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Abstract

We investigate the problem of candidate keys enumeration of a relational
schema. The notion of candidate keys is also known as minimal generators in
lattice or FCA terminologies or as implicates in logic. Given an implicational
base or a set of functional dependencies, Lucchesi and Osborn gave in [9] an
incremental polynomial time algorithm to enumerate all candidate keys of
a relation schema. Using the state of the art of enumeration technics (see
Elbassioni [3]), however, it turns out to be a polynomial delay algorithm and
exponential space.

In this paper we exploit the presence of unary functional dependencies
that define a partial order over the set of attributes. We use a bijection
between key-ideal sets (ideal associated to a key) and candidate keys, and
we show that the number of key-ideal sets can be exponential in the num-
ber of minimal key-ideal sets. Moreover, if there is a polynomial delay and
space algorithm to enumerate minimal key-ideal sets then there is one for
all candidate keys. We also give a polynomial delay algorithm to enumerate
all minimal key-ideal sets. As a consequence, we derive a polynomial delay
hyprid! algorithm to enumerate all candidate keys using space bounded by
the number of minimal key-ideal sets.
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1. Introduction

This paper is an extended paper of BDA’16[5| and Ennaoui’s phd thesis
[4].

We investigate the problem of enumerating all candidate keys of a rela-
tional database schema. A candidate key of a set of functional dependencies,
also known as minimal generator in lattice or FCA terminologies [11], is
a minimal subset of attributes that identifies uniquely every tuple of the
relation. Listing candidate keys is related to normalization for relational
databses, and has other applications in different fields (for instance formal
context analysis [8], systems security [13]).

Enumerating all candidate keys has been studied in the literature by
considering as input a relation instance or a set of functional dependencies.
Whenever the input is given by a relation instance, the enumeration of all
candidate keys is equivalent to the enumeration of all minimal transversal of
an hypergraph [1, 10|, or to the enumeration of minimal dominating sets of
a graph [7]. This problem is also known as the enumeration of all minimal
generators of a concept in Datamining and FCA communities [14]. The enu-
meration of all candidate keys from a relation instance can be solved using a
quasi-polynomial incremental algorithm [6]. When the input is a set of func-
tional dependencies, the best known result is given by Lucchesi and Osborn
|9] with an incremental polynomial time algorithm and an exponential space.
Using the state of the art |3| of enumeration technics, however, it turns out
to be a polynomial delay algorithm and exponential space. Saiedian and
Spencer in [12] use the notion of attribute graph of the set of functional
dependencies and show that candidate keys are union of candidate keys of
strongly connected components of the attribute graph.

In this paper, we investigate the problem of candidate keys enumeration
of a relational database given by a set of A of attributes and an implicational
base:

Keys Enumeration (K-ENUM)
Input: An implicational base X on a set A of attributes.
Output: The set of all candidate keys K.

Our approach is to exploit the presence of unitary functional dependencies
that define a partially ordered set Py (poset for short) over the attributes set
A. For each candidate key K, we associate the smallest ideal of Py containing
K, that we call a key-ideal.



The key-ideal sets family Z/ is then partitioned into equivalence classes,
where each class is represented by a special type of key ideal set called mini-
mal. We point out that the number of key-ideal sets |Z*| may be exponential
in the number of minimal key-ideal sets |ZX, |. By establishing a one-t-one
correspondence between Z% and candidate keys K, we show that if there
is a polynomial delay and space algorithm to enumerate minimal key-ideal
sets ZX. then there is one to enumerate all candidate keys. We also give a
polynomial delay algorithm to enumerate all minimal key-ideal sets. As a
consequence, there is a polynomial delay algorithm to enumerate candidate
keys where space is bounded by the number of minimal key-ideal sets |ZX,

Z’I’L|'
Our main results can be summarized in the following:

Theorem. If there is a polynomial delay and space algorithm to enumerate
IK. . then there is one to enumerate all minimal keys in polynomial delay
and space.

Theorem. There is a polynomial delay algorithm to enumerate candidate

keys, where space is bounded by the number of minimal key-ideal sets.

