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TIRL: Enriching Actor-Critic RL with non-expert human teachers
and a Trust Model

Félix Rutard, Olivier Sigaud and Mohamed Chetouani

Abstract— Reinforcement learning (RL) algorithms have
been demonstrated to be very attractive tools to train agents
to achieve sequential tasks. However, these algorithms require
too many training data to converge to be efficiently applied
to physical robots. By using a human teacher, the learning
process can be made faster and more robust, but the overall
performance heavily depends on the quality and availability
of teacher demonstrations or instructions. In particular, when
these teaching signals are inadequate, the agent may fail to
learn an optimal policy. In this paper, we introduce a trust-
based interactive task learning approach. We propose an RL
architecture able to learn both from environment rewards and
from various sparse teaching signals provided by non-expert
teachers, using an actor-critic agent, a human model and a
trust model. We evaluate the performance of this architecture
on 4 different setups using a maze environment with different
simulated teachers and show that the benefits of the trust model.

I. INTRODUCTION

Various studies have shown that Reinforcement Learning
(RL) can be used to train a robot to perform various tasks in
autonomy [13], [2], [1], [15] in labs, but the corresponding
algorithms generally suffer from a very low sample efficiency
which render them impractical for deployment in real-world
applications. This limitation can be addressed by a human
partner in charge of accelerating the learning process by
providing adequate demonstrations, instructions or feedback.
In such situations where humans and robots share the same
social and task spaces, identifying factors for efficient, safe
and successful interactions is challenging. Trust is one of
such factors and has mainly be considered as the human
willingness to cooperate with the robot [17]. It is usually
considered as a critical factor for establishing and maintain-
ing effective relationships with robots [11]. In [8], trust in the
robot has been considered as a main indicator of acceptance
and measured by the participants’ conformation to the robot’s
answers to questions on functional and social tasks.

The main focus of such works was the human willingness
to cooperate and interact with a robot. In this paper, we
propose to reverse the question by considering situations
where human and robot are engaged in an interactive task
learning scenario, and in case of non-optimal teaching, we
investigate mechanisms allowing a robot to efficiently learn
the task by considering a human task trust assessment. We
propose to estimate this trust by assessing how the human
teacher guides the robot during interactive task learning.
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II. RELATED WORK
As described in [4], Interactive Robot Learning deals with

models and methodologies allowing a human teacher to
guide the learning process of the robot by providing it teach-
ing signals [26]. Usual teaching signals include instructions
[10], [20] advice [9], demonstrations [3], guidance [23], [18]
and evaluative feedback [14], [18]. A standard assumption
in Interactive Robot Learning is that teaching signals are
provided by experts. A distinguishing feature of our work
is that our system can handle erroneous teaching signals. In
that respect, the most closely related works are [18], [6], [28]
and more recently [16].

To deal with this more difficult concern, our key contri-
bution in this paper is to endow the agent with a trust model
towards its teachers.

A taxonomy of trust related errors and mitigation strategies
is proposed in [27]. In the literature, most of the works about
trust in human-robot interaction focus on the human towards
robot trust point of view, in sharp contrast with our approach.
For instance, in [22], the authors investigated the effects
of robot’s error, task type and personality on cooperation
and trust. Similarly, in [21], the authors also investigate the
effects of robot error on human trust with a specific focus
on time-critical situations. Few different works studied trust
from a different perspective, such as [24] in which the robot
uses surface cues to estimate trustworthiness of the human it
interacts with. Other approaches develop methods in which
enable the agent to use its own confidence to decide when
to ask a human to help it by providing teaching signals [7].

In our study, the definition of the trust of the agent
towards the teacher is closely correlated to the expertise level
estimation of the teacher by the agent. A similar work studied
the estimation of user’s expertise level by a robot [5]. The
authors proposed a method to estimate the user’s expertise
level relying on a Bayesian inference framework updating
incrementally the human level of expertise model processed
using a Boltzmann policy. Our approach requires fewer
computation and can be incrementally performed within the
interaction loop.

