
HAL Id: hal-03124264
https://hal.science/hal-03124264

Submitted on 28 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Training a robot with evaluative feedback and unlabeled
guidance signals

Anis Najar, Olivier Sigaud, Mohamed Chetouani

To cite this version:
Anis Najar, Olivier Sigaud, Mohamed Chetouani. Training a robot with evaluative feedback and
unlabeled guidance signals. RO-MAN, 2016, New York, United States. pp.261-266, �10.1109/RO-
MAN.2016.7745140�. �hal-03124264�

https://hal.science/hal-03124264
https://hal.archives-ouvertes.fr


Training a robot with evaluative feedback and unlabeled guidance
signals

Anis Najar1, Olivier Sigaud1 and Mohamed Chetouani1

Abstract— In this paper, we present a new method for train-
ing a robot by natural interaction using evaluative feedback
and unlabeled guidance signals. Feedback signals are directly
mapped to reward values and used for learning both the task
and the meaning of the guidance signals. The learned guidance
signals are used in return to bootstrap task learning. We
propose to use unlabeled guidance signals as an alternative
solution to preprogrammed guidance. We evaluate our method
both in simulation and on a real robot.

I. INTRODUCTION

As more and more robots are intended to evolve in human
environments either for domestic or industrial purposes,
many efforts are made in designing new methods that would
enable persons with no programming skills to teach them
new tasks [1], [9], [16]. The main challenge is to design
teaching methods that satisfy several criteria such as simplic-
ity, efficiency and safety. In addition to these requirements,
robots endowed with such learning capacities should be able
to adapt to different user profiles having different preferences
and teaching strategies.

The Reinforcement Learning (RL) framework provides a
set of methods allowing an agent to autonomously learn a
task [17]. This is done through a predefined reward function
that allows the robot to optimize its behaviour. While the
main advantage of RL is the autonomy of the learning
process, when applied to real-world problems it presents
some limitations such as the difficulty to implement a reward
function [14], slow convergence and unsafe exploration [10].

The Interactive Reinforcement Learning literature deals
with these problems by allowing a human to guide the
learning process of the robot by providing it with teaching
signals such as instructions [5], advice [4], demonstrations
[1], guidance [16], [18] and evaluative feedback [9], [15].

Evaluative feedback represents an intuitive way for train-
ing a robot by evaluating its behaviour through positive and
negative rewards. This way of providing rewards has some
advantages over traditional RL reward functions such as
being more directly informative about the optimal behaviour
and easier to implement [9]. Some examples of successful
implementations can be found in [9], [11], [15]. However,
feedback is still limited as it is only reactive to the robot’s
actions, so it does not allow to anticipate them: As the
robot may perform many undesired and/or unsafe actions
before trying the appropriate one, feedback does not allow
to limit these unsuccessful trials nor to prevent the robot from

*This work was supported by ROMEO2 project
1Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, ISIR, F-75005,

Paris, France. anis.najar@isir.upmc.fr

repeating them in every different state, which may result in
problems in terms of efficiency and safety considerations [3].

To deal with this problem, guidance can be used in
addition to evaluative feedback to constraint the exploration
towards a limited set of actions [16], [18]. Classically, the
meaning of guidance signals is supposed to be known by the
robot before learning the task. However, as guidance signals
could be task specific, it would be difficult to non expert
users to program their meaning for every task. In addition,
handcoded guidance would limit the possibility for different
teachers to use their own preferred guidance signals.

One possible solution to overcome this limitation would
be to use unlabeled guidance signals. Very few works have
considered the question of learning from unlabeled teaching
signals. This question is difficult since it requires to solve two
problems simultaneously: learning the meaning of teaching
signals and using these signals to learn the task. In [12],
the robot learns to associate human gestures to actions in
the context of a navigation task, but does not use them to
learn the task. In [5], the authors address both questions
simultaneously by using unlabeled teaching signals to learn
a pick and place robotic task. In a similar approach [13],
we proposed a model that learns the meaning of teaching
signals from task rewards while using them to accelerate
task learning.

