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Abstract
Advances in hardware and learning for control are
enabling robots to perform increasingly dextrous
and dynamic control tasks. These skills typically
require a prohibitive amount of exploration for rein-
forcement learning, and so are commonly achieved
by imitation learning from manual demonstration.
The costly non-scalable nature of manual demon-
stration has motivated work into skill generalisa-
tion, e.g., through contextual policies and options.
Despite good results, existing work along these
lines is limited to generalising across variants of
one skill such as throwing an object to different
locations. In this paper we go significantly further
and investigate generalisation across qualitatively
different classes of control skills. In particular, we
introduce a class of neural network controllers that
can realise four distinct skill classes: reaching, ob-
ject throwing, casting, and ball-in-cup. By factoris-
ing the weights of the neural network, we are able
to extract transferrable latent skills that enable dra-
matic acceleration of learning in cross-task transfer.
With a suitable curriculum, this allows us to learn
challenging dextrous control tasks like ball-in-cup
from scratch with pure reinforcement learning.

1 Introduction
Advances in robot hardware, policy representations and
policy-search based reinforcement learning have led to a
growing number of successful demonstrations of robot con-
trol involving challenging dynamics, including baseball [Pe-
ters and Schaal, 2008], ball-in-cup [Stulp et al., 2014], pan-
cake flipping [Kormushev et al., 2010], table tennis [Kober
et al., 2010] and tetherball [Kober and Peters, 2010]. These
tasks involve non-linear policies and non-convex reward
functions. Thus, direct application of reinforcement learning
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has met with limited success as their non-linearity and large
search space would require a prohibitive number of trials. A
widely used strategy has therefore been to obtain an initial
manual demonstration of the skill [Argall et al., 2009], fol-
lowed by imitation learning a suitable policy representation
such as Dynamic Movement Primitives (DMPs) [Schaal et
al., 2005]. Based on this good initial model, policy-search
based reinforcement learning is used to fine-tune the resulting
control policy [Kober et al., 2010]. Nevertheless, we would
like robots to learn skills autonomously, because manually
demonstrating each task (or possibly even variant thereof) is
labor intensive, and because humans may not even know the
solution to some control tasks we wish a robot to solve.

The desire to increase autonomy in this way has motivated
extensive work into generalising skills. For example multi-
task learning addresses sharing information across multiple
skills [Deisenroth et al., 2014; Parisotto et al., 2016] and
contextual (or parameterised) policies build skills that gener-
alise across variants [Stulp et al., 2013; Kupcsik et al., 2013]
within one family of tasks. Most of these studies however, ad-
dress generalisation of skills that are relatively simple para-
metric variants of each other. For example throwing objects
of different weights [Stulp et al., 2014], throwing to different
target locations [Kupcsik et al., 2013], or going via different
waypoints to avoid various obstacles [Stulp et al., 2013].

In this paper, we are inspired by the vision of lifelong
learning [Thrun, 1996; Ruvolo and Eaton, 2013b]. That is,
the idea that new tasks should get progressively easier to
learn as a wider and deeper set of prior tasks are mastered
by a learner with the ability to extract task-agnostic gen-
eralisations from experience. With this in mind, we go be-
yond existing contextual policy work and explore transfer
learning across a heterogeneous set of dynamic control tasks
that do not lie in a simple parameterised family. In our set-
ting, a robot starts with knowledge of a set of source task
variants (e.g., throwing type tasks). The aim is then for it
to master a different category of target task (e.g., catch-
ing type task) autonomously through reinforcement learn-
ing (RL). We explore four task families: reaching to a tar-
get position, throwing at a target [Deisenroth et al., 2014;
Kober et al., 2010], casting at a target [Kober and Peters,
2010], and ball-in-cup [Stulp et al., 2014]. Some of these are
typically prohibitively difficult to learn directly with RL, so
to learn one task autonomously based only on past experience



of another, the robot must abstract and transfer task-agnostic
generalisations. To achieve this, we define a class of neural
network controllers loosely inspired by the DMPs [Schaal
et al., 2005] commonly used to solve these dynamic tasks.
We first multi-task learn a set of multiple source tasks from
a given family (e.g., throwing objects of various weights to
various locations), and the controllers for these correspond to
a stack of such neural networks. Then we factorise this set
of tasks to obtain transferrable latent skills. Finally, by using
these latent skills as a basis to construct a policy network, we
are able to learn a set of target tasks (such as ball-in-cup with
various string lengths) autonomously, without demonstration.
Uniquely our tensor-based transfer framework enables simul-
taneous discovery and sharing of latent skills across both task
categories and actuators [Luck et al., 2014].

