
HAL Id: hal-03124033
https://hal.science/hal-03124033v2

Submitted on 22 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Polynomial delay Hybrid algorithms to enumerate
candidate keys for a relation

Karima Ennaoui, Lhouari Nourine

To cite this version:
Karima Ennaoui, Lhouari Nourine. Polynomial delay Hybrid algorithms to enumerate candidate keys
for a relation. BDA 2016, Nov 2016, Poitiers, France. pp.443-450, �10.1016/j.dam.2024.10.004�. �hal-
03124033v2�

https://hal.science/hal-03124033v2
https://hal.archives-ouvertes.fr

Polynomial delay Hybrid algorithms to enumerate
candidate keys for a relation

Karima Ennaoui, Lhouari Nourine
Université Clermont-Auvergne, CNRS, Mines de Saint-Étienne,

Clermont-Auvergne-INP, LIMOS, France

Abstract

We investigate the problem of candidate keys enumeration of a relational
schema. The notion of candidate keys is also known as minimal generators in
lattice or FCA terminologies or as implicates in logic. Given an implicational
base or a set of functional dependencies, Lucchesi and Osborn gave in [11]
an incremental polynomial time algorithm to enumerate all candidate keys
of a relation schema. Using the state of the art of enumeration technics (see
Elbassioni [5]), however, it turns out to be a polynomial delay algorithm and
exponential space (see Ennaoui [6] and Bérczi et al.[3]).

In this paper we exploit the presence of unary functional dependencies
that define a partial order over the set of attributes. We use a bijection
between key-ideal sets (ideal associated to a key) and candidate keys, and
we show that the number of key-ideal sets can be exponential in the num-
ber of minimal key-ideal sets. Moreover, if there is a polynomial delay and
space algorithm to enumerate minimal key-ideal sets then there is one for
all candidate keys. We also give a polynomial delay algorithm to enumerate
all minimal key-ideal sets. As a consequence, we derive a polynomial delay
hyprid1 algorithm to enumerate all candidate keys using space bounded by
the number of minimal key-ideal sets.

Keywords: Candidate keys, Minimal generators, Enumeration problem,
Posets

Email addresses: karima.ennaoui@uca.fr (Karima Ennaoui),
lhouari.nourine@isima.fr (Lhouari Nourine)

1Hybrid means that two algorithms are combined to enumerate candidate keys

Preprint submitted to Elsevier December 22, 2023

1. Introduction

This paper is an extended paper of BDA’16 [7] and Ennaoui’s phd thesis
[6].

We investigate the problem of enumerating all candidate keys of a rela-
tional database schema. A candidate key of a set of functional dependencies,
also known as minimal generator in closure systems or FCA terminologies
[13], is a minimal subset of attributes that identifies uniquely every tuple of
the relation. Listing candidate keys is related to normalization for relational
databases, and has other applications in different fields (for instance formal
context analysis [10], systems security [15]).

Enumerating all candidate keys has been studied in the literature by
considering as input a relation instance or a set of functional dependencies.
Whenever the input is given by a relation instance, the enumeration of all
candidate keys is equivalent to the enumeration of all minimal transversal
of an hypergraph [2, 12], or to the enumeration of minimal dominating sets
of a graph [9]. This problem is also known as the enumeration of all mini-
mal generators of a concept in Datamining and FCA communities [16]. The
enumeration of all candidate keys from a relation instance can be solved us-
ing a quasi-polynomial incremental algorithm [8]. When the input is a set
of functional dependencies, the best known result is given by Lucchesi and
Osborn [11] with an incremental polynomial time algorithm and an exponen-
tial space. Using the state of the art [5] of enumeration technics, however, it
turns out to be a polynomial delay algorithm and exponential space. Saiedian
and Spencer in [14] use the notion of attribute graph of the set of functional
dependencies and show that candidate keys are union of candidate keys of
strongly connected components of the attribute graph. Ennaoui and Nourine
[6, 7] improve the algorithm given in [11] by providing a polynomial delay
algorithm to enumerate candidate keys when the input is a set of functional
dependencies. Recently, Bérczi et al.[3] show also that candidate keys can be
enumerated in polynomial delay.

In this paper, we investigate the problem of candidate keys enumeration
of a relational database given by a set of A of attributes and an implicational
base:

Keys Enumeration (K-Enum)
Input : An implicational base Σ on a set A of attributes.
Output: The set of all candidate keys K.