In this paper, we propose a modified version of the model
in [13] that learns the meaning of guidance signals by using
evaluative feedback instead of task rewards. In this model,
unlabeled guidance signals indicate the optimal action while
evaluative feedback is converted into reward values. This
model also extends previous research [16], [18] by relaxing
the constraint of programming the meaning of guidance
signals. We evaluate our model on the task proposed in [16]
and we compare its performance with respect to using only
evaluative feedback.

In the next section, we provide a description of our model.
Then we present our scenario in Section III. Sections IV
and V report respectively the results obtained in simulation
and on a Baxter Research Robot. Finally, we discuss the
advantages and the limitations of our model in Section VI.

II. METHOD

The main idea of our model is to learn the meaning of
guidance signals while using them for guiding the learning
process. On the one hand, learning the meaning of guidance
signals consists in learning the correspondence between each
signal and the set of actions to which it refers. In this paper,
we consider the special case where each guidance signal



corresponds to a single action. So, here guidance can be
considered as instructions or demonstrations that indicate
the optimal action [16]. In this case, interpreting guidance
consists in finding the optimal action for each given signal.
This problem is similar to finding the optimal action for each
task state, but performed on an alternative state space of
reduced complexity. On the other hand, using guidance for
learning consists in transferring the information about the
optimal action back to the original state space. In our model,
these two processes are performed simultaneously (Fig. 1).

The motivation behind this idea is that in several applica-
tions, the state space is much more complex than the action
space. While task states can be defined over complex and
noisy sensory inputs, a limited number of actions can be
sufficient to explore the entire state space. This is the case for
example in industrial tasks where the robot has to perform a
sequence of actions on different objects in different situations
(cf. Section III). The set of actions can be the same for
all objects, only their sequence may differ. So several states
would share the same optimal action.

Fig. 1: An example of task with 4 states and 2 actions:
A teacher can provide a guidance signal gi ∈ G for each
state si ∈ S. When the robot performs action a, the teacher
provides it with a reward r. This reward is used for learning
the optimal action a∗ associated to each guidance signal
gi ∈ G. This knowledge is then transferred to each task
state si ∈ S.

A. Model
We model our problem within the Reinforcement Learn-

ing framework as a Markov Decision Process (MDP) [17]
represented by a tuple < S,A, T,R, γ >. S is the state
space of the task. A is a predefined set of actions that the
robot can perform. T : S × A → S is a transition function
between task states. R : S × A → R is a reward function
and γ ∈ [0, 1] is a discount factor that determines how
much future decisions should be taken into account. Within
this formalism, a q-learning agent stores a state-action value
function Q : S ×A→ R computed by

Q[s, a]← Q[s, a] + α ∗ (r + γ ∗maxa′Q[s′, a′]−Q[s, a])

where r ∈ R(s, a), s′ ∈ T (s, a) and α a learning rate.
In our model that we call SVFB (for Social Value and

Feedback, Fig. 2), we use two separate MDPs: a Task Model
and a Teaching Model1. The main difference between the

1We called it Social Model in [13], but Teaching Model is more
appropriate.

two MDPs is in the state space domains. The state space S
of the Task Model is defined over task states while the state
space G of the Teaching Model is defined over the unlabeled
guidance signals provided by the teacher. Both MDPs share
the same action set A .

We use γ = 0 as discount factor for both MDPs. Many
recent works point that this is more suitable for learning from
evaluative feedback as it better reflects teachers expectations
about how reward is processed by learning agents [6],
[8], [19]. Consequently, the learning problem becomes a
sequence of single-step problems and the update formula of
q-learning can be rephrased in the form

Q[s, a]← Q[s, a] + α ∗ (r −Q[s, a]).

The reward functions of the two MDPs are defined by the
probability of receiving a positive or a negative feedback for
each state-action and guidance-action pair. In a given state,
if the robot performs the optimal action corresponding to
the guidance signal, the teacher provides it with a positive
reward r = 1, and a negative reward r = −1 otherwise.