Our contributions are two-fold: (i) We introduce a DMP-
inspired neural network that can represent a variety of dy-
namic skills, and show how multiple networks can be factored
to obtain transferrable latent skills, (ii) We evaluate this idea
with four challenging dynamic tasks, and show how trans-
ferring latent skills can dramatically speed up learning target
tasks, ultimately allowing challenging new skills to be mas-
tered autonomously by policy-search reinforcement learning.

2 Related Work
Learning challenging robot control skills is usually achieved
in practice by supervised learning from demonstration. Nev-
ertheless, the vision of learning-based robot control is for
robots to learn new skills autonomously. Direct application
of RL however requires prohibitive amounts of training, risk-
ing physical damage to the robot. This has motivated a fruit-
ful line of research into contextual (parameterised) policies
and options where a robot learns to solve a related family of
tasks, such as throwing objects of different weights [Stulp et
al., 2014]. By contrast, we aim to achieve autonomous learn-
ing of a new task category through transfer learning.
Transfer & Multi-task Learning Transfer (TL) and multi-
task (MTL) learning aim to improve and accelerate learn-
ing by sharing knowledge across different tasks, in a uni-
and multi-directional way respectively. These are well stud-
ied topics in supervised machine learning. One of the earliest
applications to RL showed that for classic pole balance prob-
lems, it was faster to learn a policy for a novel system with
knowledge transferred from other similar systems [Selfridge
et al., 1985]. TL has since been widely applied to acceler-
ate reinforcement learning [Taylor and Stone, 2009]. MTL
has been used to jointly optimise multiple RL tasks includ-
ing inverted pendulum problems with various mass or length
[Lazaric and Ghavamzadeh, 2010] and stacking various num-
bers of blocks [Deisenroth et al., 2014]. However, in our ter-
minology these are members of task family, rather than dis-
tinct task categories. Very recently, multi-task RL has been
applied in learning to play multiple video games [Parisotto et
al., 2016].

A related work to ours is PG-ELLA [Ammar et al., 2014],
which adapts the successful GO-MTL algorithm [Kumar and
Daume III, 2012] from supervised learning to the policy gra-
dient based RL setting. Their idea is to apply low-rank matrix

factorisation to a stack of linear models and share information
through the resulting subspace, and PG-ELLA applies this to
control tasks such as pole-balancing. We go significantly be-
yond this: PG-ELLA/GO-MTL deal with linear policies only.
This policy representation means they can only address sim-
ple linear control tasks, and not the dynamic tasks we study.
These require dynamic trajectory planning that is highly non-
linear in time. Secondly PG-ELLA shares latent knowledge
across tasks only. Our tensor-based TL framework represents
policy for each actuator as a slice of tensor and therefore, dis-
covers and shares latent skill across both tasks [Ammar et al.,
2014] and actuators [Luck et al., 2014] simultaneously.

Lifelong & Curriculum Learning Lifelong learning takes
TL/MTL ideas further with the vision that as more tasks are
learned, better task-agnostic abstract knowledge can be ex-
tracted. The resulting more humanlike “learning to learn”
should make each new task easier to progressively easier to
master [Thrun, 1996]. These ideas have also been studied in
robot control, for example by treating different environments
[Ring, 1998], or robot hardware platforms [Isele et al., 2016]
as multiple tasks to be mastered in a lifelong learning man-
ner. The choice of task sequence is important to the outcome
in lifelong learning [Bengio et al., 2009], but despite some
work [Ruvolo and Eaton, 2013a], how to predict a good cur-
riculum in advance is still an open question. In this paper we
demonstrate that with an intuitive choice of curriculum, our
framework can ultimately learn a challenging dynamic con-
trol skill autonomously through RL.

Low-Rank Tensors and Factorisation Low-rank tensor
models are often studied for missing data imputation, and
compressing/speeding up large neural networks [Lebedev et
al., 2015]. A few MTL studies used low-rank tensors for
knowledge sharing across tasks with a structured description,
rather than a simple index [Wimalawarne et al., 2014]. How-
ever, in these studies the underlying per-task representation in
each case is still a linear model (single vector) that predicts
a single output. We address tensor factorisation based trans-
fer to share knowledge across both tasks and multiple outputs
(actuators) with non-linear neural network-based models.

