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Abstract: This paper investigates the concurrent path planning optimization and the built part structural opti-
mization for powder bed fusion additive manufacturing processes. The state of the art studies rely on existing
patterns for trajectories for a fixed built shape. The shape is often optimized for its mechanical performance
but rarely in a combined way with its path planning building process. In this work, a two dimensional model
(in the layer plane) of the process is proposed under a steady state assumption. Then a systematic path opti-
mization approach, free from a priori restrictions and previously developed in [1], is coupled to a structural
optimization tool, both of them based on shape optimization theory. This multiphysics optimization leads to
innovative and promising results. First, they confirm that it is essential to take into account the part shape
in the scanning path optimization. Second, they also give hints to some design recipes: the material and the
source parameters must be related to the thickness of the bars that compose the structure. Indeed, the thickness
of a bar is a key ingredient which determines the type of path pattern to scan it: straight line, Omega-pattern
and Wave-pattern.

Keywords. Path planning and control, additive manufacturing, metallic powder bed fusion, structural opti-
mization.

CONTENTS

1 Introduction 1
2 Modelling and optimization problem 2

2.1 Mechanical model governing the part optimization 3
2.2 Thermal model governing the path feasibility 4
2.3 Concurrent optimization problem 5

3 Gradient with respect to the path Γ and the shape Ω 5
3.1 Differentiation with respect to the shape Ω 5
3.2 Differentiation with respect to the path Γ 6
3.3 Transformation of the derivative into gradients: regularization-extension process 7

4 Numerical algorithm 8
4.1 Inner loop: path optimization 8
4.2 Outer loop: part optimization 10

5 Numerical results 12
5.1 Algorithm settings 12
5.2 Cantilever test case 13
5.3 Results 14

6 Conclusion and perspectives 18
7 Acknowledgments 19

1 Introduction
Among the several existing additive manufacturing (AM) processes [2], this work focuses on powder bed
fusion (PBF) [3, 4, 5, 6]. This method consists in building metallic parts layer by layer: for each layer,
metallic powder is regularly distributed on top of the already built part. A heat source (laser or electron beam)
is then travelled along a prescribed path, melting the powder in specific areas. Finally, the part solidifies while
cooling down and a new layer of powder is coated to repeat the process. This technology features several
advantages [2, 7] as reducing traditional building constraints and thus allowing to manufacture complex parts
(like the ones produced by topology optimization softwares), etc.
Despite its promises, there are still some issues in additive manufacturing which require technological im-
provements. A first issue is the appearance of quality defects such as porosities, residual stresses, rough
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surfaces or anisotropy [8, 9, 5, 6, 10, 11]. They are the result of an intricate multi-physics process, involv-
ing several phenomena (mechanical, metallurgical, thermal). These defects can partly be accomodated by post
treatments [5, 6] but avoiding them is nevertheless crucial. A high-fidelity numerical prediction of these defects
must involve four metal states (powder, solid, fluid, gas) and thus nonlinear equations making the computa-
tions very expensive [5, 12, 13]. Simplified models have thus been set [14] and specific parameters identified
to increase the final structure’s quality [10, 15]. A second issue is the building time. Additive manufacturing
is known to be a slow process: optimizing the scanning path is one way of reducing the manufacturing time.
In automated production, improving the path is a classical issue, already considered for traditional machining
such as milling or welding [16, 17, 18, 19]. For powder bed fusion technologies the path directly impacts
the heat distribution and thus both the scanning time [20, 21] and the creation of quality defects [22, 23, 24].
Departing from the literature (see [25] for a review of the existing strategies), where paths are based upon fixed
strategies, it is chosen here to consider a systematic optimization approach, as initiated in [1] (see also the PhD
thesis of the first author [26]). In this approach, the path is optimized without a priori given strategy and its
pattern is thus expected to be varying when applied to different part shapes. The path is optimized in order to
have a precise control of the temperature during the building process. On the other hand, the shape is optimized
both for temperature control and for its final mechanical performance. This allows for the development of path
optimization algorithms under a steady state assumption. This type of systematic optimization of the scanning
path is recent with only a limited literature: the works [27, 28] give theoretical results on an optimal control
approach of the problem; the works, initiated by [29] on anisotropy and further developed in [30, 31], model
the scanning path connected components as the level sets of a function controlling the residual stresses using
an inherent strain method, under a steady state assumption.
The originality of this article is to go beyond the sole path optimization, as in the just cited references, and to
develop a concurrent optimization algorithm aimed at determining both the scanning path and the part shape
and topology. To do so, two design variables are considered: the path Γ and the part shape Ω. The literature
on topology optimization for metal additive manufacturing is extremely large [32, 33], with a majority of
articles taking into account manufacturability constraints either through geometric constraints (like limiting
overhangs) or by introducing additional supports (in a purely mechanical context). There are less papers
which address the issue of the thermal effects of additive manufacturing through topology optimization (some
examples are provided by [34, 35, 36, 37, 38]). Eventually, very few works consider both optimizing the
scanning path and the shape [1, 30]. Building on these topology optimization works, we include in the shape
and topology optimization algorithm for the part shape Ω some constraints about the scanning path Γ, which
yield a compromise between the mechanical performance of the part structure and the efficiency of the building
process.
In Section 2, the model elaborated for this study is presented. This is a multiphysics problem: a mechanical
problem of compliance minimization under fixed volume constraint is set concerning the final use of the part,
and a simplified two dimensional thermal problem, modeled under a steady state assumption, is defined for
the scanning path efficiency. The scanning path being included in each layer plane, the model is limited to a
single layer in two space dimensions. The optimization objectives and constraints resulting from each physics
are precisely defined for the concurrent optimization problem.
For efficiency reasons, gradient-based descent algorithms are used. They require the determination of gradients
related to the optimization problem, thanks to an adjoint method. In both cases, path and shape optimization,
we rely on the Hadamard method of geometrical sensitivity [39, 40, 41]. Section 3 is concerned with the
computation of these derivatives with respect to the path and to the shape.
Section 4 explains our numerical implementation. The path is parametrized by a collection of nodes, connected
by straight lines. The shape is represented by a level set function. An augmented Lagrangian algorithm for
optimization is presented.
Finally, Section 5 is devoted to numerical results for assessing our optimization approach. Two mechanical test
cases (a small and a large cantilever) and two physical test cases (with the metal considered being successively
aluminium and titanium) are considered for several strategies of coupled optimization. This leads to several
observations from which we draw some conclusions.

2 Modelling and optimization problem
In this work, both the part to build and the associated scanning path are simultaneously optimized in the powder
bed fusion context. In this section, a model of this process is proposed and an optimization problem is defined.
The focus here is on a single layer and thus on a two dimensional problem. In this layer, the part shape is
actually a two dimensional section of the 3-d part to build and the path is chosen to melt this part shape, a
subset of the the layer (see Figure 1). The working or computational domain D ⊂ R2 is the cross-section of
the build chamber containing this layer, thus a rectangle in practice. The mechanical problem, related to the
part optimization, is first described. Then, a model for the building process is given, featuring the path of the
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heat source.

2.1 Mechanical model governing the part optimization
Before being manufactured, the part to build is designed for a specific use. Typically, for a linearized elasticity
model, the part compliance is minimized under a volume constraint.

Figure 1: Layer plane: Ω part to build and Γ scanning path in the build chamber D

Definition 1. The space UΩ of admissible shapes is made of open bounded sets Ω ⊂ D with a C 2 boundary,
∂Ω, composed of three disjoints parts (see Figure 1): ∂ΩN on which a load h ∈ L2(∂ΩN)

2 is applied (Neumann
boundary condition), ∂ΩD on which the elastic displacement is prescribed (Dirichlet boundary condition) and
∂ΩF which is traction-free. Only the boundary ∂ΩF is optimized and the boundary ∂ΩD is assumed to be not
empty. The exterior normal to the boundary ∂Ω is denoted by nΩ.