Finally, like us the authors of [19] propose a mechanism
where the agent can choose which human to listen to when
they are not equally trustworthy.

III. MODEL

In this section we describe TIRL (Trust-based Interactive
Reinforcement Learning), our approach to endow a reinforce-
ment learning agent with the capability to make profit of non
expert teaching signals.



A. Overview

  

Agent

Agent towards teacher 
trust model

Environment

Teacher state-action 
value model

H(s,·)

Critic
V(s)

Actor
a ~ π(s,·)

Teacher

state s, reward rstate s

evaluative 
feedback f

Action selector

instructions i

action a / instruction i

π(s,·)H(s,·)

Trust T(s)

action a

Fig. 1: Architecture overview: the agent can estimate trust
in human teaching signals during interactive task learning

The architecture depicted in Figure 1 is composed of two
blocks. First, an actor-critic agent learns from rewards a
stochastic policy represented as a distribution. Second, the
agent learns one or multiple models of non-expert teacher(s)
who provide sparse teaching signals as instructions and
evaluative feedback. In this paper, we address the problem
of selecting an action using either the suggestion of the
agent’s actor or the teacher guidance signal. For this purpose,
we introduce a trust value estimation in human guidance.
A key design choice in our architecture is that evaluative
feedback is always used to update the trust model through
the teacher state-action value, whereas instructions are only
followed if the trust of the agent towards the teacher is
high enough. The trust model estimates a value of trust
of the agent towards the teacher based on the difference
between the actor’s probability distribution over actions and
the probability distribution over actions computed by the
teacher state-action value. The teacher state-action value
estimates how good the action is in the state according to
the teacher, based on the provided evaluative feedback. A
specific value propagation mechanism is necessary here to
deal with sparse teaching signals.

In this architecture we used a fixed size experience replay
buffer as described in [12] and a mini-batch training mode
for the update of all architecture estimators in order to im-
prove training efficiency. The indice j used in the following
pseudo-codes describing the architecture refers to the jth

transition of the mini-batch transitions sampled randomly
from the replay buffer.

See Algorithm 1 for the description of the complete
algorithm.

B. Reinforcement Learning agent

We consider a Markov Decision Process (MDP)
(ρ,S,A, T , R, γ) where ρ is the initial state distribution, S
the state space, A the action space, T : S × A → S the
transition function, R : S → R the reward function and
γ ≤ 1 is a discount factor. The RL agent uses an Actor-
Critic algorithm as described in [25]. The critic is defined
as an estimated state value function V̂ (st) which estimates

Algorithm 1 Trust-based Interactive Reinforcement Learning

Inputs: actor π(s), critic V (s),
teacher state-action value estimator H(s, a)
initialized trust estimator T (s),
for steps t in {1, 2, 3, ...k} do

for each teacher do
if instruction is available then
i← instruction

end if
end for
Select action:
a← action selection(i, π, ifr, Tthr)
Play action a and observe (s′, r)
for each teacher do

if evaluative feedback is available then
f ← evaluative feedback

end if
end for
Add transition to replay buffer:
(sprev, aprev, fprev, s, a, r, s

′)
Store current episode for future transition storage:
sprev ← s, aprev ← a, fprev ← f , s← s′

Sample mini-batch of size N in replay buffer
Update critic V and actor π from mini-batch
for each teacher do

Update teacher state-action value estimator H from
mini-batch
Update trust estimator T from mini-batch

end for
end for

the true value function V (st) = Eπt(Jt|St = s) defined
as the expected long-term reward return while following
policy πt. The long-term reward return is defined by Jt =
End∑
k=0

γagent
k rt+k+1 with k = End corresponding to the end

of episode and rt+k+1 corresponding to the reward from the
environment received at step t+ k + 1.
The critic is updated using:
V̂ (st)← V̂ (st)+αcritic δagentt where δagentt is the tempo-
ral difference (TD) error δagentt = rt+γagent V̂ (s′t)−V̂ (st).