2. Preliminaries

Let A be a finite set of attributes. A partially ordered set (poset)
P = (A, =) is a set A together with a binary relation < that is reflex-
ive, antisymmetric and transitive. A subset I of A is called an ideal of P, if
x €l and y 2z imply y € I. We denote Max(l) ={z €l |Vyel, x4y}
and Z(P) the set of all ideal sets of P.

An implicational base ¥ over A is defined by a set of functional depen-
dencies (or implications) L — R with (L, R) € 24 x 2. The Y-closure of a
set X C A is the smallest set denoted by X* containing X and verifying for
every L — R € ¥ that if L € X* then R C X*. An implication L — R
is called unitary if |L| = 1. We denote the set of all unitary implication by
¥, and ¥, = ¥\ X, the set of non-unitary implication. Without loss of
generality, we suppose that |R| = 1 for every implication L — R in . A
key K of ¥ over a set A, is a subset of A verifying that K* = A. A key K
is called candidate |2, 9, 12] if none of its proper subsets is a key of 3. We
denote by K the set of all candidate keys of X, also referred to as minimal
keys in the literature.

First, we show that a candidate key cannot contain two equivalent at-
tributes and there are interchangeable, where two attributes a and b are said
to be equivalent, if b € a® and a € b>».



Lemma 1. Let a and b be two equivalent attributes in A and K a candidate
key containing an attribute a. Then b ¢ K and (K \{a})U{b} is a candidate
key.

Proof. Let a and b be two equivalent attributes in A and K a candidate key
containing an attribute a. Then b € a**, and since a € K we have b € K*
and b ¢ K, otherwise K is not minimal. Now, let K’ = (K\{a})U{b}. Since
a € b” then a € K™, and thus K’ is a key. Moreover any proper subset
S C K’ is not a key. Indeed, either S or ((S\{b})U{a}) is a subset of K and
they are both keys which contradicts the fact that K is a candidate key. [J

Whenever, Y contains equivalent attributes, then we keep only one repre-
sentative attribute for each set of equivalent attributes and consider a reduced
implicational base >’ obtained from X by replacing attributes of each equiv-
alent set by its representative. For example, consider the implicational base

={a — b,b —» ¢,c = a,bd — e,ce — d} on the set A = {a,b,c,d, e}.
Then, the attribute set {a, b, c} are equivalent and, if we choose a as a rep-
resentative, we obtain ¥’ = {ad — e,ae — d}. From lemma 1, any candi-
date key K of ¥ containing the representative a then (K \ {a})U {b} and
(K \ {a})U{c} are also candidate keys. Then the keys of ¥’ is {ad, ae}, and
the keys of 3 are {ad, be, bd, ce, ad, ce}.

In the rest of the paper, we assume that >, does not contain equivalent
attributes which is also known as acyclic and corresponds to a poset Py =
(A, <), where a < b iff a € b*. We define pred(a) = {b € X | fic € X, such
that a < ¢ < b}.

Definition 2. We call a key-ideal set of X, every ideal I of Ps, such that
Mazx(I) is a candidate key of ¥. A key-ideal set is called minimal if it does
not contain a proper key-ideal set.

We denote I® (resp. IX. ) the family of all key-ideal sets (resp. minimal
key-ideal sets).

Moreover, note that the number of minimal key-ideal sets of > can be sig-
nificantly smaller than |Z*|. For instance, considering A = {a1, as, ..., agy_1, asy}
for some integer p, X, = {{a1,...,a,} = X} and ¥, = {ap+; = a;,1 <i <
p}t. Then there is a unique minimal key-ideal set I = {ay,...,a,} and 2P
key-ideal sets.

From the previous definition, there is a one-to-one mapping between I
and K, which implies that the enumeration of candidate keys and key-ideal
sets are equivalent.



3. Enumeration of key-ideals

Now we explain our approach for the enumeration of key-ideal sets enu-
meration. We assume that > does not contain equivalent attributes and a
lexicographical order on the set of attributes A = {ay, ..., a,} corresponding
to a linear extension of P such that a; < a; in Py imply ¢« < j. That is for
any b € a”, b is lexicographically smaller or equal to a. The colexicographi-
cal order on sets is defined by X <., Y if the largest in XAY (with A the
symmetric difference) belongs to Y.