We assume that any shape Ω ∈ UΩ is filled by an isotropic elastic material with a Hooke’s tensor A, relating
the elastic stress and strain tensors, defined, for any symmetric matrix ξ, by

Aξ =

(
E

1+ν

)
ξ+

(
Eν

(1+ν)(1−2ν)

)
Tr(ξ)I2, (1)

with E the Young modulus and ν the Poisson ratio. The elastic displacement u is the solution of the linear
elasticity system 

−div(Aε(u)) = 0 in Ω,
Aε(u).nΩ = h on ∂ΩN ,
Aε(u).nΩ = 0 on ∂ΩF ,
u = 0 on ∂ΩD,

(2)

with the strain tensor ε(u) =
1
2
(
∇u+∇uT ). Setting

H1
D(Ω,R2) = {v ∈ H1(Ω,R2), such that v = 0 on ∂ΩD}, (3)

the set of functions in H1(Ω,R2) vanishing on ∂ΩD, the variational formulation of (2) is to find u ∈ H1
D(Ω,R2)

such that ∫
Ω

Aε(u) : ε(ϕ)dx−
∫

∂ΩN

h ·ϕds = 0, ∀ϕ ∈ H1
D(Ω,R2). (4)

The optimization problem consists in minimizing the compliance

min
Ω∈UΩ

Cply(Ω) =
∫

Ω

Aε(u) : ε(u)dx

under a given volume constraint V =
∫

Ω

dx =V target.
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2.2 Thermal model governing the path feasibility
Here, we rely on a simplified model to simulate the building process. Indeed, an accurate description of the
process (taking into account all phase changes, metallurgical and mechanical aspects) would require a too
complicated and CPU expensive model for optimization purposes. Therefore, the focus is rather on a simpli-
fied model [5, 12] that involves a thermal problem only. In this context, the control on the fabrication of the
part, as well as on the appearance of residual stresses [42], is performed solely through the temperature. To
keep a simple numerical resolution, the model is chosen two-dimensional, in the layer plane. This is obviously
a huge simplification [43] but it is just a firs step and it allows us to explore optimization issues in a simplified
setting. Adding the hypothesis of an infinite scanning speed, the model is further simplified by getting rid of
the time dependence of the problem (see [44] for an unsteady model). Note that some of the heat sources used
in the powder bed fusion context (and especially electron beams) can move very fast along the path: if the
steady state property of our model is obviously a restrictive assumption [45], the results can nevertheless be
physically interpreted. For further information on how to derive such a model, on its advantages and on its
limits, the interested reader is referred to [26, 1].

Definition 2. The space UΓ of admissible paths is made of C 2 oriented curves Γ ⊂ D, with end points denoted
by A and B (depending on Γ) and unit tangent vector τΓ. The unit normal nΓ is defined such that, for all x ∈ Γ,
(τΓ(x),nΓ(x)) is a direct orthonormal basis. The (mean) curvature is given at each point by κΓ(x) = div(nΓ(x))
where the normal has been extended to a neighborhood of Γ. Note that this curvature is well defined since the
curves Γ ∈ UΓ are C 2.

In the following, it is assumed that the path is switched on at once leading to the following heat equation:{
−∇(λ∇y)+β(y− yini) = PχΓ inD,
λ∂ny = 0 on∂D.

(5)

with λ the conductivity, P the constant source power, Γ the scanning path and χΓ(x) the Dirac function sup-
ported by the path. This heat equation models the conduction effects in the layer plane as well as in the
building direction, through the introduction of a temperature loss term with coefficient β. Since χΓ ∈ H−1(D),
the variational formulation of (5) consists in finding y ∈ H1(D) such that∫

D
(λ∇y ·∇φ+β(y− yini)φ)dx =

∫
Γ

Pφds, ∀φ ∈ H1(D). (6)

Controlling the feasibility of the part with respect to the path Γ is monitored by three different constraints
which should vanish:

• Control of the solid region. The part Ω ⊂ D must solidify (Figure 1). Thus, at each point x ∈ Ω, the
temperature, y, must be above a change of state temperature yφ, namely y(x) ≥ yφ. Therefore, with
(.)+ = max(.,0), this pointwise constraint can be translated into only one constraint, referred to as
”phase constraint” in the following,

Cφ =
∫

Ω

[(
yφ − y(x)

)+]2
dx. (7)

• Control of the powder region. The part D \Ω must remain powder. Thus, at each point x ∈ D \Ω, the
temperature, y, must remain under a maximum temperature yM, pow. ≤ yφ, namely y(x) ≤ yM, pow.. A
constraint, referred to as ”maximum temperature constraint out of the part” in the following, can then
be introduced

CM,D\Ω =
∫

D\Ω

[(
y(x)− yM, pow.

)+]2
dx. (8)

• Control of the defects. To avoid the appearance of defects in the part during its building (especially
residual stresses and deformations), the maximum temperature is required to stay below a fixed thresh-
old. Thus, at each point x ∈ Ω, the temperature y must remain below a maximum temperature yM, sol.,
namely y(x) ≤ yM, sol.. The choice of the maximal temperature yM, sol. is somehow arbitrary and obvi-
ously impacts the optimization results. For further details, the reader can refer to [26] and especially to
Chapter 6. The ”maximum temperature constraint in the part” is the defined by

CM,Ω =
∫

Ω

[
(y(x)− yM, sol.)

+]2 dx. (9)
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The optimization problem is to minimize the path length

min
Γ∈UΓ

LΓ =
∫

Γ

ds,

under the constraints that Cφ = 0, CM,D\Ω = 0, CM,Ω = 0.

2.3 Concurrent optimization problem
The concurrent or simultaneous optimization problem gathers both optimization problems of Subsections 2.1
and 2.2. It is a multiphysics problem with two state equations (one mechanical for the final use of the part, one
thermal for the building process of the part). It reads

min
Ω∈UΩ,Γ∈UΓ

J(Ω,Γ) = lcplyCply(Ω)+ lLLΓ(Γ),

such that
{

V (Ω) =V target,
C(Ω,Γ) =Cφ(Ω,Γ)+ lCM,Ω(Ω,Γ)+CM,D\Ω(Ω,Γ) = 0,

(10)

where the various objectives and constraints are computed with the states u ∈ H1(D,R2), solution of the
elasticity equation (2), y ∈ H1(D,R), solution of the heat equation (5), and lcply, lL ∈ R are some weighting
coefficients. Some details about the chosen numerical values are given in Section 4.2.2.

Remark 1. In this work, we choose the path Γ and the shape Ω to be independent variables. This is a
modelling choice. The truth is that they are not independent in practice but their relationship is not obvious.
A first possibility is to assume that the shape depends on the path: indeed the shape could be automatically
deduced from the path by considering it as a tubular neighbourhood of the path (the melted zone around the
laser path). A second possibility is to assume that the path depends on the shape by some manufacturability
rule: a pattern of the path is associated to some local characteristics of the shape geometry. Of course,
reality lies between these two extreme cases. We believe our modeling choice to make Γ and Ω independent
variables is a good compromise: in such a case, they are related to one another only through the satisfaction
of temperature constraints.

Remark 2. Note that the constraint C corresponds to the sum of the constraints related to the control of the
solid region, to the control of the powder region and to the control of the defects. Each of them is considered
with equal importance. Yet, it is possible to choose differently the constraint C, especially by introducing
weights in the sum.

