] – that is, classifiers
are selected from the whole population for deletion.

This combination of local reproduction with global dele-
tion yields a now well-documented evolutionary generaliza-
tion pressure [3]: since the classifier conditions in the match
set are on average more general (simply speaking, because
more general classifiers will match more often on average)
than the classifier conditions in the population as a whole,
more general classifiers are favored during reproduction. The
resulting generalization pressure has been quantified and
verified exactly in various studies, cf. [3]. Recently, the
same mechanism was also characterized in XCSF with re-
spect to classifier volumes [4, 10] and most of the theory of
XCS was carried over to XCSF.

However, global deletion may result in the deletion of im-
portant classifiers when the problem space is non-uniformly
sampled. For XCS, it has been shown that when the prob-
lem space is covered with highly overlapping conditions, lo-
cal, random walk competitions can take place amongst the
overlapping classifiers [2], which may lead to detrimental
forgetting of small subspaces.

In data mining problems, it was shown that unbalanced
data-sets may also lead to detrimental forgetting. In this
case, the θGA threshold was reduced automatically, which re-
sults in a reduced reproduction rate in over-sampled problem
subspaces [7, 6]. However, the unbalance detection mecha-
nism, which is used to tune the θGA threshold automatically,
does not seem to be applicable in XCSF.

We propose to focus the deletion mechanism on the cur-
rently sampled, local sub-space, fostering local deletion. To
avoid disrupting the generalization pressure of XCSF, men-
tioned above, a local deletion mechanism is necessary that
does not favor more general classifiers. Deletion simply from
the usual match set is not appropriate, because classifiers in
the match set are on average more general than those in
the whole population. Our mechanism deletes within the
local sub-space, but it does not favor more general classi-
fiers for deletion. The local subspace is determined by the
condition of a randomly chosen classifier cl from the current
match set. Classifiers whose condition center overlaps with
the condition of cl are considered for deletion. Consequently,
we scan the population for all those classifiers whose center
of their condition are matched by the condition part of cl.
The resulting subset of classifiers [D] is then treated as the
candidate list for deletion – as previously the whole popula-
tion was treated as the candidate list for deletion. Thus, the
usual roulette wheel selection with the normal match set size
estimate and accuracy estimate-based voting mechanism is
applied in [D] – as it would be done in the population [P ]
in the normal XCSF. That is, first the sum of all deletion
votes in [D] is calculated and a classifier is chosen for dele-
tion by roulette wheel selection. Next, the numerosity of
that classifier is reduced by one. If its numerosity equals
zero, it is deleted from the population. Algorithm 1 speci-
fies this mechanism in algorithmic form. In the remainder of
this work, we refer to this modification by XCSF with local
deletion (XCSFld).

3. PERFORMANCE COMPARISON
We consider n-dimensional real-valued functions

f : R
n
→ R,

Algorithm 1 Local Deletion

1: Select random classifier cl from [M ].
2: [D] = ∅

3: for all c ∈ [P ] do
4: if cl does match center of c then
5: add c to candidate list [D]
6: end if
7: end for
8: DELETE FROM CANDIDATE LIST [D]

which are sampled iteratively, that is, each time step a sam-
ple (~x, y) is given to the algorithm, where y = f(~x). The goal
is to approximate the function surface online from the given
samples. To increase the difficulty of the problem further,
we add random Gaussian noise with a standard deviation of
0.001 to each sampled output value.
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Figure 1: Surface plots of (a) the Crossed Ridge
function f1 and (b) the Sine function f2.

The functions are defined in the interval [−1, 1]2. Without
loss of generality, the input space is normalized to [0, 1]2 for
XCSF.

1. The Crossed Ridge function contains a mix of linear
and non-linear subspaces.

f1(x1, x2) = max
ˆ

exp(−10x2

1), exp(−50x2

2),

1.25 exp(−5(x2

1 + x2

2))
˜

2. The Sine function is constant in the (1,−1) direction
but highly non-linear in the perpendicular (1, 1) direc-
tion.

f2(x1, x2) = sin (2π(x1 + x2))

Figure 1 shows surface plots of the two functions.
We mostly use standard parameter settings for XCSF1,

We conduct ten independent runs for each reported exper-
imental setup. The currently sampled mean absolute pre-
diction error (MAE), the root mean square error (RMS) of
points sampled in a grid of 21 by 21 locations, as well as the

1XCSF’s parameters are set to N = 4000, ε0 = 0.002,
β = 0.1, δ = 0.1, α = 1, θGA = 50, θdel = θsub = 20,
χ = 1. The mutation probability for each attribute of the
rotating hyperellipsoidal structures (center, stretch, and an-
gle) are set to µ = 1/n = 0.2. The center is mutated within
the receptive field bounds, the stretches are decreased or in-
creased in size maximally doubling or halving their current
size; the angles are uniformly changed by maximally 45. The
initial radius of receptive fields is taken uniformly random
from [0.00, 1]. GA subsumption is applied. Condensation is
applied after 80% of the learning iterations.



number of distinct classifiers (number of macro-classifiers)
and the average generality (volume) of the classifiers in the
population are reported. In the case of Gaussian sampling,
only those grid points are considered that lie in the 95%
confidence interval.