3 Methodology

3.1 Policy Representation

The challenging dynamic control tasks we address in this pa-
per are commonly solved by DMP-based approaches. DMPs
combines a non-linear open-loop term (which depends on
time) with a linear closed-loop term (which depends on state).
Inspired by this idea, we design a policy network at,i =
π(t,xo

t,i) which produces the ith actuator’s force at,i given
the current time t and observed state xo

t,i. The network has
inputs for t and xo

t,i, and includes two learnable layers. The
first is a radial-basis function (RBF) layer that functions as a
trajectory planner, allowing temporally extended and highly
non-linear movements to be generated. The second is a linear
fully-connected (FC) layer that encodes learned controller pa-
rameters that will ensure the trajectory is followed. The roles
of these roughly correspond to the two components in a DMP.
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Figure 1: Network defining our policy ai = π(xo
t,i, t) from time-

step t and observed state xo
t,1 to action at,i.

Specifically, for actuator i the policy is parameterised as:

φn(t;µ,Σ) =
1√

2πσn
exp

(
(t− µn)2

2σ2
n

)
(1)

xdt,i = ΘiΦ(t;µ,Σ) (2)

˙xdt,i =
1

2∆t
(xdt+∆t,i − xdt−∆t,i) (3)

at,i = Ψi(x
d
t,i − xo

t,i) (4)

Here the learnable parameters are the matrices Ψi that im-
plement the controller, and Θi containing the weights of N
basis functions describing the non-linear trajectory. Fig. 1 il-
lustrates the network for the ith actuator. The dash lines indi-
cate that desired velocity is not generated from the feed for-
ward network directly, but via the Euler method as in Eq. (3).
In contrast to the conventional DMP-based pipeline, our ap-
proach jointly learns the inter-related problems of trajectory
planning and PD controller.
Single Task Learning The network can be trained in a su-
pervised way via learning from demonstration, or by RL via
policy-search. For RL, we use Covariance Matrix Adapta-
tion - Evolutionary Strategy (CMA-ES) [Kern et al., 2004],
a direct-policy search method for optimisation of non-linear
non-convex functions in continuous space. CMA-ES has con-
nections to policy-gradient and has been shown to outperform
other RL algorithms for our type of policy [Stulp and Sigaud,
2013]. For an actuator i, both layers’ parameters can be
summarised as a vector wi containing both vectorised RBF
weights Θi ∈ RN and controller parameters Ψi ∈ Rdim(x).
Thus, for a given task, the parameters are represented as a ma-
trix W ∈ RD×A whereD = (N+dim(x)) andA = dim(a),
where dim(x) = 2 in the case of a PD controller.

3.2 Low-Rank Tensor Factorisation: Latent Skills
Given the above policy representation, we aim to discover la-
tent skills that can be shared across tasks and also actuators.
As summarised above, the policy for each task is represented
as a matrix, so multiple tasks stack into a 3-way tensor. We
will achieve knowledge sharing through low-rank modelling
of this tensor. Unlike for matrices, there are many definitions
of low-rank tensor factorisation, and we use one of the most
general, Tucker decomposition [Tucker, 1966]. Tucker de-
composition factors an N -way tensor into a lower-rank N -
way core tensor and N matrices along each mode. A 3-way

tensor X ∈ RD1×D2×D3 is assumed to be composed as:

X = G ×1 U1 ×2 U2 ×3 U3 (5)

where G ∈ RK1×K2×K3 is the lower-rank core tensor, and
Un ∈ RKn×Dn are the factor matrices and can be regarded
as the principal components in each mode, and Kn ≤ Dn.
This can be efficiently solved [Lathauwer et al., 2000] as a
higher-order singular value decomposition problem and ob-
taining Un as the U matrix from SVD of mode-n flattening
of X , after which the core tensor is obtained by

G = X ×1 U
T
1 ×2 U

T
2 ×3 U

T
3 . (6)