3 Gradient with respect to the path Γ and the shape Ω

The optimization method is based on a gradient descent algorithm. It thus requires the computation of the
gradient of each objective and constraint functions with respect to the path Γ and shape Ω. In this work, the
shape optimization method (also called Hadamard method) is chosen and the gradients are computed using the
Lagrangian method of Céa [46]. The proofs of the propositions are simply sketched and the interested reader
is referred to [39, 40, 47, 41] for more mathematical details.

3.1 Differentiation with respect to the shape Ω

Proposition 1 details the differentiation with respect to the shape Ω.

Proposition 1. Let Ω ∈ UΩ and Γ ∈ UΓ (see Definitions 1 and 2). Then, Cply, LΓ, V and C are differentiable
at Ω and for any perturbation θΩ ∈ C 2(D,R2) such that for all x ∈ ∂ΩN ∪ ∂ΩD, θΩ(x) = 0, their derivatives
are

DΩCply(Ω)(θΩ) =
∫

∂ΩF

(−Aε(u) : ε(u))θΩ(s) ·nΩ(s)ds, (11)

DΩLΓ(Γ)(θΩ) = 0, (12)

DΩV (Ω)(θΩ) =
∫

∂ΩF

θΩ(s) ·nΩ(s)ds, (13)

and

DΩC(Ω,Γ)(θΩ) =
∫

∂ΩF

([(
yφ − y

)+]2
+
[
(y− yM, sol.)

+]2 − [(y− yM, pow.)
+]2)

θΩ(s) ·nΩ(s)ds. (14)
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Remark 3. Note that, following the Hadamard structure theorem [40, 41, 39], for all the considered functions
(denoted G ∈ {Cply,LΓ,V,C} in the following), the derivative can be written, with gΩ ∈ C 0(D,R).

DΩG(Ω)(θΩ) =
∫

∂ΩF

gΩθΩ ·nΩds. (15)

For the proof of Proposition 1 we need the following classical result [40, 41, 39] which is recalled for the sake
of completeness.

Lemma 1. Let Ω ⊂ R2 be a C 2 open bounded set. Let f ∈ C 1 (D,R). The function J(Ω) =
∫

Ω
f (x)dx is

differentiable at Ω and for all θ ∈ C 2
(
D,R2

)
,

DΩJ(Ω)(θ) =
∫

∂Ω

f (s)θ(s) ·nΩ(s)ds. (16)

Proof. First of all, the path does not depend on the shape Ω (see Remark 1) which gives (12). Lemma 1 is
then used to compute the derivatives of the compliance, volume and temperature constraint.
Lemma 1 can apply directly for the volume. Since the integrand of the temperature constraint only depends
on the temperature and thus on the path and not on the shape, Lemma 1 also apply. Finally, recalling that only
the part of boundary ∂ΩF is optimizable, the derivatives given by (13) and (14) are finally found.
As for the compliance, the integrand actually depends on the elastic displacement which itself depends on
the shape Ω. A differentiation of this displacement with respect to Ω would then be required. To avoid such
computations, the method of Céa [46] is here applied and an extended functional is introduced (recall that
H1

D(Ω,R2) is defined by (3))

G :

 UΩ ×H1
D(Ω,R2)×H1

D(Ω,R2) → R
(Ω, p,q) 7→

∫
Ω

Aε(p) : ε(p)+
∫

Ω

Aε(p) : ε(q)dx−
∫

∂ΩN

h · pds.

Then, for all q ∈ H1
D(Ω,R2), G(Ω,u,q) =Cply(Ω). Differentiating with respect to the shape Ω then leads to

DΩCply(Ω)(θ) = ∂ΩG(Ω,u,q)(θ)+∂uG(Ω,u,q)(∂Ωu(Ω)(θ)) .

Choosing q = uadj such that for all φ ∈ H1
D(Ω,R2), ∂uG(Ω,u,uadj)(φ) = 0 leads to choosing uadj ∈ H1(Ω,R2)

solution of 
−div

(
Aε(uadj)

)
= 0 in Ω

Aε(u) ·nΩ =−2h on ∂ΩN
Aε(u) ·nΩ = 0 on ∂ΩF
u = 0 on ∂ΩD.

This is equivalent to choosing uadj =−2u. This leads to

DΩCply(Ω)(θ) = ∂ΩG(Ω,u,−2u)(θ),

and Lemma 1 concludes the proof.

3.2 Differentiation with respect to the path Γ

Proposition 2 details the differentiation with respect to the path Γ. To compute the derivative, an adjoint
function yadj ∈ H1(D) is introduced as{

−∇
(
λ∇yadj

)
+βyadj = 2

[(
yφ − y

)+
1Ω0 − (y− yM, sol.)

+
1Ω0 −

(
y− yM, pow.

)+
1D\Ω0

]
inD,

λ∂nyadj = 0 on∂D.
(17)

The right hand side in equation (17) belongs to L2(D) since the temperature y, solution of (5), belongs to
H1(D)). Thus the adjoint equation (17) admits a unique solution yadj ∈ H1(D).

Proposition 2. Let Γ ∈ UΓ and Ω0 ∈ UΩ (see Definitions 1 and 2). Then, Cply, LΓ, V and C are differentiable
at Γ and, for any perturbation θΓ ∈ C 2(D,R2), their derivatives are as follow:

DΓCply(Ω)(θΓ) = 0, (18)

DΓLΓ(Γ)(θΓ) =
∫

Γ

κΓ(s)θΓ(s) ·nΓ(s)ds+θΓ(B) · τΓ(B)−θΓ(A) · τΓ(A), (19)
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DΓV (Ω)(θΓ) = 0, (20)

and
DΓC(Ω0,Γ)(θΓ) =

∫
Γ

(
−P
[
∂nyadj(s)+κΓ(s)yadj(s)

]
θΓ(s) ·nΓ(s)

)
ds

−Pyadj(B)θΓ(B) · τΓ(B)+Pyadj(A)θΓ(A) · τΓ(A),
(21)

where yadj ∈ H1(D,R) is defined by (17).

Remark 4. Note that, for both the path length and the constraint (denoted F ∈ {Cply,LΓ,V,C}), following
Hadamard structure theorem [40, 41, 39], the derivative can be written

DΓF(Γ)(θΓ) =
∫

Γ

fnΓ
θΓ ·nΓds+ fτΓ

(B)θΓ(B) · τΓ(B)− fτΓ
(A)θΓ(A) · τΓ(A), (22)

with fnΓ
, fτΓ

∈ C 0(D,R).

For the proof of Proposition 2 we need the following result, which is classical, at least when Γ is a closed
curve, meaning that its end points A and B coincide (see [40, 35, 41, 48]). When Γ is not a closed loop, the
classical proof can be generalized and, due to an integration by parts, the two additional terms on the line
endpoints appear (see e.g. a proof in [26]).

Lemma 2. Let Γ ∈ UΓ, g ∈ W 2,1(D,R). The function J(Γ) =
∫

Γ

g(s)ds is differentiable at Γ and for all

θ ∈ C 2
(
D,R2

)
,

DΓJ(Γ)(θ) =
∫

Γ

(κΓ(s)g(s)+∂nΓ
g(s))θ(s) ·nΓ(s)ds+g(B)θ(B) · τΓ(B)−g(A)θ(A) · τΓ(A). (23)

Proof. First of all, the compliance and volume do not depend on the shape Ω (see Remark 1) which give (18)
and (20). Lemma 2 is then used to compute the derivatives of the length and temperature constraint.
Lemma 2 can apply directly for the length. As for the temperature constraint, it does not depend explicitly on
the path. The dependence is in the temperature, requiring, as for Proposition 1, the use of the method of Céa.
The extended functional is

G :


UΓ ×H1(D,R)×H1(D,R) → R

(Γ,w,z) 7→
∫

Ω

[(
yφ −w

)+]2
+
[
(w− yM, sol.)