The actor π(s, a)t = Pr(at = a|st = s) = e
p(s,a)
τ∑

k

e
p(s,k)
τ

is defined as a probability distribution over action obtained
from a softmax function with temperature τ on state-action
preferences p(s, a). The temperature parameter τ controls the
exploration behavior of the agent: with low values the agent
is more greedy and with high values of τ it explores a lot.
State-action preferences p(s, a) are initialized at 0 and are
updated using the previously processed TD error δagentt as
p(st, at)← p(st, at)+αactor δagentt with αactor the update
parameter of the actor. We call π∗ the optimal policy defined
such that Vπ∗(s) = max

π
Vπ(s) | ∀s and we define the optimal

path as the set of states crossed by the optimal policy starting



from the initial state. See Algorithm 2 for the complete actor-
critic update.

Algorithm 2 Actor π and critic V̂ update

Inputs: mini-batch of transitions of size N , actor π, critic
V̂ , actor and critic learning rates αactor and αcritic, agent
discount factor γagent
for each transition j in mini-batch do

Compute TD error with critic V :
δagentj = rj + γagent V̂ (s′j)− V̂ (sj)

Update Critic V̂ (sj)← V̂ (sj) + αcritic δagentj
Update p(sj , aj)← p(sj , aj) + αactor δagentj

Process Actor π(s, ·) = e
p(s,·)
τ∑

k

e
p(s,k)
τ

end for

C. Non-expert human teacher

We consider a non-expert human teacher who can pro-
vide two types of teaching signals: evaluative feedback and
instructions. Evaluative feedback is a scalar provided after
one or multiple agent transitions, which can take values in
{−1, 0, 1}. An instruction is a human guidance signal toward
an action associated with the current agent’s state. These
signals come with a sparsity rate: a sparsity of 0 corresponds
to a silent teaching signal and a sparsity of 1 corresponds to
the teacher providing it at each time step.

An evaluative feedback is erroneous if it is positive when
the agent is not following the optimal policy and negative
when the agent behaves optimally, whereas an instruction is
erroneous if it provides actions different from the optimal
policy. A human teacher who never provides erroneous
teaching signals is said expert.

The agent is not aware of the sparsity rates and the details
of the erroneous zone (if any) of the teacher.

D. Teacher state-action value estimator

A teacher can provide evaluative feedback for a given
transition or for a set of transitions and the agent does not
know which transition(s) the evaluative feedback is about.
This problem is known as the temporal credit assignment
problem and has already been tackled by the RL community
using temporal difference (TD) learning.

The teacher state-action value estimates the expected value
corresponding to the evaluative feedback return starting from
state st = s and playing action at = a while following
the agent’s policy πt. To perform this estimation, we define
a specific discount factor γteacher ∈ [0, 1] which accounts
for how much the agent should back-propagate the evalua-
tive feedback signal in time. Put differently, the parameter
γteacher controls the credit decay time horizon of evaluative
feedback for teacher state-action value, thus we need to set
this γteacher to fit the assumed credit decay time horizon
when the teacher provides an evaluative feedback.

The teacher state-action value Ĥ(s, a) is defined as the
estimate of the expected evaluative feedback return starting

from state s and playing action a: Ĥ(s, a) = E(Ft|St =
s,At = a). It uses the teacher evaluative feedback return

Ft =

End∑
k=0

γteacher
k ft+k+1 with ft+k+1 corresponding to the

evaluative feedback provided by the teacher at step t+k+1.
Ĥ(s, a) is updated using Bellman equation with the

SAFSA algorithm. The SAFSA algorithm comes from the
SARSA algorithm with evaluative feedback (F) replacing the
reward (R). The SARSA algorithm commonly used in RL is
defined as Q̂(s, a)← Q̂(s, a)+α (rt+γ Q̂(s′, a′)−Q̂(s, a))
with Q̂ corresponding to the state-action value, s correspond-
ing to the current state, a corresponding to the current action,
s′ corresponding to the future state, a′ corresponding to the
future action, γ corresponding to the discount factor and α
corresponding to a learning rate.