We report results with various sampling approaches: First,
standard uniform sampling is applied. Next, random walk
sampling is investigated, where each successive sample de-
pends on the previous sample. We add Gaussian noise to
the previous sample to derive the next one. If the resulting
x1 or x2 value lies outside of the input space [0, 1], a differ-
ent Gaussian noise value is sampled. Note that such sam-
pling mimics a continuous interaction with an environment –
previously, for example, investigated in multi-step reinforce-
ment learning problems (mazes) with XCS, where teletrans-
portation was proposed to improve learning [5]. However,
teletransportation cannot be used when the system is sup-
posed to learn fully autonomously.

Moreover, we report results where sampling is restricted
to a ring manifold in the two dimensional space, centered on
.5, .5 and with a minimum radius of .3 and a maximum ra-
dius of .4, within which once again random walk sampling is
applied. Furthermore, we report results on Gaussian prob-
lem sampling where samples are either generated by a Gaus-
sian process with center .5, .5 and variable widths or where
we apply a Gaussian ring sampling, in which case the av-
erage ring radius is sampled from a Gaussian process with
mean .3 and particular standard deviations and the angle is
chosen uniformly randomly between 0 and 2π.

3.1 Crossed Ridge Results
The results in figures 4(a), 4(b) suggest that XCSF with

local deletion yields a more stable condensation process dur-
ing uniform sampling in the crossed ridge function. During
learning, learning progress and achieved values seem gen-
erally comparable. Similar differences during condensation
as well as slight learning advantages during learning can be
identified also for different random walk sampling cases (fig-
ures 4(c)-4(f)). Also the behavior of the generalization val-
ues and the population sizes are generally comparable. The
number of macro-classifiers stays slightly higher when local
deletion is applied – probably an additional indicator for the
prevention of detrimental forgetting. Generally these results
suggest that XCSF can deal rather well with sampling based
on random walk. Only during condensation, during which
neither mutation nor crossover operators are applied, the
danger for detrimental forgetting is larger in XCSF. Fig-
ure 2 shows the developed classifier condition structures,
which cover the problem input space, for the random walk
sampling with σ = 0.1 after condensation. Local linearities
appear nicely exploited. However, in this case a difference
between XCSF and XCSFld cannot be deduced.

When sampling the Crossed Ridge function on a ring, fig-
ures 5(a), 5(b) show that performances are generally compa-
rable. When Gaussian sampling is applied (figures 5(c), 5(d)),
the same robustness is observable when XCSFld is applied.
However, in this case a similar stable solution takes slightly
longer to develop. Finally, when Gaussian ring sampling is
applied (figures 5(e), 5(f)), we can observe the evolution of
a final solution with lower prediction error and higher av-
erage rule generality when XCSFld is applied – indicating
that detrimental forgetting due to global deletion in XCSF
is prevented – once again particularly strongly during con-

(a) XCSF (b) XCSFld

Figure 2: Structure of ellipsoids of XCSF and XCS-
FLD after condensation in exemplary runs with ran-
dom walk sampling, standard deviation σ = 0.1, in
the crossed ridge problem. Shown are contour plots
of 20% of the actual size of the classifier receptive
fields with respect to matching. Darker blue indi-
cates higher fitness values.

densation. Note also that these results show for the first
time that XCSF – regardless if deleting globally or locally –
can solve an approximation problem in a local manifold bet-
ter than when approximating a function in a larger problem
space (compare prediction errors in Figure 4 with those in
Figure 5).

In sum, the results show that XCSFld does not yield any
worse performance than normal XCSF in any of the inves-
tigated cases in the Crossed Ridge function. However, in
most cases, the prediction errors stay significantly more sta-
ble during condensation.

3.2 Sine Results
The sine function is a rather tough case to learn a fully

accurate model that achieves an error below ǫ0 = .002 with
N = 4000 classifiers. In the uniform sampling case (fig-
ures 6(a) and 6(b)) XCSFld yields better RMS values dur-
ing learning and much more stable final solution sustenance,
preventing detrimental forgetting. This result indicates that
the local ellipsoidal structures, which typically orient them-
selves diagonally in space in this sine function, are strongly
locally overlapping. When random walk sampling is ap-
plied, the problem space is more accurately approximated
with XCSFld – as indicated by the RMS measure — and
huge prediction error differences after condensation can be
observed (figures 6(c)-6(f)). In the most extreme case, the
final RMS for normal XCSF yields an error above 0.4 while
the error of XCSFld stays below 0.004 – two orders of mag-
nitude better performance due to the local deletion mech-
anism (see figures 6(c) and 6(d)). Figure 3 again shows
the developed classifier condition structures after conden-
sation for the random walk sampling with σ = 0.1. The
local linearities are clearly exploited. In the case of XCSF,
particularly the coverage at the two corners (0,0) and (1,1)
has been lost. XCSFld maintains a full coverage, preventing
detrimental forgetting.