+]2 dx+
∫

D\Ω

[(
w− yM, pow.

)+]2

+
∫

D
λ∇w ·∇zdx−

∫
Γ

Pzds.

Then, for all z ∈ H1(Ω,R2), G(Γ,y,z) =C(Γ). Differentiating with respect to the shape Ω then leads to

DΓC(Γ)(θ) = ∂ΓG(Γ,y,z)(θ)+∂yG(Γ,y,z)(∂Γy(Γ)(θ)) .

Choosing z = yadj such that for all φ ∈ H1(D,R), ∂yG(Γ,y,yadj)(φ) = 0 leads to define yadj ∈ H1(D,R) as the
solution of (17). This leads to

DΓC(Γ)(θ) = ∂ΓG(Γ,y,yadj)(θ),

and Lemma 2 concludes the proof.

3.3 Transformation of the derivative into gradients: regularization-extension process
In order to apply a gradient descent algorithm, a gradient must be deduced from the derivatives given by
Propositions 1 and 2. For X = Ω or X = Γ, a Hilbert space HX is chosen together with its scalar product (., .)X
and the gradient J′X of a function J corresponds to the Riesz representative of the derivative (which is a linear
form) in the Hilbert space.

DX J(X)(θ) = (J′X ,θ)X . (24)

This gradient determination process is classical and can be used as a regularization or regularization-extension
process (extension of the shape gradient away from the boundary) [40, 49, 50, 51][52]. Note that the direction
θ =−J′X is then a descent direction. Indeed, this leads to DX J(X)(θ) =−∥J′X∥2

X ≤ 0.
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The gradient with respect to the shape is first considered choosing the gradient of each function G∈{Cply,LΓ,V,C}
as the Riesz representative of the derivative in the Hilbert space H1(D,R2) which amounts to compute G′ =
G′

nΩ
nΩ ∈ H1(D,R2) such that for all Q ∈ H1(D,R),∫

D

(
ν

2
Ω∇G′

nΩ
·∇Q+G′

nΩ
Q
)

dx =
∫

∂ΩF

gΩQds. (25)

The coefficient νΩ > 0 is a regularization coefficient in this ”regularization-extension” process.

The Hilbert space H1(D,R2) cannot be used to regularize the gradient with respect to a curve Γ ∈ UΓ (with
two end points A and B), since any function in H1(D,R2) is not necessarily defined at points A and B. Thus,
the gradient with respect to the path of each function F ∈ {Cply,LΓ,V,C} is the Riesz representative of the
derivative in H1(Γ,R2) (Laplace-Beltrami choice) which amounts to compute F ′ = F ′

τΓ
τΓ+F ′

nΓ
nΓ ∈H1(Γ,R2)

such that for all W =WτΓ
τΓ +WnΓ

nΓ, WτΓ
,WnΓ

∈ H1(Γ,R),

DΓF(Γ)(W ) =
∫

Γ

( fnΓ
WnΓ

)ds+ fτΓ
(B)WτΓ

(B)− fτΓ
(A)WτΓ

(A),

=
∫

Γ

[
ν

2
Γ

(
∇τΓ

F ′
τΓ
·∇τΓ

WτΓ
+∇τΓ

F ′
nΓ
·∇τΓ

WnΓ

)
+F ′

τΓ
WτΓ

+F ′
nΓ

WnΓ

]
ds.

(26)

This regularization process is controlled by the coefficient νΓ > 0.

4 Numerical algorithm
The optimization method chosen is a double loop algorithm. The outer loop is related to the part shape Ω

whereas the inner loop focuses on the path Γ, both of them corresponding to gradient descent algorithms. The
number of iterations in each loop determines the balance between the optimization of both variables. The
following subsections detail the differentiation process, the discretization and the algorithm related to each
loop.

4.1 Inner loop: path optimization
The inner loop focuses on path optimization. Let D be the working domain and Ω0 a fixed shape that the
optimized path must build. The optimization problem related to the inner loop is then

min
Γ∈UΓ

LΓ(Γ),

such that C =Cφ(Ω0,Γ)+CM,Ω(Ω0,Γ)+CM,D\Ω(Ω0,Γ) = 0,
(27)

where y∈H1(D,R) solution to the heat equation (5). To numerically solve this optimization problem, the strat-
egy is the following: first define a discretization of the problem; and then, choose an optimization algorithm
and determine the corresponding numerical gradient from the gradients computed in Subsection 3.2.

4.1.1 Discretization of the optimization problem

Along the inner loop iterations, the path Γ is modified leading to re-evaluations of the temperature y. The
numerical representation of each object is crucial since impacting both the computational time and accuracy.
Among the several works related to interface representation [53, 54, 55, 56], we follow [57] and choose a front
tracking approach. The working domain is discretized with a ”(physical) mesh” fixed along the iterations. On
this mesh, the finite element functions are defined and the temperature computed. The path is also discretized
as a broken line defined by its nodal points (xi)i∈J1,NxK, Nx the number of points. This discretized path (and
especially its nodal points) is modified at each iteration (Figure 2). The resulting line is re-discretized to ensure
each segment length to be in the range [dlower,dupper] such that dupper = 2dlower = 0.7∆x, with ∆x the character-
istic physical mesh size. The broken line representation of the path implies the definition of discrete tangent
(τΓ,i)i∈J1,Nx−1K, normal (nΓ,i)i∈J1,Nx−1K and curvature (κΓ,i)i∈J1,Nx−1K. Their definitions follow [26] Chapter 5,
in which all the details of the discretization process can be found. Finally, all the algorithmic details related to
the information mapping from the line to the physical mesh (heat source definition on the physical mesh for
example) can be found in [26] Chapter 5.

This representation is very convenient because it keeps the mesh fixed, thereby considerably reducing the com-
putational costs. Moreover, the discretized path allows for a full control of the line topology (no uncontrolled
changes in the number of connected components). In this work, only one connected component of the path
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is allowed (the path topology is fixed). An optimization to modify the path topology has been proposed in [26].

Figure 2: Front-tracking approach: fixed
physical mesh and moving broken line path

discretization

Figure 3: Path description as a broken line

The gradients of the path length and constraint are the solutions of (26) in their continuous version. To get
them in a discretized version, compatible with the numerical problem, the gradient equation is discretized. Let
F be the function to which the numerical gradient must be computed. Then, for all i ∈ J1,NxK, its numerical
gradient at point xi, F ′

i = F ′
τΓ,iτΓ,i +F ′

nΓ,inΓ,i is such that



Nx−1

∑
i=1

li

[
ν

2
Γ

(
F ′

τΓ,i+1 −F ′
τΓ,i

li

Wi+1 −Wi

li

)
+

F ′
τΓ,i+1Wi+1 +F ′

τΓ,iWi

2

]
− fτΓ,NxWNx + fτΓ,1W1 = 0,

Nx−1

∑
i=1

li

[
ν

2
Γ

(
F ′

Γ,nΓ,i+1 −F ′
Γ,nΓ,i

li

Wi+1 −Wi

li

)
+

F ′
Γ,nΓ,i+1Wi+1 +F ′

Γ,nΓ,iWi

2
−

fnΓ,i+1Wi+1 + fnΓ,iWi

2

]
= 0.