We modified the SARSA algorithm using Ĥ(s, a) instead
of Q̂(s, a) and the teacher evaluative feedback ft instead of
environment reward rt and obtained Ĥ(s, a) ← Ĥ(s, a) +
αteacher (ft + γteacher Ĥ(s′, a′)− Ĥ(s, a)).

The SARSA algorithm tends to update the state-action
value relatively to the current policy while the update rule in
Q-Learning tends to update the state-action value relatively to
the greedy policy. Since Ĥ(s, a) represents the teacher value
according to its own policy, we chose to use the SARSA
update rule rather than the Q-learning update rule.

In our implementation, instead of using the current state,
action and teacher evaluative feedback (s, a, ft) and future
state and action (s′, a′), we used previous state, action and
feedback (sprev, aprev, fprev) and current state and action
(s, a). This is due to SAFSA algorithm which needs two
transitions in order to obtain every component of the update
rule (sprev, aprev, fprev, s, a). See Algorithm 3 for the update
of Ĥ .

Algorithm 3 Teacher state-action value estimator Ĥ update

Inputs: mini-batch of size N, actor π, critic V , Ĥ update
coefficient αteacher
For each transition of the mini-batch update Ĥ:
for steps j in {1, 2, ...N} do

Compute TD error with SAFSA:
δHj = fprevj + γteacher Ĥ(sj , aj)− Ĥ(sprevj , aprevj )

Update Ĥ(sprevj , aprevj ):
Ĥ(sprevj , aprevj )← Ĥ(sprevj , aprevj ) + αteacher δHj

end for

As a result, the replay buffer stores any previous evaluative
feedback teaching signal provided by the teacher fprev as
well as previous (sprev, aprev, s) and current (s, a, s′, r)
agent transitions in order to update both actor-critic and the
teacher state-action value estimator.

E. Trust estimator

With a trust model, the agent can filter teaching signals
by evaluating the teacher considering the agent’s state. By
listening to teacher’s instructions when the trust model is
high and ignoring teacher’s instructions when the trust is



low, we leverage teacher’s knowledge to train faster while
we avoid too much wastes of time or dead-ends when the
teacher is wrong. Our trust value is obtained by comparing
two discrete distributions over the action space: the stochastic
actor’s distribution π(s, ·) and teacher state-action value
distribution Hdist(s, ·), with

Hdist(s, ·) =
eĤ(s,·)∑
k

eĤ(s,k)
(1)

for a given state s. This comparison is performed using a
Bhattacharyya distance DB between π(s, ·) and Hdist(s, ·):
DB(Hdist(s, ·), π(s, ·)). We want the trust value to be 1
if both distributions are identical and 0 if they are com-
pletely different. Since DB(Hdist(s, ·), π(s, ·)) is defined
on [0,+∞[ with 0 in the case of identical distributions,
we compute the trust model using a exponentiated negative
Bhattacharyya distance:

T (s) = e−DB(Hdist(s,·),π(s,·)) =
∑
k

√
Hdist(s, k)π(s, k).

We want to update this trust model only if H(s, ·) and
π(s, ·) are accurate. Otherwise, we may process trust based
on the Bhattacharyya distance between two random distri-
butions. Consequently, the trust model T (s) is initialized at
1 (agent starts fully confident in the teacher) and updated
if both the agent and teacher TD errors associated to the
state are below thresholds δagentthr and δteacherthr . See
Algorithm 4 for details.

Algorithm 4 Trust estimator T update

Inputs: mini-batch of size N
For each transition of the mini-batch update T :
for steps j in {1, 2, ...N} do

Compute Hdist(sj , ·) using (1)
if δagent(sj) ≤ δagentthr and δteacher(sj) ≤ δteacherthr
then
T (sj) =

∑
k

√
Hdist(sj , k)π(sj , k)

end if
end for

F. Action selection

During training, we want the agent to filter teacher’s
instructions depending on the trust value. At each time step,
if an instruction was provided by the teacher and if trust
is above a threshold Tthr, the agent follows the teacher’s
instruction. Otherwise, the agent plays the action processed
by its actor.