Finally, both MDPs communicate with each other through
a third element, the Contingency Model that associates each
task state to the corresponding guidance signal using:

ĝ(s) = argmax
g∈G

P (g|s); s ∈ S.

Fig. 2: The three elements of the SVFB model. The Contin-
gency Model stores the contingency between task states s and
guidance signals g. The Teaching Model learns the meaning
of guidance signals using evaluative feedback r. The Task
Model learns the task using both evaluative feedback r and
the values learned by the Teaching Model.

B. Algorithm

Algorithm 1 shows the different steps of our method. First,
the robot evaluates the task state (line 1). If it receives a
guidance signal from the human, it uses it with the task state
to update the Contingency Model (lines 2 to 4). Then, the
guidance signal is retrieved from the Contingency Model as
the most likely guidance signal for the task state (line 5).
This step allows to minimize the number of interactions for
the teacher by recalling previously given guidance signals.
Second, if a guidance signal exists, the Task Model is
updated towards the Q-values of the Teaching Model (lines 6
to 8). Then the robot performs an action (line 9). If a reward
is given by the human (line 10), it is used for updating the
Task Model (line 12). Finally, if a guidance signal exists, the
reward is also used to update the Teaching Model (line 14).



Algorithm 1 SVFB

1: s← task state
2: g ← guidance signal
3: if g 6= null then
4: update contingency(s,g)
5: g ← get contingency(s)
6: if g 6= null then
7: for all actions a in A do
8: QS [s, a]← QS [s, a] + α ∗ (QG[g, a]−QS [s, a])
9: a← argmaxa∈AQ

S [s, a]
10: r = teacher reward
11: if r 6= null then
12: QS [s, a]← QS [s, a] + α ∗ (r −QS [s, a])
13: if g 6= null then
14: QG[g, a]← QG[g, a] + α ∗ (r −QG[g, a])

III. SCENARIO

To evaluate our model, we consider the object sorting
domain described in [16] in which the robot has to learn
to sort different objects according to their type.

A. Experimental setup

The experimental set-up (Fig. 3) is composed of a Baxter
Research Robot facing a table on top of which we place
three magnets. The magnets allow to place objects at three
different positions on the table: left, middle and right. A
webcam is placed between the robot and the table allowing
to take pictures of the objects placed at the middle position.
A Microsoft Kinect2 V2 sensor is placed on top of the robot’s
head and used for extracting guidance and feedback signals
from the teacher. The robot is controlled using the ROS
architecture presented in [13]. The screen on the robot’s head
is used as a transparency device for displaying some relevant
information such as the task state, the associated guidance
signal, the performed action and the perceived reward.

B. Task domain

The workspace is divided into three zones: z1, z2 and z3.
When the teacher places an object in z2, the robot must pick
it up and then place it in the appropriate zone. Unicolor
objects (Plain) must be placed in z1 while objects with
patterns (Pattern) must be placed in z3 (Fig. 4).

The task state space is defined by the tuple S =
(Llh, Lrh, Lo, D). Llh = {z2, z3} and Lrh = {z1, z2}
represent the locations of the robot’s hands. Each hand can
be located in two different positions above z1, z2 and z3.
Lo = {z1, z2, z3, lh, rh, Unknown} describes the position
of the object which can be located in one of the three zones
or in one of the robot’s hands. The object position may also
be unknown to the robot. Finally, D describes the features
of the object3.

2https://dev.windows.com/en-us/kinect, accessed 20-12-2014
3We rely on a more compact representation than [16] that removes

redundancies between some state descriptors.

Fig. 3: Experimental setup. The table is divided into three
regions: z1, z2 and z3. A webcam allows to extract the
features of an object placed in z2. A Kinect V2 sensor
extracts feedback and guidance signals from the teacher.

Fig. 4: Objects used in the experiments. We consider two
types of objects: Plain (bottom) and Pattern (top). In
addition, we consider two different sizes and three colors.