2

Our approach is to exploit the presence of unitary functional dependencies
that define a partially ordered set PΣ (poset for short) over the attributes set
A. For each candidate keyK, we associate the smallest ideal of PΣ containing
K, that we call a key-ideal.

The key-ideal sets family IK is then partitioned into equivalence classes,
where each class is represented by a special type of key-ideal sets called mini-
mal. We point out that the number of key-ideal sets |IK | may be exponential
in the number of minimal key-ideal sets |IKmin|. By establishing a one-to-one
correspondence between IK and candidate keys K, we show that if there is
a polynomial delay and polynomial space algorithm to enumerate minimal
key-ideal sets IKmin then there is one to enumerate all candidate keys. We
also give a polynomial delay algorithm to enumerate all minimal key-ideal
sets. As a consequence, there is a polynomial delay algorithm to enumerate
candidate keys where space is bounded by the number of minimal key-ideal
sets |IKmin|. This bound can be smaller than the number of candidate keys,
but they are equal when no unit functional dependency is present.

Our main results can be sumarized in the following:

Theorem. If there is a polynomial delay and space algorithm to enumerate
minimal key-ideal sets, then there is one to enumerate all key-ideal sets in
polynomial delay and polynomial space.

Theorem. There is a polynomial delay algorithm to enumerate candidate
keys, where space is bounded by the number of minimal key-ideal sets.

2. Preliminaries

Let A be a finite set of attributes. A partially ordered set (poset)
P = (A,�) is a set A together with a binary relation � that is reflex-
ive, antisymmetric and transitive. A subset I of A is called an ideal of P , if
x ∈ I and y � x imply y ∈ I. We denote Max(I) = {x ∈ I | ∀y ∈ I, x 6≺ y}
and I(P) the set of all ideal sets of P .

An implicational base Σ over A is defined by a set of implications (or
functional dependencies) L→ R with (L,R) ∈ 2A × 2A. The Σ-closure of a
set X ⊆ A is the smallest set denoted by XΣ containing X and verifying for
every L → R ∈ Σ that if L ⊆ XΣ then R ⊆ XΣ. An implication L → R
is called unitary if |L| = 1. We denote the set of all unitary implications by
Σu and Σnu = Σ \ Σu the set of non-unitary implications. Without loss of
generality, we suppose that |R| = 1 for every implication L→ R in Σ.

3

A key K of Σ over a set A, is a subset of A verifying that KΣ = A. A
key K is called candidate [4, 11, 14] if none of its proper subsets is a key of
Σ. We denote by K the set of all candidate keys of Σ, also referred to as
minimal keys in the literature.

First, we show that a candidate key cannot contain two equivalent at-
tributes and they are interchangeable, where two attributes a and b are said
to be equivalent, if b ∈ aΣu and a ∈ bΣu .

Lemma 1. Let a and b be two equivalent attributes in A and K a candidate
key containing an attribute a. Then b /∈ K and (K \{a})∪{b} is a candidate
key.

Proof. Let a and b be two equivalent attributes in A and K a candidate key
containing an attribute a. Then b ∈ aΣu , and since a ∈ K we have b ∈ KΣ

and b /∈ K, otherwise K is not minimal. Now, let K ′ = (K \{a})∪{b}. Since
a ∈ bΣu then a ∈ K ′Σ, and thus K ′ is a key. Moreover any proper subset
S ⊆ K ′ is not a key. Indeed, either S or ((S \{b})∪{a}) is a subset of K and
they are both keys which contradicts the fact that K is a candidate key.

Whenever Σ contains equivalent attributes, then we only keep one rep-
resentative attribute for each set of equivalent attributes and consider a re-
duced implicational base Σ′ obtained from Σ by replacing attributes of each
equivalent set by its representative.

Example 1. Consider the implicational base Σ = {a → b, b → c, c →
a, bd → ace, ce → abd} on the set A = {a, b, c, d, e}. Then, the attribute
set {a, b, c} are equivalent and, if we choose a as a representative, we obtain
Σ′ = {ad→ e, ae→ d}. From lemma 1, any candidate key K of Σ′ contain-
ing the representative a then (K \ {a}) ∪ {b} and (K \ {a}) ∪ {c} are also
candidate keys.

Hence, the keys of Σ′ are {ad, ae}, and the keys of Σ are {ad, be, bd, ce, ad, ce}.