(28)

4.1.2 Inner loop optimization algorithm

In order to include the constraint C into the optimization algorithm, an augmented Lagrangian method is
chosen [58, 26]. The optimization problem (27) is modified into

max
lC,Γ∈R

min
Γ∈UΓ

LΓ(Ω0,Γ, lC,Γ;cC,Γ) =
LΓ(Γ)

L0
Γ

+ lC,Γ
C(Ω0,Γ)

C0 +
cC,Γ

2

(
C(Ω0,Γ)

C0

)2

, (29)

with L0
Γ
= Γ0

Ω0
the initial path length and C0 =C

(
Ω0,Γ

0
Ω0

)
the initial constraint. Here, the shape Ω0 is fixed

and not subject to optimization. An iterative algorithm is set. At each iteration k > 0, the Lagrange multiplier
lC,Γ and the path nodal points (xi)i∈J1,NxK are updated reading{

lk+1
C,Γ = lk

C,Γ + cC,ΓC(Ω0,Γ
k+1
Ω0

),

∀i ∈ J1,NxK, xk+1
i = xk

i − sk
ΓL ′Γ

Γ,i(Ω0,Γ
k
Ω0
, lk

C,Γ;cC,Γ),
(30)

with L ′Γ
Γ (Ω0,Γ, lC,Γ;cC,Γ) =

L′Γ
Γ

L0
Γ

+

(
lC,Γ

C0 +
cC,Γ

(C0)2 C(Ω0Γ)

)
C′Γ (Ω0,Γ). The step sk

Γ
is given by:

sk
Γ =

Coefk
Γ∆x

maxi(∥L ′Γ
Γ,i(Ω0,Γ

k
Ω0
, lk

C,Γ;cC,Γ)∥)
,

with ∆x the characteristic physical mesh size. The coefficient Coefk
Γ is initialized to 1 and updated at each

iteration so that (line search strategy),
min(1.2Coefk

Γ,1), LΓ(Ω0,Γ
k+1
Ω0

, lk
C,Γ;cC,Γ)< tolkΓ ∗LΓ(Ω0,Γ

k
Ω0
, lk

C,Γ;cC,Γ),

0.6Coefk
Γ, else.

(31)

The tolerance is set to tol0Γ = 1 in the inner loop.
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Finally, if some points are outside the domain D, they are orthogonally projected back to D making the algo-
rithm a projected Augmented Lagrangian detailed by Algorithm 1.

Note that in this work, all the numerical tests have been run with cC,Γ fixed to 1.

the part shape is fixed to Ω0
kΓ = 0, initialization of the path Γ0

Ω0
and multiplier l0

C,Γ
resolution of the heat equation and computation of the objective function and constraints
computation of the derivatives
while CoefkΓ

Γ
≥ 10−8 and kΓ ≤ NΓ do

update of the tolerance
path variation such that Γ

kΓ+1
Ω0

= Γ
kΓ

Ω0
− skΓ

Γ
L ′

Γ
(Ω0,Γ

kΓ

Ω0
, lkΓ

C,Γ;cC,Γ)

re-discretization of the path Γ
kΓ+1
Ω0

resolution of the heat equation, computation of the objective function and constraint
if LΓ(Ω0,Γ

kΓ+1
Ω0

, lkΓ

C,Γ;cC,Γ)< LΓ(Ω0,Γ
kΓ , lkΓ

C,Γ;cC,Γ)∗ tolkΓ

Γ
then

iteration accepted
Lagrange multiplier lC,Γ updated: lkΓ+1

C,Γ = lkΓ

C,Γ + cC,ΓCkΓ+1
(

Ω0,Γ
kΓ+1
Ω0

)
step increased
update of the variables
computation of the derivatives

else
iteration rejected
step decreased

end if
end while

Algorithm 1: Inner loop algorithm

Remark 5. The augmented Lagrangian method is one approach to deal with the constraints, in which their
satisfaction is ensured at convergence only. This final convergence may not be reached in a finite (reasonable)
number of iterations. In the numerical results, the algorithm has been stopped after a finite number of itera-
tions and the constraint final value are thus not exactly zero. Improving the saturation of the constraints is one
of our perspectives. Among the different possibilities, a first idea would be to switch to a better constrained
optimization algorithm like, for example, the one in [59].

Remark 6. The constraint C, defined in (27), lumps together three elementary constraints on the phase change
and the maximal temperature. These elementary constraints are weighted by 1 while it would have been
possible to use different weights. This is done for simplicity but, of course, each constraint could be dealt
with separately. This could especially be interesting to truly enforce the blue print of the built part. From an
industrial point of view, the main objective is to build the part shape and minimizing the residual stresses is a
secondary issue.

4.2 Outer loop: part optimization
The outer loop focuses on part optimization. A descent gradient is set in which at each iteration, the part
is first modified before the inner loop algorithm to update the path is applied. The optimization problem
corresponding to this outer loop is

min
Ω∈UΩ

J(Ω,Γ) = lcplyCply(Ω)+LΓ(Γ),

such that
{

V (Ω) =V target,
C(Ω,Γ) =Cφ(Ω,Γ)+CM,Ω(Ω,Γ)+CM,D\Ω(Ω,Γ) = 0,

(32)

where y ∈ H1(D,R) solution to the heat equation (5) and u ∈ H1(D,R2) solution to the elasticity equation
(2). The precise values of the constants lcply and lL will be given in Section 4.2.2. The strategy to solve this
problem is the same than for the path: define a discretization of the problem and then choose an optimization
algorithm and determine the corresponding numerical gradients.
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4.2.1 Discretization of the optimization problem

The shape is numerically represented by the level set of a function ψ defined on the whole working domain D
[47, 60] such that 

ψ(x)< 0 x ∈ Ω,
ψ(x) = 0 x ∈ ∂Ω∪D,
ψ(x)> 0 x ∈ D\Ω.

(33)

In this context, the update of the level set is given by the Hamilton Jacobi equation, with t representing the
evolution with respect to the iterations and dnΩ

Ω
(t,x) the update direction on the normal,

∂tψ(t,x)+dnΩ

Ω
(t,x)|∇ψ(t,x)|= 0, ∀t, ∀x ∈ D. (34)

In numerical applications, the processes described in [61, 62, 63] are used. Along the iterations, the advection
equation tends to flatten the level set function values thus ”blurring” the results. A redistancing algorithm is
thus applied based on the signed distance equation [40, 47, 64]. In numerical applications, this function is
provided by Freefem++ [65].

4.2.2 Outer loop optimization algorithm

To deal with both the volume and temperature constraints, an augmented Lagrangian method is used, cou-
pled with a dichotomy algorithm on the volume Lagrange multiplier to better satisfy the volume constraint.
Introducing the multipliers lV and lC, the penalizers cV and cC, the effective objective function is then

LΩ(Ω,Γ, lV , lC;cV ,cC) = LΩ,A(Ω,Γ, lC;cV ,cC)+ lV LΩ,B(Ω,Γ, lC;cV ,cC), (35)

with 

LΩ,A(Ω,Γ, lC;cV ,cC) =
Cply(Ω)

Cply
0 +

LΓ(Γ)

LΓ

0 +
cV

2

(
V (Ω)−V target

V 0

)2

+lC
C(Ω,Γ)

C0 +
cC

2

(
C(Ω,Γ)

C0

)2

,

LΩ,B(Ω) =
V (Ω)−V target

V 0

(36)

where Cply
0
=Cply(Ω

0), LΓ

0
= LΓ(Γ

0), V 0
=V (Ω0), C0

=C(Ω0,Γ0) and Ω0 is the initial shape. In the sequel,
the coefficients lcply and lL in (10) and (32) are set to

lcply =
1

Cply
0 , lL =

1

LΓ

0 .