Similar results can also be observed in the other sampling
cases (Figure 7). While the random walk in ring sampling
does not yield extreme differences (figures 7(a), 7(b)), in
the case of Gaussian Centered sampling again detrimental
forgetting is prevented during condensation due to the local
deletion mechanism (figures 7(c)-7(f)).



(a) XCSF (b) XCSFld

Figure 3: Structure of ellipsoids of XCSF and XCS-
FLD after condensation in the sine function.

4. SUMMARY AND CONCLUSIONS
This paper proposes for the first time that the“global dele-

tion dogma” in XCS may be modified to prevent detrimental
forgetting. XCSF appears to be particularly prone for detri-
mental forgetting when condensation is applied and when
classifiers are locally highly overlapping. While condensa-
tion may be disregarded, it is certainly a very useful tool to
extract a final, highly compact problem solution representa-
tion. Moreover, several results indicate that local deletion
may also be advantageous during learning. However, for
standard function approximation problems, the effect ap-
pears not to be as significant. Thus, partially the results
also point out that XCSF indeed is a very robust, iterative,
locally weighted regression system. However, local deletion
appears to expand this robustness beyond the original ca-
pabilities without any apparent drawback. Indeed, we ran
many more experiments with other step sizes in the random
walk experiments, other Gaussian noise sampling widths,
and XCSF parameter modifications, which all suggested the
same tendencies reported here.

In conclusion, local deletion can improve problem solution
sustenance in XCSF and thus the overall performance of the
system, by preventing detrimental forgetting. A most excit-
ing perspective that we believe opens up, besides this per-
formance improvement, however, is that this local deletion
mechanism may be also used to selectively learn higher accu-
rate and lower accurate approximations in different problem
subspaces. If this is desired, local deletion is expected to
enable the selective improvement of the developing problem
approximations. The selectivity may, for example, be deter-
mined by additional importance indicators, such as reward
values. Thus, future research should further elaborate XCS-
Fld and particularly investigate its potential in tasks where
highly non-uniformly varying target errors are strived for in
different problem subspaces.
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(a) XCSF: Uniform Sampling
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(b) XCSFld: Uniform Sampling
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(c) XCSF: Rand.Walk Sampling, σ = .02
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(d) XCSFld: Rand.Walk Sampling, σ = .02
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(e) XCSF: Rand.Walk Sampling, σ = .1
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(f) XCSFld: Rand.Walk Sampling, σ = .1

Figure 4: Crossed Ridge Function: Uniform Sampling and Random Walk Sampling. Condensation starts
after 320k learning iterations. Reported are online prediction error and average root mean square prediction
error (both log-scaled) as well as the number of distinct (that is, macro) classifiers and the average generality
of classifier conditions.
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(a) XCSF: Random Walk in Ring
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(b) XCSFld: Random Walk in Ring
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(c) XCSF: Gaussian Centered
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(d) XCSFld: Gaussian Centered
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(e) XCSF: Gaussian Ring Sampling
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(f) XCSFld: Gaussian Ring Sampling

Figure 5: Crossed Ridge Function: Random Walk in Ring, Gaussian Centered, and Gaussian Ring Sampling
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(a) XCSF: Uniform Sampling
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(b) XCSFld: Uniform Sampling
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(c) XCSF: Rand.Walk Sampling, σ = .02
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(d) XCSFld: Rand.Walk Sampling, σ = .02
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(e) XCSF: Rand.Walk Sampling, σ = .1
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(f) XCSFld: Rand.Walk Sampling, σ = .1

Figure 6: Sine Function: Uniform Sampling and Random Walk Sampling



 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250  300  350  400

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

p
re

d
. 
e
rr

o
r

m
a
c
ro

 c
l.
 (

/2
0
0
0
),

 g
e
n
e
ra

lit
y
 (

/1
0
0
)

number of learning steps (1000s)

XCSF in Sine task, sample type = 2, standard deviation σ=.02

Module 1: pred.error
RMSE

macro cl.
generality

(a) XCSF: Random Walk in Ring
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(b) XCSFld: Random Walk in Ring
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(c) XCSF: Gaussian Centered
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(d) XCSFld: Gaussian Centered
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(e) XCSF: Gaussian Ring Sampling

 0.001

 0.01

 0.1

 1

 0  50  100  150  200  250  300  350  400

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

p
re

d
. 
e
rr

o
r

m
a
c
ro

 c
l.
 (

/2
0
0
0
),

 g
e
n
e
ra

lit
y
 (

/1
0
0
)

number of learning steps (1000s)

XCSFld in Sine task, sample type = 4, standard deviation σ=.05

Module 1: pred.error
RMSE

macro cl.
generality

(f) XCSFld: Gaussian Ring Sampling

Figure 7: Sine Function: Random Walk in Ring, Gaussian Centered, and Gaussian Ring Sampling