In the rest of the paper, we assume that Σu does not contain equivalent
attributes which is also known as acyclic and corresponds to a poset PΣ =
(A,≤), where a ≤ b iff a ∈ bΣu .

Definition 2. We call a key-ideal set of Σ, every ideal I of PΣ such that
Max(I) is a candidate key of Σ. A key-ideal set is called minimal if it does
not contain a proper key-ideal set.

We denote IK (resp. IKmin) the family of all key-ideal sets (resp. minimal
key-ideal sets).

4

Moreover, note that the number of minimal key-ideal sets of Σ can be sig-
nificantly smaller than |IK|. For instance, consideringA = {a1, a2, ..., a2p−1, a2p}
for some integer p, Σnu = {{a1, ..., ap} → X} and Σu = {ap+i → ai, 1 ≤ i ≤
p}. Then there is a unique minimal key-ideal set I = {a1, ..., ap} and 2p

key-ideal sets or candidate keys.
From Definition 2, there is a one-to-one mapping between IK and K,

which implies that the enumeration of candidate keys and key-ideal sets are
polynomially equivalent.

Example 2. Consider the following set of implications Σ with Σu = {e →
ab, f → bc, g → c, h → d} and Σnu = {ac → h, ad → f, bd → g, cd → e}.
The set of all candidate keys is :
K = {ac, ad, bd, cd, af, ag, ce, eg, ah, de, eh, bh, df, fh, ch, dg, gh, ef}, and

the corresponding the set of key-ideal sets IK = {ac, ad, bd, cd, abcf, acg, abce, abceg,
adh, abde, abdeh, bdh, bcdf, bcdfh, cdh, cdg, cdgh, abcef}, and IKmin = {ac, ad, bd, cd}.

e f g h

a b c d

Figure 1: The poset PΣ associated to Σ in Example 2

3. Enumeration of key-ideals

We begin by describing our approach for the enumeration of key-ideal
sets. We assume that Σ does not contain equivalent attributes and a lexi-
cographical order on the set of attributes A = {a1, ..., an} corresponding to
a linear extension of PΣ, such that if ai ≤ aj in PΣ then i ≤ j. That is
for any b ∈ aΣ, b is lexicographically smaller or equal to a. We define the
colexicographical order on sets by X ≤col Y if the largest attribute in X∆Y
(with ∆ the symmetric difference) belongs to Y .

We define the function π : IK → IK , with π(J) = J if J ∈ IKmin,
otherwise π(J) = J ′ such that J ′ is the colexicographically largest proper
subset of J and J ′ is a key-ideal.

5

We note that the function π is well defined for every non minimal key-
ideal, since all key-ideal sets included in J are totally ordered under the
colexicographical order.

Example 3. Following Example 2, consider the key-ideal J = abceg. The
set of all key-ideals included in J are ordered as follow: ac ≤col abce ≤col acg
which implies π(J) = acg. For J = abdeh, we have ad ≤col bd ≤col abde ≤col

adh ≤col bdh which implies π(J) = bdh.

Lemma 3. For a non minimal key-ideal J ∈ IK, there exists a unique key-
ideal J ′ = π(J).

Proof. Let J be a key-ideal not in IKmin. Then IJ = {J ′ ∈ IK |J ′ ⊂ J} is not
empty. Since IJ is totally ordered under the colexicographical order, there is
a unique Key-ideal J ′ in IJ with J ′ the colexicographically largest in IJ .

We denote by π∗(I) the iterative operator until stationary, i.e. it reaches
a minimal key-ideal. It is worth noticing that for any J ∈ IK , there is a
unique I ∈ IKmin such that π∗(J) = I. Thus, the operator π∗ induces an
equivalence relation ∼ on the set of key-ideal sets IK as follows: For two
key-ideal sets I, J ∈ IK ,

I ∼ J iff π∗(I) = π∗(J).

The equivalence relation ∼ induces a partition of IK , where each equivalence
class corresponds to [I] = {J ∈ IK | I ∼ J} for some I ∈ IKmin. The set of
all equivalence classes of ∼ on IK , denoted A/ ∼= IKmin, is the quotient of
the relation ∼.

In the rest of the paper, we first show that each equivalence class can be
enumerated in polynomial delay and space, and then we give a polynomial
delay algorithm to enumerate the quotient IKmin. By combining the two
algorithms, we derive a polynomial delay algorithm to enumerate IK and
thus, candidate keys using O(|IKmin|) space.