3.3 Multi-Task and Transfer Learning Strategy
Given a set of tasks/skills to learn, we aim to use the above
tensor factorisation strategy to extract task-agnostic informa-
tion to share between them (multi-task learning), and to trans-
fer to benefit the learning of new tasks (transfer learning). A
schematic overview of the procedure is given in Fig. 2.
Formalisation We assume that we have P source tasks
where Wp represents the policy parameter matrix for the pth
task’s network (as described in Sec. 3.1). The policy param-
eters for all source tasks can be stacked as slices of a 3-way
tensorW of size D×A×P . The latent task assumption is to
factorise the weight tensor as per Eq. (5). In this case G is the
core tensor of size K1 × K2 × K3 that contains knowledge
abstracting both skills and actuators. U2 ∈ RK2×A contains
actuator specific knowledge, and U3 ∈ RK3×P encodes task
specific knowledge. Based on this decomposition, we con-
sider both multi-task and transfer learning.
Multi-task Learning To jointly learn several tasks,
we exploit ‘constructive’ multi-task learning [Yang and
Hospedales, 2015; 2017]. That is, the parameters we actu-
ally train with CMA-ES are the factors G and U1,...,3, which
are then multiplied out (Eq. 5) to obtain the tensor param-
eterising the policies for all tasks (neural network RBF and
FC parameters) in order to perform a rollout of a given task.
For regularisation we place a L1-norm on U3 and L2-norm
on the others. Simultaneously training the parameters in this
way shares knowledge across actuators and across tasks.
Learning a Target Task We next consider transferring
knowledge to a target task, given a set of source tasks (mod-
elled by G and U1,...,3 above). To achieve this, we gather
the task-agnostic knowledge (latent skills) by contracting the
task independent factors into a tensor L ∈ RD×A×K as
L = G ×1 U1 ×2 U2. The tensor L is then transferred to
the target task. This provides a good initial subspace, so that
a challenging target task in a different category can in practice
now be learned autonomously with RL. The policy parame-
ters for each target task are initialised as a random point in the
transferred subspace Wtarget = L ×3 starget by initialising
the weight vector starget randomly. The learner then searches
for the policy Wtarget by direct policy search in the space of
starget and L with a L2-norm regulariser on output weights.
Algorithm 1 summarises the overall procedure.
Discussion In contrast to some other one-to-one transfer
learning approaches [Taylor and Stone, 2009], an important
difference is that our algorithm exploits transfer from multi-
ple source tasks in order to extract task-agnostic information
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Figure 2: Transfer Learning Schematic. A set of P source tasks are learned and the matrices representing each source policy are stacked in
to a tensor W . Factorising W separates task-specific, actuator-specific and shared knowledge. Task-independent latent skills are gathered in
tensor L. For the target task, the agent learns the weights s that reconstructs L into policy parameters.

that is likely to be transferable. The subspace/latent task set L
is updated when learning the target, so we can see that trans-
fer learning here is about providing a good initial condition
for the subspace before performing RL.

Algorithm 1 Tensor-based Transfer Learning
{Source Task Learning}
for p = 1 to P source tasks do

Learn source task policy Θp and Ψp.
end for
Initialise tensorW containing weights as slices.
MTL initial condition:W → G ×1 U1 ×2 U2 ×3 U3.
Multi-task learn source tasks.
{Target Task Policy Search}
Task-agnostic knowledge tensor:W ′ = G ×1 U1 ×2 U2.
Initialise L with slices of tensorW ′.
Initialise s as one random source task.
while not converged do

Fix L and update s with CMA-ES
Fix s and update L with CMA-ES

end while

4 Experiments
4.1 Environment and Tasks
We exploit a simulated robot arm whose end-effector oper-
ates in a 2-dimensional space. In the dynamical simulator,
we assume an ideal inverse kinematic system which is able
to convert the movement of end-effector into angular move-
ment of each joint. Our policy network outputs the acceler-
ation of end-effector in both horizontal and vertical direc-
tions at each time step t. In detail, the agent observes the po-
sitions and velocities, and outputs the accelerations for two
actuators (A = 2). Each actuator trajectory is modelled by
N = 26 weighted RBFs (centers between 0 and 5, with vari-
ances σ = 0.6) in the first layer of network and each actua-
tor controller is modelled with 2 PD controlling parameters.
For most experiments, we assume P = 16 task instances per
category, and thus the policy tensor is W ∈ R28×2×16. For
transfer learning, we assume K = 8 latent tasks throughout.
The task categories used in our experiments are as follows:

Target Reaching (Reach) The agent learns to move the
end-effector, reaching specific target position with time dis-
counted reward for each time step and penalties on large
velocities and accelerations. Tasks within the category are
to reach different positions, so task parameters are the 2-
dimensional positions of goal points.
Object Throwing (Throw) The learner aims to throw a ball
into a basket by holding it with the end-effector and then re-
leasing it during dynamic arm motion [Kober et al., 2010].
We fix the ball release time. The task parameters only in-
cludes the position of target basket in 2-dimensional space.
Ball-In-Cup (BIC) In this task [Stulp et al., 2014; Kober
and Peters, 2010], the robot holds a cup in its end-effector
and the cup has a string attached, from which a ball hangs.
Initially, the ball is hanging at rest vertically below the cup.
The task is to induce motion in the ball through the string:
swinging the ball up and catching the ball with the cup. This
is illustrated in Figure 3, the red line shows the position of the
ball when the string is taunt and the green lines show the ball
position when the string is loose. The task parameters include
the length of the string and the mass of the ball.
Casting (Cast) In casting [Kober and Peters, 2010], a ball
is attached to the end-effector by a string. The task is to get
the ball into a small cup, placed in front of the robot. Because
the end-effector controls the ball only indirectly via the string
(which may change between loose and taunt depending on
the dynamics), the dynamics are very different to throwing.
We fixed the position of target cup and the task parameters
include the length of the string and the mass of the ball only.
Cost Function The cost for reaching tasks is defined with
action penalties and a time discounted linear summation of
quadratic functions with respective to the distance to target
state J =

∑T
t=0[γt((x − xtarget)

2 − b) + α‖at‖], where
constant b is a pre-defined baseline. The other three tasks use
a cost function of the same parametric form. The cost (cf.
reward) J of each episode is based on the difference between
horizontal position of the ball xb and the cup xc at tm when
they are at the same vertical height. The cost is assigned as 0
if the ball fails to reach the same height as the cup. L2-norms
on actions are added to penalise extreme accelerations. For



Figure 3: Successful Movement Trajectory of Ball In Cup. The arm starts from static state and moves rightward firstly, generating the ball
a momentum toward right, then moves leftward fast, generating the ball a large momentum toward upper left. After the ball is pulled back
through the string, the arm moves the cup towards the ball’s dropping point and catches the ball.

our experiments, we choose γ = 0.99, α = 0.001.

J =

{∑T
t=0 α‖at‖ if vertical heights never match

γtm min(b1(xb − xc)2 − b, 0) +
∑T

t=0 α‖at‖ otherwise

4.2 Transfer Learning
Setting In the first experiment we investigate autonomously
learning a new category of target task with RL, given a set of
known source tasks from a different category. We use CMA-
ES as base learner with the initial parameter σ = 0.01. Our
focus is on comparing the impact of different types of knowl-
edge transfer, assuming the source tasks are well learned.
For simplicity, we therefore learn the source with supervised
demonstration followed by MTL RL refinement. There are
multiple ways to evaluate transfer learning performance [Tay-
lor and Stone, 2009]. We report (i) the total reward/cost dur-
ing learning and (ii) target task success rate – the percentage
of experiments that the robot successfully completes (e.g.,
gets the ball in the cup) when learning terminates. For parsi-
mony, we adopt an experimental design where each task cate-
gory is considered in turn as both a source and a target. There-
fore 4 task categories entail 16 transfer experiments. Each ex-
periment considers families of 16 source and 50 target tasks.
Alternatives We compare our tensor-based transfer ap-
proach with: Scratch: learning the target from scratch. Di-
rect: A simple direct transfer learning baseline of initialising
the target task to that of a (randomly chosen) learned source
task. This is a common strategy of transfer by ‘warm start’
followed by fine-tuning [Taylor and Stone, 2009]. Matrix:
Matrix-based transfer approach, where the policy parameters
for all tasks are structured as a matrix of sizeDA×P , knowl-
edge sharing is achieved by SVD – thus only transferring
knowledge across tasks and not also across actuators. These
transfer approaches are thus about providing a good initial
condition for the policy-search based RL of the target task,
but ours transfers the latent tasks in a tensor structure.
Results Fig. 4a shows illustrative learning curves of 4 of
the 16 experiments. Note that only successful learned ex-
periments are counted for the learning curves. Fig. 4b sum-
marises learning success rate and total cost for all 16 experi-
ments. We observe that: (i) Learning from scratch is feasible
(it achieves success) although slow/costly for Reaching and
Throwing. However it mostly fails to succeed at the harder
BIC and Casting tasks. (ii) Among the transfer learning ap-
proaches, we see that our tensor-based approach is best in
terms of total cost/learning speed, followed by matrix-based
transfer, and direct’s warm-start approach. (iii) Our tensor-
based transfer is the only one to solve (high success rate) most

tasks given most sources. Overall the results show that with
a suitably designed policy and TL strategy, it is possible to
learn challenging dynamic control tasks autonomously, even
when transferring from very different and much easier source
tasks (e.g., Reach→BIC). Previous solutions to BIC have re-
quired demonstration [Stulp et al., 2014].