For our experiments, we follow the same protocol as [16]
by considering two different conditions:

Small state space: In this condition, the object descriptor
D ∈ {Plain, Pattern, Unknown} contains a single vari-
able based on the number of Speeded-Up Robust Features
(SURF) [2] descriptors of the object. This variable can
have three possible values: Plain, Pattern and Unknown.
Theses values are obtained by thresholding the number of
extracted SURF descriptors. If this number is less than 50,
the object is considered as Plain. Otherwise it is considered
as Pattern. The number of different task states resulting
from this representation is 72.

Large state space: In this condition, the object descrip-
tor D = (SURF,COLOR,SIZE) contains three vari-
ables: SURF ∈ {Plain, Pattern, Unknown} describes
the number of SURF descriptors as in the previous condition,
COLOR ∈ {Red,Green,Blue, Unknown} describes the
dominant color of the object that can be red, green or blue,
and SIZE ∈ {Large, Small, Unknown} describes the
area of the bounding box of the object. This representation
yields a total number of task states of 864.

Finally, the robot is able to perform nine elementary
actions that are necessary for completing the task (11 in [16])
A = {TakeP icture, xMoveLeft, xMoveRight, xP ick,
xP lace}, where x ∈ {LeftHand,RightHand}.



Fig. 5: Probability to converge before n steps. For each
experiment, we cumulate the number of steps over the trials
until convergence. For each model, we compute the density
histogram of this measure over all experiments then convert
it into a cumulative distribution function.

C. Teaching protocol

For training the robot, the teacher can use either only
feedback or feedback plus guidance. These information
are extracted from the Kinect sensor. Feedback is di-
vided in two categories fb ∈ {head nod, head shake}.
By convention, head nods are converted into positive
reward while head shakes are converted into negative
reward. Guidance signals are defined over the teacher
hand gestures. For each hand, the system recognizes
five different states h ∈ {pointing right, pointing left,
pointing middle, raised open, raised closed} which al-
lows 35 possible guidance signals using either one or both
hands. In this paper, we use one signal per action, so we
only use nine guidance signals.

IV. RESULTS IN SIMULATION

In order to evaluate our model (SVFB), we compare its
performance in simulation with respect to the model using
only feedback (FB) as in [16]. In addition, we report the
performance of Q-learning and the previous version of our
model (referred to as SVRL). Both Q-learning and SVRL
rely on a goal-based reward function that is defined as
follows: the robot receives a positive reward r = 1 for
placing the object in the correct zone, a negative reward
r = −1 for placing it in the wrong zone and a reward r = 0
for all other transitions.

In order to compare FB and SVFB in the same conditions,
we assume that the teacher provides feedback for every
action. However, guidance in SVFB is provided only once for
each different state. In the simulated task, we consider only
the large state space condition without the TakeP icture
action, which means that the descriptors of the object are
always known to the robot. For FB and SVFB, we use γ = 0,
α = 0.3 and a greedy action selection strategy as exploration
can be controlled by human rewards. For Q-learning and
SVRL we use α = 0.3, γ = 0.75 and an ε−greedy action
selection strategy with ε = 0.1 and a decay parameter for ε
after each step of δε = 0.001 (ε reaches 0 after 100 steps).
All Q-values are initialized to 0.5. The results for each model
are averaged over 100 runs with 200 trials each.

(a) Small state space (b) Large state space

Fig. 6: Number of guidance (blue) and negative feedback
(red) over time.

Figure 5 reports the probability for each model to converge
before n steps. The results show that Q-learning converges in
at most 2359 steps, SVRL converges in at most 1052 steps,
FB converges in at most 391 steps and finally our model
converges in at most 102 steps.

In order to evaluate the cost of our method with respect
to the feedback-only method, we compare the maximum
number of teaching signals (feedback + guidance) provided
by the human until convergence. As the teacher provides a
feedback in every step, the maximum number of teaching
signals needed if using only feedback is equal to 391. How-
ever, by using unlabeled guidance in addition to feedback,
the results show that a teacher needs to provide at most 126
teaching signals (102 feedback +24 guidance signals).

We conclude from these results that using unlabeled guid-
ance signals in addition to evaluative feedback reduces the
number of steps (74% less) as well as the number of required
teaching signals (67% less).