Define the function 7 : ZK — T with (J) = J’ such that Max(J') is
the colexicographically largest subset of J and J' is a key-ideal. Notice that
the function 7 is well defined for every non minimal key-ideal, since the set of
all key-ideal included in J can be totally ordered by the he colexicographical
order.

Lemma 3. For a non minimal key-ideal J € T, there exists a unique key-

ideal J' = 7(J).

We denote by 7*(I) the iterative operator until it becomes stationary, i.e.
it reach a minimal key-ideal. It is worth noticing that for any J € ZX there
is a unique I € ZE, such that 7*(J) = I. Thus, the operator 7* induces
an equivalence relation ~ on the set of key-ideal sets Z¥ as follows: For two
key-ideal sets I, J € T,

I~ J iff 7*(I) =7*(J).

The equivalence relation ~ induces a partition of Z%, where each equivalence
class corresponds to [I] = {J € ZX | [ ~ J} for some I € ZE, . The set of

min®
all equivalence classes of ~ on ZX denoted A/ ~= TE, is the quotient of
the relation ~.

Example 1. Consider the following set of functional dependencies Y with
Yo ={e = ab,f = be,g - ¢,h — d} and X,, = {ac — efgh,ad —
efgh,bd — efgh,cd — efgh}. The set of all candidate keys are K(X) =
{ac,ad,bd, cd,af,ag,ce, eq,ah,de,eh,bh,df, fh,ch,dg, gh}.

In the rest of the paper, we first show that each equivalence class can be
enumerated in polynomial delay and space, and then we give a polynomial
delay algorithm to enumerate the the quotient ZX, . By combining the two
algorithms, we derive a polynomial delay algorithm to enumerate Z* and
thus, candidate keys using O(|ZX. |) space.
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Figure 1: The poset associated to ¥ in example 1

3.1. Enumeration of a Key-Ideal Class

Let I be a minimal key-ideal set. We give in this section an algorithm
that enumerates [/]. We call J a child of J" if J' = w(J). We denote by G|[I|
the digraph whose vertex set is [I] and the edge set is defined according to
the parent-child relationship, i.e. (J,J') is an edge if J = 7(J’).

Proposition 4. G[I] is a tree rooted at I.

Proof. Let J be any non-minimal Key-ideal in [I]. Since J has exactly one
parent and I has no parent, G[I] has |[I]| — 1 edges. In addition, (J,J') in
GlI], we have I C J C J'. By recursively applying the parent function to J
at most |J \ I| times we reach I. Then G[I] is connected, and is a tree with
root I. O]

Example 2. Figure 1 shows the poset Px, Figure 2 (a), (b), (c) and (d)
tllustrate trees associated to all equivalence classes of key-ideal sets.

ac ad bd cd
abcf  acg abce adh acg abde bdh M bedf cdh  bedl cdg
abceg abdeh bedfh cdgh

(b) (c) (d) (e)
Figure 2:

Lemma 5 shows that any child of given key-deal J can be founded using
JUa* for some a € A\ J.

Lemma 5. Let J and J' be two key-ideal sets. If J' = w(J) then ezists
a€ A\ J such that J = J Ua™".



Proof. Let a be the lexicographically smallest element in Maz(J) verifying
that J \ {a} is a key. We prove next that J = 7(J) U a™*.

First of all, note that such a exists because J is non minimal, and therefore
it strictly contains a key-ideal J’, with Max(J) € J'.

Second, we prove that there exists a key-ideal J’ such that (Maz(J) \
{a}) C Max(J").

To do so, we begin by proving that there exists a key-ideal J' verifying
Max(J") € Max(J \ {a}): We have J \ {a} is a key and an ideal (because
J is an ideal and a € Maxz(J)), hence Max(J \ {a}) is a key. Therefore
Maz(J \ {a}) contains a candidate key Maz(J').