4.3 Comparative Analysis

Competitors We next compare our framework against
three competitors with alternative policy representations, and
transfer strategies. ELLA: Our implementation of [Ruvolo
and Eaton, 2013b], a state of the art framework for matrix-
based transfer of linear models. We adapt to our purpose by
providing it the inputs [xt, t] our model uses. RBF-ELLA:
As ELLA is designed for linear models, we generalise it for
non-linear tasks through RBF-tiling the input space. FCNN:
A fully connected multi-layer NN policy mapping [xt, t] to
actions via one RELU hidden layer of 8 units is a conven-
tional alternative to our DMP-inspired policy.

Results We perform the same experiment as the previous
section, considering 16 task pairs for transfer. Fig. 5 shows
an illustrative example of the learning curve of each method
along with summary statistics (i) Average learning cost, and
(ii) % of total cost ‘wins’ (which method had the smallest
cost in a given experiment). Fig. 5a illustrates our tensor-
transfer approach starting off better and converging quicker
and to better asymptote than alternatives. Fig. 5b shows that
we achieve much better total cost on average, and considering
each experiment achieve the best total cost in most cases.

Discussion Why does our method perform so much better
than ELLA which has previously shown convincing results on
benchmarks like cart-pole, quadrotor, etc? The linear policy
of ELLA can solve these classic benchmarks as they have a
specific target state (e.g., balance/hover position) and are lin-
early controllable closed loop systems [Mokhtari and Benal-
legue, 2004] that do not require extended dynamic trajectory
planning. However in our dynamic manipulation tasks, the
objective is not a simple target state: it is an extended move-
ment trajectory. Our policy class including a non-linear open
loop layer as trajectory planner, and closed-loop controller
can address this. ELLA can be seen as implementing only the
linear feedback controller in the final layer of our network.
RBF-ELLA is much more flexible and could potentially solve
our tasks. But it suffers from the needing to tile RBFs in 3/5D
(P/PD control), which means either an under-fitting policy, or
very many parameters to train (we used 5 × 5 × 5 tiling to
give it a similar number of parameters to ours).



(a) Learning curves of transfer learning from 4 source tasks to BIC tasks

(b) Total Cost of Learning and Success Rate at Convergence

Figure 4: Learning curves (a) and summary statistics (b) of different transfer strategies.
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Figure 5: (a,b) Comparison vs State of the Art. (c,d) Autonomously learning ball-in-cup from scratch via curriculum.

4.4 Curriculum Learning
The previous experiments showed that with pre-learned
source tasks, we can autonomously learn a new task category
with transfer and RL. In this section we explore whether it is
possible to learn dynamic manipulation tasks autonomously
with no supervision anywhere in the pipeline, by constructing
an appropriate training curriculum. The procedure starts with
learning the easiest task-category from scratch with multi-
task RL, and the task-agnostic tensor is extracted and trans-
ferred to bootstrap learning the next task-category with trans-
fer multi-task RL. We consider the task category curriculum
Reach-Throw-BIC. We compare following this curriculum
(CL) using tensor transfer against no curriculum (NC). We
control for the total cost in rollouts giving both conditions
6000 trials of pre-training. In NC these iterations are used on
MTL learning of BIC family tasks. In CL, they are spent on
MTL learning of reaching then throwing task categories.

Based on these initial conditions, Fig. 5c, 5d shows the
average cost and success rate of the following 4000 trials
of MTL training on BIC for both approaches. The periodic
bumps are caused by the alternating optimisation of L and
s. The results show that the challenging BIC task can be au-

tonomously solved by knowledge transfer from a curriculum
of autonomously learned source tasks, thus achieving BIC
without any demonstrating supervision.

5 Conclusions
We explored transfer learning to enable autonomous re-
inforcement learning of non-linear dynamic control tasks.
Through our effective policy network representation and ten-
sor based transfer of the latent task subspace, the speed and
asymptotic success rate of autonomous RL of target tasks is
significantly improved. With curriculum transfer learning, we
were ultimately able to learn hard tasks such as BIC from
scratch autonomously without any demonstration. In future
work we will explore lifelong MTL within and across task
families, and extend our framework to model tasks within
families as contextual policies rather than discrete tasks.
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