V. EXPERIMENTS ON THE REAL ROBOT

We compared our model to the feedback-only model
with the Baxter Research Robot in both the small and the
large state space conditions. We conducted four experiments
for each model in each condition which resulted in 16
experiments. All the experiments were performed by one of
the authors. A video of one experiment can be found online4.

In each experiment, all of the six objects are presented
one by one to the robot in a specific order. Four different
orders were chosen randomly beforehand and the same
orders were employed for both models in both conditions.
Each experiment ends when each of the six object has
been presented two times for the small state space condition
and three times for the large state space condition, whether
learning converged or not. In all experiments, the teacher
provided a feedback for every step. In addition, for the model
with guidance, the teacher provided a guidance signal only
when the robot did not receive yet any guidance for the given
state or when the recorded signal was erroneous.

Figure 6 reports the evolution of the number of provided
guidance and negative feedback over time for each condition.
The results are averaged over the four experiments. We can
see that in the small state space condition, the feedback-only
model converged after at most 36 minutes, while the model

4http://www.isir.upmc.fr/vid/intRL.mp4

http://www.isir.upmc.fr/vid/intRL.mp4


with guidance converged within 17 minutes. In the large state
space however, the feedback-only model did not completely
converge after an hour of training, while the model with
guidance converged after at most 24 minutes.

Table I reports some standard statistics of the experiments
such as the training time, the number of steps, number of
teaching signals, number of discovered states, number of
undesired states and the number of steps spent in undesired
states. Undesired states define situations in which the robot
is holding the object with the wrong hand, or is holding the
object while its descriptors are unknown (this may happen
if the robot takes a picture after picking the object). We also
report the size of the Q-function measured as the number of
state-action pairs for which the algorithm learned a value.

The experimental results are consistent with those obtained
in simulation and with the results of [16]. They show that
guidance reduces considerably the number of steps and
training time (42% less steps for the small state condition and
64% in the large state condition). It is also more efficient by
achieving better performance with less interaction (30% less
signals for the small state condition and 53% in the large state
condition). The robot also discovered less states (respectively
29% and 43% less in each condition), less undesired states
(resp. 42% and 65% less) and spent less time in these states
(resp. 65% and 85% less).

Finally, the ratio of the number of actions per state for
which the robot has learned a value while using only feed-
back is of 3 actions per state for both conditions. However,
by using unlabeled guidance signals the robot learned a value
for 7 actions per state in both conditions. This means that
our model allows to determine more effectively the Q-value
function in less time.

Small state space Large state space
SVFB FB SVFB FB

training time (mn) 25 33 31 67
#steps 135 235 166 470
#feedback 135 235 165 466
#negative feedback 42 135 33 296
#guidance 29 0 50 0
#states 36 51 61 108
#undesired states 8 14 8 23
#steps in undesired states 10 29 10 70
#Q-values 265 164 450 359

TABLE I: Experiment statistics. The results are averaged
over four experiments. Training time, number of steps, num-
ber of provided feedback, negative feedback and guidance
signals, number of discovered states, number of undesired
states, number of steps spent in undesired states and number
of learned Q-values.

VI. DISCUSSION

In this section we discuss some aspects of our model to
provide some insights about its performance.

We first evaluate the complexity of our model measured as
the number of q-values that the robot needs to compute in the
worst case scenario. As we already mentioned, the main idea
of our model is to learn the task in an alternative state space

of reduced complexity and to transfer this knowledge back
into the original state space. In our case, the alternative state
space is defined over the guidance signals. As each guidance
signal corresponds to an action, the size of the guidance
state space is equal to the size of the action set (as we do
not consider the case where different guidance signals relate
to the same action, nor the case where the same guidance
signal refers to different actions). If n is the size of the state
space and a the size of the action set, learning the task on
the original state space comes to compute the values of at
most n×a state-action pairs. However, if we learn the value
function on the guidance state space, the complexity of the
learning process would be reduced to a2 state-action values.
For example, in the large state space condition of the sorting
task, the robot needs to learn only 81 values instead of 7776.