The gradient to this effective objective function is then computed as L ′Ω
Ω = L ′Ω

Ω,A + lV L ′Ω
Ω,B, with

L ′Ω
Ω,A(Ω,Γ, lC;cV ,cC) =

C′Ω
ply(Ω)

Cply
0 +

cV(
V 0
)2 V ′Ω(Ω)

+

 lC

C0 +
cC(

C0
)2 C(Ω,Γ)

C′Ω(Ω,Γ),

L ′Ω
Ω,B(Ω) =

V ′Ω(Ω)

V 0

(37)

The descent direction dnΩ

Ω
involved in the Hamilton Jacobi equation (34) is related to this gradient and the

following advection step (see Algorithm 2):

sk
Ω = Coefk

Ω

∆x
∥dnΩ

Ω
∥L∞

, (38)

with Coefk
Ω

initialized to 5 and updated so that min(1.2Coefk
Ω,1), LΩ(Ω

k+1,Γk+1, lk
V , l

k
C;cV ,cC)≤ tolk

Ω
∗LΩ(Ω

k,Γk, lk
V , l

k
C;cV ,cC),

0.6Coefk
Ω
, else.

(39)
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initialize the shape and path Ω
0, Γ

−1, cV = 1, l0
C = 1, cC = 1,

compute the optimal path Γ0 (application of Algorithm 1 initialized by Γ−1 with N0
Γ

),
initialize of lV ,
for itΩ ∈ J0,NΩK do

determine by a dichotomy ltest
V such that |V (Ωtest)−V target| ≤ εdicho,

compute the new compliance Cply(Ω) and volume V (Ω),

determination of the optimal Γ (application of Algorithm 1 initialized by ΓitΩ with NitΩ
Γ

), LΓ(Γ),
C(Ω,Γ)),
if LΩ(Ω,Γ, litΩ

V , litΩ
C ;cV ,cC)≤ tolΩLΩ(Ω

itΩ ,ΓitΩ , litΩ
V , litΩ

C ;cV ,cC) then
iteration accepted: ΩitΩ+1 = Ω, ΓitΩ+1 = Γ,
update the Lagrange multiplier litΩ+1

V = ltest
V + cVV itΩ+1,

update the Lagrange multiplier litΩ
C + cCCitΩ+1,

compute the new objective function and gradients,
increase the step coefficient related to the shape: CoefΩ = min(1.2CoefΩ,5)

else
iteration rejected (shape and path rejected),
decrease the step coefficient related to the shape: CoefΩ = 0.6CoefΩ.

end if
end for

Algorithm 2: Iterative double loop algorithm to optimize the shape and the path.

The tolerance tolΩ is initialized to 1.6 and multiplied by 0.9 every 50 iterations. The final algorithm is given
by Algorithm 2 with further details in [26] Chapter 9.
The coefficient εdicho is initialized to 0.05 and multiplied by 0.95 at each iteration during the 120 first ones.
The volume tolerance is then fixed to εdicho = 1.110−4.

Remark 7. In this outer loop, the augmented Lagrangian algorithm is supplemented by a dichotomy on the
volume Lagrange multiplier. Indeed, as stated in Remark 5, the augmented Lagrangian ensures the fulfilment
of the constraints at convergence only. However, it cannot be guaranteed that the volume constraint is satisfied
at each iteration which can be problematic in some cases and explains why we favor this second method. Note
that if this method can be very easily adapted to the volume, it could not be implemented at such a cheap cost
for the temperature contraint. Indeed, modifying the volume does not involve any partial differential equation
whereas the temperature constraint not only involves a heat equation but also the resolution of an inner loop,
drastically increasing the computational costs of a dichotomy on its coefficients.

5 Numerical results

5.1 Algorithm settings

An initialization state INI is defined with a shape ΩINI and a path ΓINI (subfigure (a) in each Figure). To really
understand the significance of a concurrent optimization, different tests are run using Algorithm 4, summed
up in Figure 4:

• SONLY: shape optimized - path fixed, without any consideration of the temperature constraints (lC = 0
and cC = 0). This test is initialized with Ω0 = ΩINI.

• STEMP: shape optimized - path fixed, taking into consideration the temperature constraints (l0
C = 1,

cC = 1, for all itΩ ∈ J0,NΩK, NitΩ
Γ

= 0). This test is initialized with Ω0 = ΩINI and the fixed path used
for the temperature computations is ΓINI.

• SP-fromINI: shape optimized - path optimized. This test optimizes both variables taking into account
temperature constraints (l0

C = 1, cC = 1). The number of inner loop iterations follows Table 1. Recall
that the inner loop is also broken when the inner loop step coefficient is smaller than 10−8. This test is
initialized with Ω0 = ΩINI and Γ0 = ΓINI.

itΩ J0,24K 25 J26,44K 45 J46,49K 50 J51,54K 55 56 57 58 59 J60,300K
NitΩ

Γ
0 50 0 45 0 40 0 35 30 25 20 15 10

Table 1: Number of iterations NΓ in the inner loop depending on the outer loop iteration itΩ.
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• PONLY: shape fixed - path optimized. This test is initialized by Γ0 = ΓINI and the fixed shape to build
is ΩSONLY resulting from the optimization test SONLY. This test only involves the inner loop and in
this case only, the tolerance of the inner loop is initialized to 2 and multiplied by 0.9 every 50 iterations.
The result could be interpreted as, starting from INI, the optimization of the part shape independently
from the temperature first, followed by the optimization of the scanning path only.

• SP-fromPONLY: shape optimized - path optimized. This test optimizes both variables taking into
account temperature constraints (l0

C = 1, cC = 1). The number of inner loop iterations follows Table 1.
Recall that if the inner loop is also broken when the inner loop step coefficient is smaller than 10−8. This
test is initialized with the shape Ω0 = ΩSONLY resulting from the optimization test SONLY and with the
path Γ0 = ΓPONLY resulting from the optimization test PONLY.

Figure 4: Recap scheme of the different tests

For all these tests, the regularization coefficients are νΩ = 5∆x and νΓ = 15dlower. For each of these tests, the
final shape, path and temperature are given. A table sums up the final compliance, volume, path length and
non-dimensionalized temperature constraints defined by:

Cφ =
Cφ

|Ω|y2
φ

, CM,Ω =
CM,Ω

|Ω|yM, sol.2
, CM,D\Ω =

CM,D\Ω

|D\Ω|yM, pow.2
. (40)

A final radar chart sums up the quantitative results. Note that in these graphs, for each of the functions repre-
sented (compliance and temperature constraints), the axes are reversed so that the best solutions correspond to
the curve with the biggest area.

5.2 Cantilever test case
The numerical results presented in this section are aimed at showing the relevance of the proposed algorithm.
In this work, we discuss a small cantilever test case and the interested reader can find further results in [26].
A symmetry condition is applied and the working domain is D = [−1.4,1.4]× [0,0.7] given in mm (full do-
main corresponding to [−1.4,1.4]× [−0.7,0.7], see Figure 5). This working domain is meshed with 12800
triangular elements. As only half of the working domain is considered for symmetry reasons, the point of the
path initially belonging to the (Ox)-axis is constrained to remain on this axis. This constraint comes from the
will, in this work, to focus on a path composed of only one connected component. Allowing this feature to be
modified would impact the numerical results and is part of the perspectives. As for the volume constraint, the
volume ratio is fixed to V target = 1.1V 0 with V 0 = 1.157e−06m2.