3.1. Enumeration of a Key-Ideal Class
Let I be a minimal key-ideal set. We give in this section an algorithm

that enumerates [I]. If J ′ = π(J) we call J a child of J ′ and J ′ a parent of
J . We denote by G[I] the digraph whose vertex set is [I] and the edge set
is defined according to the parent-child relationship, i.e. (J, J ′) is an edge if
J ′ = π(J).

6

Proposition 4. For I ∈ IKmin, G[I] is a tree rooted at I of depth at most |A|.

Proof. Let J be any non-minimal key-ideal in [I]. From Lemma 3, J has
exactly one parent J ′ and I has itself as parent, then G[I] has |[I]| − 1 edges.
Moreover (J, J ′) is an edge in G[I], and we have I ⊆ J ′ ⊂ J . By recursively
applying the parent function to J ′, we reach I in at most |J ′ \ I| iterations,
i.e π∗(J) = π∗(J ′) = I. Then G[I] is connected, and thus is a tree with root
I. The iterator operator π∗ finds the root in at most |A|.

Lemma 5 shows that any child of given key-deal J can be computed using
J ∪ aΣu for some a ∈ A \ J .

Lemma 5. Let J be a non minimal key-ideal set. Then J = π(J) ∪ aΣu for
some a ∈ A \ J .

Proof. Let a be the lexicographically smallest element in Max(J) verifying
that J \ {a} is a key. We prove next that J = π(J) ∪ aΣu .

First of all, note that such a exists because J is non minimal, and therefore
it strictly contains a key-ideal J ′, with Max(J) 6⊆ J ′.

Second, we prove that there exists a key-ideal J ′ such that (Max(J) \
{a}) ⊂Max(J ′).

To do so, we begin by proving that there exists a key-ideal J ′ verifying
Max(J ′) ⊆ Max(J \ {a}): We know that J \ {a} is a key and an ideal
(because J is an ideal and a ∈ Max(J)), hence Max(J \ {a}) is a key.
Therefore Max(J \ {a}) contains a candidate key Max(J ′).

We suppose now that (Max(J) \ {a}) 6⊆ Max(J ′), then there exists b ∈
(Max(J)\{a}) and b /∈Max(J ′). However, since Max(J ′) ⊆Max(J \{a}),
Max(J ′) \ {b} is a key, it implies that Max(J \ {a}) \ {b} is also a key. In
addition, since (Max(J) \Max(J \ {a})) is a subset of aΣu and a ∈Max(J)
and b /∈ {a}Σu , then (Max(J \ {a}) \ {b})Σ is a subset of (Max(J) \ {b})Σ.
We conclude that Max(J) \ {b} is a key, which contradicts the fact that J
is a key-ideal .

We conclude that there exists a key-ideal J ′ verifying that (Max(J) \
{a}) ⊆Max(J ′).

Third, let us prove that π(J) containsMax(J)\{a}. To do so, we consider
K+

a (respectively K−a) be the set of elements in Max(J) that are strictly
greater than (respectively smaller than) a in the lexicographical order. Note
that K+

a ∪K−a = Max(J) \ {a}. We distinguish the following cases:

7

• Case 1: K+
a 6⊆ π(J). By construction of the considered lexicographical

order, every element b ∈ J is inferior or equal to an element in K+
a .

And since K+
a is a subset of J ′, than K+

a 6⊆ π(J) implies that J ′ is
colexicographically greater than Max(π(J)). Which contradicts the
definition of π(J). We conclude that K+

a is a subset of π(J).

• Case 2: K−a 6⊆ π(J). By definition of a, every b in K−a verifies that
J \ {b} is not a key, hence every key that is a subset of J , contains
K−a . Therefore, K−a 6⊆ π(J) contradicts the fact that π(J) is a key. We
conclude that K−a is a subset of π(J).

Finally, we deduce from all above that J = π(J) ∪ {a}Σu where a is the
lexicographically smallest element in Max(J) verifying that J \ {a} is a key.

Example 4. Figure 2 illustrates trees associated to all equivalence classes of
key-ideal sets of Σ given in Example 2.

ac

acgabceabcf

abcegabcef

ad

adh

bd

bdhabde

abdeh

cd

bcdfcdhcdg

cdgh bcdfh

(1) (2) (3) (4)

Figure 2: The trees of all equivalence classes of Example 2.