We consider the cost of our method in terms of human
load measured as the maximum number of teaching signals
needed from the teacher during the learning process. If the
robot learns from a predefined reward function, so without
evaluative feedback as in SVRL, a teacher needs to provide
only guidance for every state, so in total n signals for the
Teaching Model to be fully observable. If the robot learns
from evaluative feedback instead of task rewards, in the worst
case scenario a teacher using guidance needs to provide n+
a2 teaching signals instead of n× a if only using feedback
(945 instead of 7776 for the large state space condition).

Our model has some other advantages over using only
feedback or using feedback with preprogrammed guidance.
On the one hand, feedback is purely reactive as rewards are
given after the action is performed. So, it does not allow
to anticipate the robot’s actions. In our model, however,
previously provided rewards are also transferred from the
Teaching Model to the Task Model before action is per-
formed (line 8 of Algorithm 1). This explains why it is more
efficient in preventing from undesired actions (cf. Table I).

On the other hand, preprogrammed guidance signals are
classically used for restricting the choice of possible actions.
By doing so, they only inform the robot about the allowed
actions but do not inform about the other actions. If we look
at the way humans provide guidance, we find that guidance
signals are more informative. For example, when a child
is about to put his fingers into a power plug and receives
the warning from his parent to ”not do that!”, this signal
informs him that this action may be dangerous for him even
if he does not actually perform it. This is an important
aspect from a safety point of view. In our model, when the
robot encounters a new state and receives a guidance signal
which action values are already known, all these values are
transferred to the task state (line 8 of Algorithm 1). So, the
robot is informed about the outcomes of all these actions
even if they are never explored in that state. This explains
the difference in the number of learned state-action values
per state compared to the feedback-only model (cf. Table I).

Another potential advantage of our model is the facility
to correct wrong feedback. When using only feedback, if
the optimal action is rewarded negatively in a particular
state, its value is decreased compared to the other actions.



Consequently, the teacher has to wait until all other actions
are explored and rewarded negatively in that state in order
to make the robot try again the optimal action and thus
to be able to correct the wrong feedback. With our model,
however, as several states may share the same action, a wrong
feedback given in a particular state has less influence on the
value of the associated guidance-action pair. In addition, the
teacher will have more frequently the possibility to correct
the feedback as the guidance signal may be encountered in
many different states.

Finally, if the task changes and has to be relearned, using
only feedback requires to restart from scratch by giving
once again the new feedback for the entire state-action space
(n× a signals). With our model, once the mapping between
guidance and actions has been learned in the Teaching
Model, relearning the task is reduced to giving the new
guidance signals for each task state (n signals).

Despite all these advantages, our model still has some
limitations. First of all, the model relies on discrete guidance
signals, which assumes a preprogrammed segmentation of
the human gestures. Even with an important category of
gestures, the way guidance is provided is still constrained
by the gestures the system is able to detect.

Another limitation is the autonomy of the learning process
with respect to the human. Using γ = 0 means that the
teacher needs to provide guidance and evaluative feedback
in every state, which can be a burden for the teacher in large
and complex domains. Using γ ∈ (0, 1] may reduce the
dependency on the teacher but may result in unsuccessful
learning when learning from evaluative feedback [8], [6].
This is however more suitable when learning from a prede-
fined reward function. Some promising solutions have been
proposed for combining both types of reward [7]. But the
challenge is still to find an efficient way to design a reward
function for real robotic tasks [14].

VII. CONCLUSION AND FUTURE WORK

We presented a model for training a robot using unlabeled
guidance signals and evaluative feedback. We demonstrated
the advantage of using unlabeled guidance signals over using
only evaluative feedback both in simulation and in a real
robotic task. We have shown that our model reduces the
training time and the number of interactions with respect
to using only evaluative feedback.