We suppose now that (Max(J) \ {a}) € Max(J'), then there exists b €
(Max(J)\ {a}) and b ¢ Maxz(J"). However since Max(J") C Maz(J\{a}),
Max(J') \ {b} is a key implies that Maz(J \ {a}) \ {b} is also a key. In
addition, since (Max(J)\ Max(J \ {a})) is a subset of a* and a € Maz(J)
and b ¢ {a}*, then (Max(J \ {a}) \ {b})* is a subset of (Maz(J)\ {b})*.
We conclude that Maxz(J) \ {b} is a key, which contradicts the fact that .J
is a key-ideal .

We conclude that there exists a key-ideal J' verifying that (Maz(J) \
{a}) € Max(J).

Third, let us prove that w(.J) contains Maz(J)\{a}. To do so, we consider
K (respectively K ) be the set of elements in Max(J) that are strictly
greater than (respectively smaller than) a in the lexicographical order. Note
that K UK, = Max(J) \ {a}. We distinguish the following cases:

e Case 1: K Z w(J). By construction of the considered lexicographical
order, every element b € J is inferior or equal to an element in K.
And since K is a subset of J' than K] ¢ m(J) implies that J' is
co-lexicographically greater than Max(n(J)). Which contradicts the
definition of m(.J). We conclude that K is a subset of m(.J).

e Case 2: K, Z w(J). By definition of a, every b in K, verifies that
J \ {b} is not a key, hence every key that is a subset of J, contains
K. Therefore, K, Z w(J) contradicts the fact that 7(J) is a key. We
conclude that K, is a subset of m(.J).

Finally, we conclude from all above that J = 7(J) U {a}** where a is the
lexicographically smallest element in Max(J) verifying that J\ {a} is a key.
0



To traverse exactly the tree G[I], for each potential child JUa** for some
a€ A\ J, we check if J =7(JUa").

Algorithm 1: PARENT (J € Z¥)
begin
if J is a minimal key-ideal then
L return J
else
Let a be the lexicographical smallest attribute in Maz(J)
such that (J\ {a})* = A;
J = J\{a};
while J is not a key-ideal do
Let a be the lexicographical smallest attribute in Maz(J)

such that (Maz(J)\ {a})* = A;
J = J\{a};

Lemma 6. For every key-ideal J, Algorithm 1 computes 7(J).

We give a polynomial delay and space algorithm to enumerate all key-
ideal sets in the equivalence class [I] for some minimal key-ideal set I. Given
I € IE, .. Algorithm LisT-CLASS follows the depth first search traversal of
the tree defined in proposition 4. It uses a stack F' to store key-ideal sets in
[I] that are not visited.



Algorithm 2: LisT-CrAss(I € ZX

Output: The key-ideal sets in the equivalence classe [I]
begin
Insert I to F'; {F a stack}
1 while F' not empty do
Pull I from F
Output [;
Let S={beAlaeb™ ae Mazx(I)};
while S is not empty do
a := the lexicographically smallest element in S}
J=1TU{a}>;
if I = Parent(J) then
L Push J to F

o otk WN

Proposition 7. For a minimal key-ideal I in IX,  Algorithm LisT-CLASS
outputs all key-ideal sets of the equivalence [I] in delay O(|A]%|X]) using
O(|AJ]?) space memory.

Proof. Each step of the While loop in line 2 of Algorithm LisST-CLASS, com-

putes all children (at most n) of a key-ideal I and insert them in the stack
F. O

3.2. Enumeration of minimal Key-Ideal sets

In the following we give an algorithm to enumerate all minimal key-ideal
sets in polynomial delay and for each minimal key-ideal found, we apply algo-
rithm L1ST-CLASS to enumerate the key-ideal sets in its class. The strategy
of our algorithm is inspired from Lucchesi and Osborn algorithm [9], that
enumerates candidate keys of a set of functional dependencies . It starts
with a random candidate key, then generates new ones using functional de-
pendencies from > substitute an element a from the current key with a
subset L such that L — a is in X,,, then minimize using recursively algo-
rithm Parent. Each time a new minimal key-ideal is generated, the set of
already enumerated keys is revisited to ensure that there is no redundancy.

First, we prove in theorem 8 that we can enumerate only minimal key-
ideal sets in the same way as this algorithm.



Proposition 8. Let T be a non-empty subset of TX. . T # TK. if and only if
T contains a minimal key-ideal set I and X, contains an implication L — a
such that (LUT\ {a}>)* does not include any key-ideal set in T.