Two different physical cases are consider in the following: the aluminium and the titanium. In both cases,
the Poisson ratio is set to ν = 0.3, the Young’s modulus to E = 1kgm−1s−2 and the loading to h = (0,−2) in
kgms−2. These values do not correspond to real values but, because there exists a linear relation between the
displacement and the Young’s modulus, and because the compliance is rescaled in the objective function, the
results are unchanged. As for the parameters involved in the heat equation, they are summed up in Table 2.
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The power P and the coefficient β are determined using a calibration process detailed in [26] Chapter 4. In
both cases, the initial temperature is fixed to yini = 773K.

Metal λ(Wm−1K−1) P(Ws−1m−1) β(WK−1m−3) yφ (K) yM, sol. (K) yM, pow. (K)

Aluminium 130 400∗5.45∗106 λ

2.21∗10−9 870 1670 870

Titanium 15 300∗5.45∗106 λ

2.21∗10−9 1900 3400 1800

Table 2: Numerical values chosen in the aluminium and titanium test cases.

(a) Non symmetric test case (b) Symmetric test case

Figure 5: Cantilever test case with the symmetry conditions for the mechanical and heat problems

In most of the following Figures, only half of the cantilever is shown. Indeed, for symmetry reasons, the
optimization is run on half the working domain only. To get the full result, the Figures should be symmetrized
with respect to the horizontal lower axis.

All the simulations have been run on a MacBook laptop equipped with 2,3 GHz Intel Corei5 and a RAM
of 16GB. No specific efforts for optimizing the Python code have been made. Running 300 iterations requires
roughly one to two hours of CPU time, depending on the chosen metal and test case.

5.3 Results
For aluminium, the results of the five tests are presented in Figures 6 and Table 3. The convergence plots for
the compliance, the volume, the path length and the temperature constraint are respectively given by Figures
7, 8, 9, 10. For the titanium, the the results are presented in Figures 11 and Table 4. The convergence graphs
being very similar to the aluminium case, they have been replaced by the radar chart shown in Figure 12.

(a) Initialization (INI) (b) Shape only (SONLY) (c) Shape path (STEMP)

(d) Coupled from initialization
(SP-fromINI)

(e) Path only (PONLY) (f) Coupled from path only
(SP-fromPONLY)

(g) Temperature colorbar (K)

Figure 6: Initialization and shape optimization for different tests, aluminium, half cantilever, V target = 1.1V 0
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case
V
V 0 Cply (kgms−2) LΓ (m) Cφ CM,Ω CM,D\Ω

INI 1.00 5.67×10−6 4.38×10−3 4.88×10−3 0.00 7.30×10−3

SONLY 1.10 1.92×10−6 4.38×10−3 2.47×10−3 0.00 1.40×10−5

STEMP 1.10 2.00×10−6 4.38×10−3 2.22×10−3 0.00 0.00
SP-fromINI 1.10 1.92×10−6 9.57×10−3 9.98×10−6 0.00 1.39×10−5

PONLY 1.10 1.92×10−6 8.85×10−3 1.66×10−5 0.00 1.99×10−5

SP-fromPONLY 1.10 1.92×10−6 9.34×10−3 1.10×10−5 0.00 1.48×10−5

Table 3: Quantitative results for the different tests, aluminium, half cantilever, V target = 1.1V 0
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(a) STEMP
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Figure 7: Evolution of the compliance Cply with respect to shape iterations, aluminium, half cantilever,
V target = 1.1V 0 (note that the scales of the graphs are different)
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Figure 8: Evolution of the volume V with respect to shape iterations, aluminium, half cantilever,
V target = 1.1V 0 (note that the scales of the graphs are different)
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Figure 9: Evolution of the length L with respect to shape iterations, aluminium, half cantilever,
V target = 1.1V 0 (note that the scales of the graphs are different)
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Figure 10: Evolution of the constraint C with respect to shape iterations, aluminium, half cantilever,
V target = 1.1V 0 (note that the scales of the graphs are different)
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Figure 11: Initialization and shape optimization for different tests, titanium, half cantilever, V target = 1.1V 0

case
V
V 0 Cply (kgms−2) LΓ (m) Cφ CM,Ω CM,D\Ω

INI 1.00 5.67×10−6 4.38×10−3 1.69×10−1 2.79×10−5 2.29×10−2

SONLY 1.10 1.92×10−6 4.38×10−3 1.13×10−1 1.26×10−4 0.00
STEMP 1.10 2.12×10−6 4.38×10−3 1.08×10−1 1.26×10−4 0.00

SP-fromINI 1.10 2.14×10−6 1.02×10−2 3.05×10−3 1.41×10−4 6.08×10−5

PONLY 1.10 1.92×10−6 1.00×10−2 1.39×10−3 9.73×10−5 3.67×10−4

SP-fromPONLY 1.10 1.92×10−6 1.00×10−2 1.20×10−3 9.74×10−5 5.01×10−5

Table 4: Quantitative results for the different tests, titanium, half cantilever, V target = 1.1V 0
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Figure 12: Radar chart of the values given in Table 4, titanium, half cantilever, V target = 1.1V 0

The results satisfy the different observations. Let start with the optimization of the shape only, corresponding
to Figure 6(b) and (c) for the aluminium and Figure 11(b) and (c) for the titanium (note that 6(b) and 11(b) are
exactly the same since the temperature is not taken into account in the ”Shape only” test). These optimizations
make clear that the introduction of a temperature constraint impacts the part’s shape. Indeed, in Figure 6(b)
and Figure 11(b), the optimization is run to minimize the compliance under the volume constraints only. This
especially leads to a thin middle bar. In Figure 6(c) and Figure 11(c), a path has been fixed and the tempera-
ture constraint is also considered. In both the aluminium and titanium cases, the part’s shape is thus modified.
Indeed, the results found in (b) are not adapted to the fixed path and the temperature constraints are not met. In
particular, the maximum temperature constraint out of the part’s shape leads to a thickening of the middle bar
whereas the other bars are made slightly thinner to better satisfy the phase constraint. Both cases make very
clear how fixing the volume impacts the optimization: the shape cannot exactly adapt to the path and reduce
the phase constraint since this would require decreasing the volume which is prevented by the dichotomy (see
Tables 3 and 4).

The optimizations of the path only (shape fixed to the result from SONLY, Figure (b)) presented by Figure
6(e) for the aluminium and Figure 11(e) for the titanium are also very informative. Going further than the
results shown in [1], they highlight a connection between the part’s shape thickness and the path pattern. In
Figure 6(e), the metal used is the aluminium which conductivity is high and two patterns arise. First, in the
middle bar of the cantilever, the path chosen is a straight line. Indeed, the conductivity and source power
make the melted thread’s width close to the bar’s thickness. Note that if the middle bar had been thinner, the
existence of a solution to the path optimization would have been proscribed. As for the other bars, since they
are thicker, a straight line pattern is not enough to satisfy the phase constraint. A pattern called in the following
”Omega-shape” pattern is found, its width adapting to the part’s shape. It is very interesting to see that the
results obtained with the titanium corroborate these observations in spite of the conductivity differences. In
Figure 11(e), the ”Omega-shape” pattern also arises in the upper bar and in the middle bar. The titanium’s
conductivity is lower than the aluminium’s and the melted thread corresponding to this metal and the source
power chosen has a lower width. Thus, a straight line pattern is not appropriate to build the middle bar and
an ”Omega-shape” pattern arises. As for the left lower bar, its thickness leads to a new path pattern called the
”Wave-shape” pattern.
Note that besides the respect of the constraints, the path shown on Figure 6 (e) presents a cross-over. Pre-
venting these auto-intersections could come from a better formulation of the maximum temperature constraint
within the part Ω but remains part of the perspectives. Note also that this path optimization could give different
results if more than one path connected component were allowed. While some methods allowing this feature
in path optimization have been developed (see [26] Chapter 8), including them in concurrent path and part
optimization remains part of the perspectives.