Following the general idea of reverse search [1], we search the tree G[I]
by computing all potential children of a given key-ideal J ∈ [I], i.e. {J ∪
{a}Σu , a ∈ A} and check those that have J as parent, i.e. J = π(J ∪ {a}Σu).
First, we give an algorithm to compute the parent π(J) for a key-ideal J .

8

Algorithm 1: π(J)
Output: The colexicographically largest key-ideal π(J) ⊆ J ∈ IK
begin

if J is a minimal key-ideal then
return J

else
Let a be the lexicographical smallest attribute in Max(J)
such that (J \ {a})Σ = A;
J = J \ {a};
while J is not a key-ideal do

Let a be the lexicographical smallest attribute in Max(J)
such that (J \ {a})Σ = A;
J = J \ {a};

Lemma 6. For every key-ideal J ∈ IK, Algorithm 1 computes π(J).

Proof. Let J ∈ IK . Let us suppose that J is not a minimal key-ideal set,
otherwise the lemma is obvious. First, Algorithm 1 removes the smallest
attribute with the property that (J \{a})Σ = A, i.e. it is a key. All other at-
tributes removed by the While loop, are attributes in {a}Σu , since, according
to the chosen ordering of attributes, they are smaller than a in this ordering.
From Lemma 5, we know that (Max(J)\{a}) ⊆ π(J) and π(J) contains some
other attributes from {a}Σu . Since the removed attributes from {a}Σu are
the smallest ones, then the obtained π(J) is the colexicographically largest
key-ideal set contained in J .

We give a polynomial delay and space algorithm to enumerate all key-
ideal sets in the equivalence class [I] for some minimal key-ideal set I. Given
I ∈ IKmin, Algorithm List-Class follows the depth first search traversal of
the tree G[I] defined in proposition 4. It uses a stack Q to store key-ideal
sets in [I] that are not visited.

9

Algorithm 2: List-Class(I ∈ IKmin)

Output: The key-ideal sets in the equivalence classe [I]
begin

Insert I to Q; {Q a stack}
1 while Q not empty do

Pull I from Q;
Output I;

2 Let S = {b ∈ A | a ∈Max(I), a ∈ bΣu};
3 while S is not empty do
4 x := the lexicographically smallest element in S;
5 J = I ∪ {x}Σu ;
6 if I = π(J) then

Push J to Q;

Proposition 7. For a minimal key-ideal I in IKmin, Algorithm List-Class
outputs all key-ideal sets of the equivalence [I] in polynomial delay and space.

Proof. Let I be minimal key-ideal. Each step of the While loop in line 1 of
Algorithm List-Class, outputs I and computes all children (at most |A|) of
I, and inserts them in the stack Q. In addition, since G[I] is a tree of depth
at most |A|, we first conclude that the size of the stack Q is bounded by
O(|A|2). So the space used by the algorithm is polynomial. The cost of one
iteration of the while loop is dominated by the computation of the set S and
checking π(J). Clearly S are the successor set in the poset PΣ which can be
computed in polynomial time. On the other side, π(J) is also computed in
polynomial time by Algorithm 1. So the total time complexity is polynomial
in the size of the input. The correctness follows from Lemma 5 since each
key-ideal J inserted in Q and output is a child of I.

3.2. Enumeration of minimal Key-Ideal sets
In the following we give an algorithm to enumerate all minimal key-ideal

sets in polynomial delay and for each minimal key-ideal found, we apply algo-
rithm List-Class to enumerate the key-ideal sets in its class. The strategy
of our algorithm is inspired from Lucchesi and Osborn algorithm [11], that
enumerates candidate keys of a set of functional dependencies Σ. It starts
with a random candidate key, then generates new ones using functional de-
pendencies from Σ: substitute an element a from the current key with a

10

subset L such that L → a is in Σnu, then minimize using recursively Algo-
rithm 1. Each time a new minimal key-ideal set is generated, a queue of
already enumerated minimal key-ideal sets is updated and stored to avoid
redundancy.

First, we prove in Theorem 8 that we can enumerate only minimal key-
ideal sets in the same way as algorithm in [11].

Theorem 8. Let I be a non-empty subset of IKmin. I 6= IKmin if and only if
I contains a minimal key-ideal set I and Σnu contains an implication L→ a
such that (L ∪ I \ {a}Σu)Σu does not include any key-ideal set in I.