Proof. We first prove that the stated condition is sufficient to have Z # ZE, .

Then, Z contains a minimal key-ideal set I and > contains an implication
L — a such that (LU T\ {a}**)* does not include any key-ideal set in Z.
Since L — ais in ¥ and @™ is a subset of I, then (LUI)* = (LUT\{a}*)>.
Moreover L U I is a key (because [ is key-ideal ), hence (LU I\ {a}**) is
also a key. Which means that (L U T\ {a}**)* is a key and an ideal, thus
it contains a minimal key-ideal set that does not figure in Z according to the
condition.

Second, to prove that the condition is necessary, we assume that there
exists a minimal key ideal set I’ ¢ Z. Let S be an ideal in Z(Pyx) verifying:
(1) I' € S; (2) for every I” in Z, I" ¢ S and (3) for every element a ¢ S,
S U {a} is either not an ideal, or it contains a key-ideal set in Z. Note that
S is a strict subset of A and a key.

Since S # S* = X, then ¥ contains L — a with L included in S and
a ¢ S. Then according to (3), S U {a} is either not an ideal or contains
a key-ideal in Z. If the latter then we take a’ = a, else we consider a' =
min<{b € a®|b ¢ S}. Then we have S U {a'} is an ideal and o’ ¢ S, which
implies according to (3) that S U {a’} contains a key-ideal I in Z.

Now we prove that (L U I\ {a}**)*" is a subset of S. First, I\ a’ is
a subset of S by construction. And since, @’ is in {a}>, then I\ a® is a
subset of S. Third, S contains L. Then, LU I\ {a}** is a subset of S. And
since S is an ideal, then the closure over ¥, is also in S. We conclude that
(LUTI\ {a}*)* does not include any key-ideal from Z. O

Example 3. Following example 1, figure 8 illustrates how to find minimal
key ideals using functional dependencies in X,,. For example, applying the
functional dependency bd — ¢, we obtain bd.

ALL-KEY-IDEALS is a polynomial delay algorithm that enumerates all
key-ideal sets.

10



ac—d
A ad

cd — al [ad A

cd——— bd
bd — ¢

Figure 3: The super graph associated to ZX, of ¥

min

Algorithm 3: ALL-KEY-IDEALS(Y)

Output: All key-ideal sets 7% of ¥

begin

Let I = Parent*(A);

Insert I to Q);

Mark(I) = unmarked,

while there is an unmarked I in () do

Mark(I) = marked;

for L - a€X,, do

J = (LUI)\{a}™;

J = Parent*(J*);

if J ¢ (@ then
Mark(J) = unmarked;
Insert J to Q;

1 L1sT-CLASs(J);

| Return @;

Proposition 9. Algorithm ALL-KEY-IDEALS outputs all minimal key-ideal
sets of an implicational base ¥ in delay O(|X|%|X)?) using O(|X|.|ZX..])

space memory.

Proof. When the last key-ideal generated is minimal, it takes at most:
e O(|2| x Complexity(LLM))=0(|Z|* x |.A|*), and

e O(|A|x|%]) to generate a non minimal key-ideal using Algorithm L1ST-
Crass.

11



When the last key-ideal generated is not minimal, then it takes at most
O(|A| x |X]) to generate a new solution.

As for the space, we only to stock the minimal key-ideal sets in this
algorithm. O]

Corollary 10. Algorithm ALL-KEY-IDEALS outputs all key-ideal sets of an
implicational base ¥ in delay O(| X |%.|2|) using O(|X|.|ZX,,|) space memory.

The open remained question is whether exists a polynomial delay and
space algorithm to enumerate all candidate keys of a relational schema.

4. Discussions

We give in this paper an efficient algorithm that enumerates candidate
keys, when an order structure is present in the relational schema.

The open remained question is whether exists a polynomial delay and
space algorithm to enumerate all candidate keys of a relational schema.

The proposed framework can also be improved using the idea in [12] where
they consider acyclicity of Y. Our work can be applied to each strongly
connected component of . It can also be applied to minimal generators in
FCA terminology.
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