Finally, coupled optimizations are run starting from two different initializations: from Figure(a) (INI) to Fig-
ure(d) (SP-fromINI) and from Figure(e) (PONLY) to Figure(f) (SP-fromPONLY). In the aluminium test case
(Figure 6), the results between both concurrent optimizations (Figures(d,f)) remain similar with only slight
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adaptations of the bars’ thicknesses and the ”Omega-shape” patterns. Yet Table 3 shows that the solutions
found by the concurrent optimization are better than PONLY. This is natural for SP-fromPONLY since the
initialization to this test is PONLY. However, this also shows that, starting from the initialization INI, the con-
current optimization result (SP-fromINI) is better than optimizing first the part’s shape without any temperature
consideration and then the scanning path (PONLY).
In the titanium test case (Figure 11), the results from both concurrent optimizations are different and the sat-
isfaction of the minimum temperature constraint in the part is far from being respected (the low conductivity
of this metal complicating the optimization, see [26, 1]). Starting the concurrent optimization from INI (re-
sult given by Figure(d)), the ”Omega-shape” and ”Wave-shape” patterns still arise but the part’s shape and
the scanning path are very different from PONLY (Figure(e)). It is very interesting to notice how in (d), the
boundaries of the part’s shape adapt to the scanning path in order to better fit the phase constraint. Yet, as
shown in Figure 12, the numerical results for SP-fromINI are not as goos as for PONLY. As for the concurrent
optimization given by (f) and starting from PONLY (e), it brings a significant improvement in the satisfaction
of the constraints of the maximum temperature out of the part by modifying the shape of the inner hole (see
Table 4 and Figure 12).

Eventually we comment the convergence histories (aluminium case) provided in Figures 7, 8, 9, 10. Note
first that, but for the path length history, the graphs for STEMP and SP-fromINI are very similar (with better
results for SP-fromINI). Indeed, the optimization is a lot harder for the shape than for the path : for most of the
intermediary shapes, the path optimization leads to good results. Thus, since both STEMP and SP-fromINI
start from the same initialization, the shape’s evolution is very similar leading to similar convergence histories.
As for SP-fromPONLY, it starts from an already very good initial guess, thus the scale of variations is much
smaller. The convergence graphs are less regular than the previous ones but the seemingly large variations are
actually smaller in scale.

Remark 8. Obviously, the choice of the path initialization is crucial for the quality of the resulting optimized
design. It was already pointed out in our previous work [1]. We do not discuss this issue further here and we
refer the PhD thesis of the first author [26] for more details.

Remark 9. In this work, the best result is SP-fromPONLY, initialized by the result of a sequential optimization
of the shape first and then the path. This is quite surprising since optimizing with respect to both variables
together usually leads to better optimal results. Thus we could have expected SP-fromINI to be the best.
However, in the present setting, shape optimization is a much harder problem than path optimization. Indeed,
there are many optimal paths in practice which satisfy the temperature constraints, (almost) whatever the
shape. Thus, dealing first with the ”more complex (shape) optimization” leads to a better result. Note that
adding constraints on the path optimization (for example adding manufacturing constraints related to the
machine kinematics) could lead to different results, with SP-fromINI being better than SP-fromPONLY.

Remark 10. In the test cases presented here, the shapes to melt are very small which is quite restrictive in
practice. In real applications, the domain to melt is divided into several cells with a scanning path for each of
them : indeed, the number of possible solutions being so large, it is easier, cheaper and not worse to optimize
locally the path in each cell. Moreover, working locally helps preventing residual constraints [66, 23, 67, 42].
Therefore, a generalization of the present work for large domains could be to optimize, not a single path for
the whole domain, but rather a family of paths for each cell.

6 Conclusion and perspectives
In this work, the path optimization algorithm developed in [26, 1] has been adapted to handle concurrent
optimization of the path and the part’s shape and topology in the steady state case. The concurrent algorithm
relies on alternate optimization of the shape and topology and the path at each iteration.

The model remains here very simplistic. Indeed, it is two-dimensional and does not take into account
any time dependency. Moreover, the mechanical assumptions relating the temperature to the final mechanical
quality of the built shapes are very simple. But despite its simplicity, this work has interesting features and
yields promising results. The most important one is the clear relation between scanning path and part’s shape
and topology: the shape really adapts to the temperature constraints coming from path optimization and it is
often crucial in their satisfaction. This is well illustrated by the relation between thickness, material properties
and scanning parameters: too thin, the bar cannot be accurately built; thicker, it induces an Omega-pattern
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strategy of the path; even thicker, Wave-pattern arises. A first design optimization criterion could thus be the
thickness of the bars to build and an interesting perspective would be to compare the results obtained for design
under thickness constraints (see [64]) to the concurrent design of shape and scanning path.

These promising results open up perspectives. First of all, keeping this simple model, an in-depth study of
the impact of the part’s thickness (typically the bars thickness) on the scanning path has to be conducted. For
this purpose, more tests are required, mostly for different mechanical loadings but also for different metals.
Then, as mentioned in Section 5, the scanning path optimization itself should be further developed, to allow
for path splitting or prevent self-intersections for example. To end up with this simple model, the provided
designs, especially the Omega-pattern and Wave-pattern, will be tested on real machines to get experimental
information on their relevance and efficiency. The model could then be enriched by including a thermo-
mechanical analysis to better control the residual stresses, using for example an inherent strain method [30, 31].
Of course, the steady-state assumption can be removed. Not only this would allow more realistic mechanical
considerations but it would open the way to the addition of kinematics constraints on the path. Indeed, all
paths cannot be traveled along at constant speed and taking into account the kinematics is important to really
assess the quality of the built part. To further involve the kinematics, a time dependent model, such as the one
developed in [26], could then be adapted to the present algorithm. In this unsteady setting it would also be
possible to take into account three-dimensional effects, at least by taking into account the previous layers in
the optimization of a new layer.
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[46] J. Céa. Conception optimale ou identification de formes: calcul rapide de la dérivée directionnelle de la
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[53] G-H. Cottet, E. Maitre, and T. Milcent. Méthodes Level Set pour l’interaction fluide-structure, volume 86
of Mathématiques et Applications. Springer International Publishing, 2021.

[54] F. Gibou, R. Fedkiw, and S. Osher. A review of level-set methods and some recent applications. J.
Comput. Phys., 353:82–109, 2018.

21



[55] A. Jafari and N. Ashgriz. Numerical techniques for free surface flows: Interface capturing and interface
tracking. Encyclopedia of Microfluidics and Nanofluidics, pages 2458–2479, 2015.

[56] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces, volume 153 of Applied
Mathematical Sciences. Springer-Verlag, New York, 2003.

[57] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y-J.
Jan. A front-tracking method for the computations of multiphase flow. Journal of computational physics,
169(2):708–759, 2001.

[58] J. Nocedal and S.J. Wright. Numerical optimization. Springer Series in Operations Research and Finan-
cial Engineering. Springer, New York, second edition, 2006.

[59] F. Feppon, G. Allaire, and C. Dapogny. Null space gradient flows for constrained optimization with
applications to shape optimization. ESAIM: Control, Optimisation and Calculus of Variations, 26:90,
2020.

[60] S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.

[61] C. Bui, C. Dapogny, and P. Frey. An accurate anisotropic adaptation method for solving the level set
advection equation. Internat. J. Numer. Methods Fluids, 70(7):899–922, 2012.

[62] C. Dapogny. Shape optimization, level set methods on unstructured meshes and mesh evolution. PhD
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