This strategy could also be employed in case of multiple
teachers, where we need to choose which teacher to learn
from. If only one teacher provides an instruction and the trust
T (s) associated to the current state for this teacher is greater
than the trust threshold Tthr, we select this instruction.
Otherwise, if multiple teachers provide instructions, we apply

the following heuristic: we select a teacher based on the
trust attributed to each teacher who provided instructions
and whose trust value associated to the current state is greater
than the trust threshold (T (s) > Tthr). We call this subset of
teachers validated teachers V T . Hence we apply a softmax
function to the trust vector T (s) of each validated teacher
and we sample a teacher from this probability vector K, the
selected instruction is the instruction provided by the selected
teacher. See Algorithm 5 for multiple teacher instruction
selection.

Algorithm 5 Multiple teacher instruction selection (MTIS)

Inputs: teacher vector Teach, instructions vector
I[teacher], trust vector T ,
Filter valid teachers:
V T = Teach(T > Tthr);
if V T = ∅ then

return valid = False ; instruction = None
else

Apply softmax to trust: K = softmax(V )
Sample selectedTeacher in V T with probability K
return valid = True ;

instruction = I[selectedTeacher]
end if

To control the balance between agent exploration and
following teacher’s instructions, we use a stochastic instruc-
tion following policy parameterized by ifr, the instruction
following ratio. At each time step, if an instruction was
provided by the teacher, we sample a value from a uniform
distribution U(0, 1) and if this value is below the instruction
following ratio and the trust value is greater than the trust
threshold, the agent plays the instruction. Otherwise, the
agent plays the action suggested by its actor. See Algorithm 6
for action selection.

Algorithm 6 Action selection

Inputs: Actor π, state s, trust threshold Tthr, instruction-
following ratio ifr, instruction or (teachers vector Teach,
instructions vector I[Teach], trust vector T ) if multiple
teachers
if multiple teachers then
instruction, valid =MTIS(Teach, I[Teach], T )

else
valid = T (s) ≥ Tthr

end if
Sample x from uniform distribution U(0, 1)
if instruction is available and valid and x ≤ ifr then
a← instruction

else
a ∼ π(s, ·)

end if



IV. EXPERIMENTS

A. Environment

We use a maze with 60× 60 cells, each action leads to a
reward r = −0.1

(mazesize)2
. The agent receives a reward r = 1

for reaching the terminal state. An episode is considered
finished with success if the agent reaches terminal state
within (mazesize)

2 and is considered finished with failure if
the agent reaches terminal after more than (mazesize)

2 or if
the number of steps of the episode exceeds 100 (mazesize)

2

steps. Training is considered finished if the agent has suc-
ceeded 100 episodes in a row. The initial state is the top
left corner of the maze and the rewarding state is the bottom
right corner of the maze.

Fig. 2: Maze with optimal policy path in magenta

B. Experimental setup

In our experiments, we bind to the teacher an erroneous
zone in which he or she provides erroneous teaching signals.
In the maze environment the erroneous zone is defined by
a geometry, which is either a square (associated with its
position in the maze) or a diagonal zone, and a size, which
is the edge size for the square zone, and a strip width for
the diagonal zone.