Proof. We first prove that the stated condition is sufficient to have I 6= IKmin.
We suppose then that I contains a minimal key-ideal set I and Σ contains

an implication L → a such that (L ∪ I \ {a}Σu)Σu does not include any
key-ideal set in I. Since L → a is in Σ and aΣu is a subset of I, then
(L ∪ I)Σ = (L ∪ I \ {a}Σu)Σ. Furthermore, L ∪ I is a key (because I is key-
ideal), hence (L∪I \{a}Σu) is also a key. Which means that (L∪I \{a}Σu)Σu

is a key and an ideal, thus it contains a minimal key-ideal set that does not
figure in I according to the condition.

Second, to prove that the condition is necessary, we assume that there
exists a minimal key-ideal set I ′ /∈ I. Let S be an ideal in I(PΣ) verifying:
(1) I ′ ⊆ S; (2) for every I ′′ in I, I ′′ 6⊆ S and (3) for every element a /∈ S,
S ∪ {a} is either not an ideal, or it contains a key-ideal set in I. Note that
S is a strict subset of A and a key, since I is not empty.

Since S 6= SΣ = X, then Σ contains L → a in Σnu with L included in S
and a /∈ S. Then according to (3), S ∪ {a} is either not an ideal or contains
a key-ideal set in I. If the latter then we take a′ = a, else we consider
a′ = min�{b ∈ aΣu |b /∈ S}. Then we have S ∪ {a′} is an ideal and a′ /∈ S,
which implies according to (3) that S ∪ {a′} contains a key-ideal I in I.

Now we prove that (L ∪ I \ {a}Σu)Σu is a subset of S. First, I \ a′ is a
subset of S by construction. And since, a′ is in {a}Σu , then I \aΣu is a subset
of S. Third, S contains L. Then, L∪ I \ {a}Σu is a subset of S. In addition,
since S is an ideal, then the closure over Σu is also in S. We conclude that
(L ∪ I \ {a}Σu)Σu does not include any key-ideal from I.

We define the super graph of minimal key-ideal sets G[Σ] whose vertices
are minimal key-ideal sets and edges represent (I, J) if J = π∗((L∪I)\{a}Σu)
for some L → a in Σ. Recall that π∗(I) computes the unique minimal key-
ideal included in I.

11

Proposition 9. G[Σ] is strongly connected.

Proof. Let I0 be a minimal key-ideal set. We show that any other key-ideal
set J is accessible from I0, i.e. there is a path in G[Σ] from I0 to J . We
start with I = {I0} which is accessible from I0 in G[Σ]. Inductively suppose
I 6= IKmin, using Theorem 8 there is a key-ideal set I ∈ I and L → a ∈ Σ
such that J = π∗((L ∪ I) \ {a}Σu) is a minimal key-ideal ideal set not in I.
Then there exists an edge between I and J and by hypothesis there is a path
from I0 to I, so there is a path from I0 to J . When Theorem 8 cannot be
applied then I = IKmin and thus every key-ideal is accessible from I0 in G[Σ].

Since I0 is chosen arbitrary, then there is a path from any two key-ideal
sets and thus G[Σ] is strongly connected.

Example 5. Following Example 1, Figure 3 illustrates the super graph G[Σ].
For example, applying the functional dependency bd → g to the minimal
key-ideal cd, we obtain bd.

ac ad

bdcd

cd → e

bd → g

ad → f

ac → h

Figure 3: The super graph associated to IKmin of Σ

Given Σ, Algorithm All-Minimal-Key-ideals follows the depth first
search traversal of a tree rooted at π(A) of the super graph defined in propo-
sition 9.

12

Algorithm 3: All-Minimal-Key-ideals(Σ)

Output: All key-ideal sets IK of Σ
begin

Let I = π∗(A);
Mark(I) = unmarked;

1 Output I;
Insert I to Q;

2 while there is an unmarked I in Q do
Mark(I) = marked;

3 for L→ a ∈ Σnu do
J = (L ∪ I) \ {a}Σu ;
J = π∗(JΣu);

4 if J /∈ Q then
Mark(J) = unmarked;

5 Output I;
Insert J to Q;

Return Q;

Proposition 10. Algorithm All-Minimal-Key-ideals outputs all min-
imal key-ideal sets of an implicational base Σ in polynomial delay using
O(|A|.|IKmin|) space memory.