Although we can consider that our proposed model gen-
eralizes action values over different task states by the means
of guidance signals, in this paper we did not consider
the question of generalization over state features. This is
a challenging question as it requires to find the correct
generalizations online within a minimum number of steps.
Furthermore, we did not verify the robustness of our model
against the sparsity and the inconsistency of teaching signals.
Also, we considered only the particular case of guidance
where there is a direct mapping between guidance signals
and intended actions.

In the future, we propose to tackle these questions and to
generalize our work to the case where different signals are
used for the same action or where the same signal relates to
different actions. We also propose to remove the constraint
about the segmentation of guidance signals by taking into
account continuous signals. Finally, we intend to verify the
results obtained in this paper in a broader study by evaluating
our model with naive users.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469 – 483, 2009.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up
robust features (SURF). Computer vision and image understanding,
110(3):346–359, 2008.

[3] J. Garcı́a and F. Fernández. A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research, 16:1437–1480,
2015.

[4] S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A. L. Thomaz.
Policy shaping: Integrating human feedback with reinforcement learn-
ing. In Advances in Neural Information Processing Systems, pages
2625–2633, 2013.

[5] J. Grizou, M. Lopes, and P.-Y. Oudeyer. Robot learning simultaneously
a task and how to interpret human instructions. In Development and
Learning and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint
International Conference on, pages 1–8, Aug 2013.

[6] M. Ho, M. L. Littman, F. Cushman, and J. L. Austerweil. Teaching
with rewards and punishments: Reinforcement or communication? In
Proceedings of the 37th Annual Meeting of the Cognitive Science
Society, CogSci 2015, Pasadena, California, USA, July 22-25, 2015,
2015.

[7] W. B. Knox and P. Stone. Combining manual feedback with subse-
quent mdp reward signals for reinforcement learning. In Proc. of 9th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2010), May 2010.

[8] W. B. Knox and P. Stone. Reinforcement learning from human reward:
Discounting in episodic tasks. In RO-MAN, 2012 IEEE, pages 878–
885. IEEE, 2012.

[9] W. B. Knox, P. Stone, and C. Breazeal. Training a robot via human
feedback: A case study. In Social Robotics, pages 460–470. Springer,
2013.

[10] J. Kober, J. A. D. Bagnell, and J. Peters. Reinforcement learning in
robotics: A survey. International Journal of Robotics Research, July
2013.

[11] A. León, E. F. Morales, L. Altamirano, and J. R. Ruiz. Teaching
a robot to perform task through imitation and on-line feedback. In
Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, pages 549–556. Springer, 2011.

[12] Y. Mohammad and T. Nishida. Learning interaction protocols us-
ing augmented baysian networks applied to guided navigation. In
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pages 4119–4126. IEEE, 2010.

[13] A. Najar, O. Sigaud, and M. Chetouani. Social-Task learning for HRI.
In Social Robotics, pages 472–481. Springer, 2015.

[14] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforcement
learning. In Icml, pages 663–670, 2000.

[15] P. M. Pilarski, M. R. Dawson, T. Degris, F. Fahimi, J. P. Carey, and
R. S. Sutton. Online human training of a myoelectric prosthesis
controller via actor-critic reinforcement learning. In Rehabilitation
Robotics (ICORR), 2011 IEEE International Conference on, pages 1–
7. IEEE, 2011.

[16] H. B. Suay and S. Chernova. Effect of human guidance and state
space size on interactive reinforcement learning. In RO-MAN, 2011
IEEE, pages 1–6. IEEE, 2011.

[17] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, 1998.

[18] A. L. Thomaz and C. Breazeal. Reinforcement learning with human
teachers: Evidence of feedback and guidance with implications for
learning performance. In AAAI, volume 6, pages 1000–1005, 2006.

[19] A. L. Thomaz and C. Breazeal. Teachable robots: Understanding
human teaching behavior to build more effective robot learners.
Artificial Intelligence, 172(6):716–737, 2008.


	INTRODUCTION
	Method
	Model
	Algorithm

	Scenario
	Experimental setup
	Task domain
	Teaching protocol

	Results in simulation
	Experiments on the real robot
	Discussion
	CONCLUSION AND FUTURE WORK
	References