In order to test our architecture we study the training
performance (time to complete episode versus the episode
index) in four different experimental setups:
• Exp 1: Agent trained with an expert teacher (no er-

roneous zone) with different sparsity rates from 0.0 (no
teaching signals provided by the teacher) to 1.0 (teaching
signals provided at each step);
• Exp 2: Agent trained with an expert teacher (no erro-

neous zone) then trained with a non-expert teacher (square
erroneous zone of edge size 10 and including some optimal
path’s states) with different sparsity rates (from 0 to 1, with
the same sparsity rates for both teachers);
• Exp 3: Agent trained with a non-expert teacher (square

erroneous zone of edge size 10 and including some optimal
path’s states, figure 3) with different sparsity rates (from 0
to 1);
• Exp 4: Agent trained with two non-expert teachers

sharing the same erroneous zone shape and size but not the
same position (square erroneous zone of edge size 10 and
including some states from the optimal path, figure 3) with
different sparsity (from 0 to 1, with the same sparsity rates
for both teachers).

(a) Err. zone in Exp. 2&3 (b) Erroneous zones in Exp. 4

Fig. 3: Erroneous zones and optimal policy path in magenta

C. Hyper-parameters and settings

The mini-batch size N and the experience replay buffer
size R have been arbitrarily set to values 10 and 5000
respectively. We begin by setting the actor-critic parameters
τ , αactor and αcritic which is done by training the agent
without any teaching signals. The environment discount fac-
tor γ has been set to 0.99, a standard value in RL. The agent
exploration temperature τ , actor and critic learning rates
αactor and αcritic have been set using a grid search method
trying to maximize the performance. We then set teacher
related parameters αteacher and γteacher. To set αteacher,
we start with a αteacher and increase it until learning stops
converging. We apply this method for different sparsity rates
and we keep the lowest acceptable value of αteacher. Setting
γteacher, δteacher and δactor is performed in a similar way
using again different sparsity values. Finally we set Tthr,
using a grid search for different configurations of teachers.
The settings used in this study are described in Table I below.

TABLE I: Hyper-parameters of the study

Hyper-parameter name value
Maze size 60
Mini-batch size N 10
Experience replay buffer size R 5000
Instruction-following ratio ifr 0.6
Trust threshold Tthr 0.6
Environment discount factor γ 0.99
Teacher discount factor γteacher 0.75
Actor learning rate αactor 6
Critic learning rate αcritic 0.6
Teacher learning rate αteacher 0.7
Agent TD error threshold δagentthr 10−4

Teacher TD error threshold δteacherthr 10−3

Exploration temperature τ 2.5

V. RESULTS

All experiments have been conducted using 20 different
seeds for each set of sparsity rates. Figure 4 shows the time
to complete an episode in log scale versus the episode index
in the different settings. The lower this time, the better the
performance. Results are presented for each sparsity rate
as a mean represented by a line and trust interval of 95%
represented by a shadow band area around the line.



(a) Exp. 1 (b) Exp. 2

(c) Exp. 3 (d) Exp. 4

Fig. 4: Time to complete episode in log scale versus the episodes index

A. First experiment

In Exp. 1, the teacher is expert, providing no erroneous
teaching signal. Figure 4a shows that every sparsity rate
condition converged to a near-identical value. However, the
higher the sparsity the faster the training and the more robust
the training. Indeed the higher the sparsity rate, the narrower
the confidence interval band.

B. Second experiment

In Exp. 2, the teacher is expert for the first 120 episodes,
but not for the 120 last ones. Figure 4b shows that for the
120 first episodes, results are identical to the first experiment,
since we use the same training conditions. However we
identify a performance drop at the beginning of the 120 last
episodes of the experiment which vanishes in a few dozen
episodes. The higher the sparsity rates, the bigger is the
performance drop and the slower it vanishes. This can be
explained by the trust value being very high in every state
for the first 120 episodes since the first teacher was expert,
and the agent taking more time to lose trust after episode 120
when the teaching signal is more sparse. When the signal
is not sparse, the agent successfully attributes in a dozen
episodes a low trust value to the teacher erroneous zone
states and improves its performance using its own policy in

the erroneous states which leads to a performance increase.
Figure 5a shows the trust map of the teacher just before

swapping between expert and non-expert teachers (step =
119). As expected, the trust is high. Figure 5b shows the
trust map just after the swap and we observe the trust in the
teacher erroneous zone has not been reduced since the agent
still had not enough time to discover the teacher erroneous
zone. Figure 5c shows the last episode (step = 239) trust
map on which we can identify very low trust attributed
to states crossed by the agent’s policy which overlap the
erroneous zone of the teacher.