Proof. Algorithm All-Minimal-Key-ideals follows a depth first search
(DFS) of the super graph G[Σ] with root I = π∗(A). Each minimal key-ideal
set is inserted only one time using the marking, and according to Proposition
9, all the neighbors of a minimal key-ideal set are visited (line 3). Thus
minimal key-ideal sets are all output without redundancy.

The time complexity of each iteration of the while loop takes polynomial
time to compute all the neighbors of a minimal key-ideal set I.

Each key-ideal set inserted one time in the queue and the size of each one
is bounded by |A|. Hence, the total space used by the algorithm is bounded
by O(|A|.|IKmin|) .

Corollary 11. There is a polynomial delay algorithm to generate all minimal
key-ideal sets and candidate keys using O(|A|.|IKmin|) space memory.

Proof. It suffices to replace Output() in lines (in lines 1 and 5) by List-
Class() to compute all key-ideal sets in [I] by searching the tree G[I].

13

The remained open question is whether there exists a polynomial delay
and space algorithm to enumerate all minimal key-ideal sets of a relational
schema.

Another exciting question is to replace Σu ⊆ Σ by a Σuk ⊆ Σ where Σuk

(uk for unit key) corresponds to a closure system having only one or few
minimal keys. This is a kind of generalization of distributive lattices to more
general lattices, which may be a way to overcome the space complexity to
enumerate candidate keys.

Acknowledgment. The authors are grateful to Arnaud Mary for his suggestions
and remarks. This research is supported by the French government IDEXISITE
initiative 16-IDEX-0001 (CAP 20-25).

References

[1] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65(1):21–46, 1996. First International Colloquium
on Graphs and Optimization.

[2] C. Beeri, M. Dowd, R. Fagin, and R. Statman. On the structure of
armstrong relations for functional dependencies. Journal of the ACM
(JACM), 31(1):30–46, 1984.

[3] Kristóf Bérczi, Endre Boros, Ondrej Cepek, Petr Kucera, and Kazuhisa
Makino. Unique key horn functions. Theor. Comput. Sci., 922:170–178,
2022.

[4] Edgar F Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377–387, 1970.

[5] Khaled M. Elbassioni. A polynomial delay algorithm for generating
connected induced subgraphs of a given cardinality. J. Graph Algorithms
Appl., 19(1):273–280, 2015.

[6] Karima Ennaoui. Computational aspects of infinite automata simulation
and closure system related issues. (Aspects de complexité du problème
de composition des services web). PhD thesis, University of Clermont
Auvergne, France, 2018.

14

[7] Karima Ennaoui and Lhouari Nourine. Hybrid algorithms for candidate
keys enumeration for a relational schema. In Base de Données Avancées
2016, Futuroscope, Poitiers - France., 2022.

[8] M. L. Fredman and L. Khachiyan. On the complexity of dualization of
monotone disjunctive normal forms. J. Algorithms, 21(3):618–628, 1996.

[9] Mamadou Moustapha Kanté, Vincent Limouzy, Arnaud Mary, and
Lhouari Nourine. On the enumeration of minimal dominating sets and
related notions. SIAM J. Discrete Math., 28(4):1916–1929, 2014.

[10] Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. Functional and ap-
proximate dependency mining: database and FCA points of view. Jour-
nal of Experimental & Theoretical Artificial Intelligence, 14(2-3):93–114,
April 2002.

[11] Cláudio L. Lucchesi and Sylvia L. Osborn. Candidate keys for relations.
Journal of Computer and System Sciences, 17(2):270 – 279, 1978.

[12] Heikki Mannila and Kari-Jouko Raiha. Algorithms for inferring func-
tional dependencies from relations. Data and Knowledge Engineering,
12(1):83 – 99, 1994.

[13] L. Nourine and J.-M. Petit. Extending set-based dualization: Applica-
tion to pattern mining. In ECAI 2012, pages 630–635, 2012.

[14] H. Saiedian and T. Spencer. An efficient algorithm to compute the
candidate keys of a relational database schema. The Computer Journal,
39(2):124–132, 1996.

[15] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and
François-Xavier Standaert. An optimal key enumeration algorithm and
its application to side-channel attacks. In International Conference on
Selected Areas in Cryptography, pages 390–406. Springer, 2012.

[16] M. Wild. The joy of implications, aka pure Horn formulas: mainly a
survey. To appear in Theoretical Computer Science.

15