C. Third experiment

In Exp. 3, the teacher is not expert. Figure 4c shows that
the higher the sparsity rate, the lower the performance at
the beginning of the training (expected for sparsity rate 0.0,
that is no teaching signal). Besides, the higher the sparsity
rate, the higher the convergence speed except for sparsity
1.0 which is a little slower than sparsity rate 0.8. For high
sparsity rate, the teacher provides way more erroneous signal
than for lower sparsity rates, but the agent faster identifies the
teacher’s erroneous zone and so to learns faster. However, a
high sparsity rate induces wastes of time or dead-ends at the
beginning of training, because the agent ignores the teacher’s



(a) Episode 119 (b) Episode 120

(c) Last episode

Fig. 5: Trust maps in Exp. 2. The color scale shows trust
towards the teacher along the trajectory.

erroneous zone. We identify an optimum at sparsity rate =
0.6 in Figure 4c.

Figure 6 shows the last episode trust map, we notice
very low trust has only been attributed to states crossed by
the agent’s policy which overlap the erroneous zone of the
teacher. We also observe the agent policy is not optimal.
Indeed, during training, the agent has been misled by the
teacher in the teacher erroneous space. Thus the agent spent
a lot of time trapped in this zone without being rewarded.
This phenomenon led the agent to estimate expected reward
in states overlapping teacher’s erroneous zone to be very low.
As a consequence, the agent’s policy avoided the teacher’s
erroneous zone.

Fig. 6: Trust maps of last episode in Exp. 3

D. Fourth experiment

In Exp. 4, there are two non-expert teachers. Figure 4d
shows that the higher the sparsity, the faster and more robust
the training (the higher sparsity rate, the narrower the trust
band). The trade-off between the low performance at the
beginning of training and the high convergence speed we

encountered during Exp. 3 is not present anymore. This can
be attributed to the complementary nature of the erroneous
zones of both teachers. While one teacher is providing
erroneous teaching signal, the other one is providing correct
teaching signal. The trust mechanism helps the agent to
ignore the erroneous teacher depending on its state. This
demonstrates how useful the trust mechanism is when using
multiple teachers.

Figure 7a shows the last episode trust map of the first
teacher. We notice very low trust has only been attributed
to states crossed by the agent’s policy which overlap the
erroneous zone of the first teacher. Figure 7b shows the last
episode trust map of the second teacher. We also notice very
low trust in states crossed by the agent’s policy which overlap
the erroneous zone of the second teacher. This shows that the
agent correctly estimates and uses the trust mechanism when
training with multiple teachers.

(a) First teacher trust map (b) Second teacher trust map

Fig. 7: Trust maps in Exp. 4

VI. CONCLUSIONS
In this work, we proposed a new architecture where non

expert teachers can guide a reinforcement learning agent
with various teaching signals. This architecture relies on
two important components: the teacher state-action value
estimator which allows to handle sparse evaluative feedback
signal, and the agent trust model towards teacher. With this
model, the agent can identify zones in the state space where
teaching signals are wrong. Along four experiments, we
obtained faster and more robust training for every combi-
nation of teacher configurations and for different values of
teaching signals sparsity rates. In the fourth experiment, we
demonstrated the trust model can leverage multiple teachers
with complementary erroneous zone.

An immediate extension for future work consists in adding
more types of teaching signals such as demonstrations. Be-
sides, in this work, the interpretation of evaluative feedback
and instructions was given, but we could incorporate an
interpretation learning process by using the methodology of
the TICS architecture [18]. Finally, we implemented and
tested TIRL using a discrete environment to facilitate the
interpretation of our results focused on trust, but our work
could easily be extended to continuous state and action envi-
ronments using state-of-the-art deep reinforcement learning
algorithms.
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