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∂ is for Dialectica: Typing Differentiable Programming

Marie Kerjean & Pierre-Marie Pédrot

Abstract

Differentiable programming is a recent research area: its objective is to express differentiation as a
modular algorithmic transformation on rich programming languages. It is in particular motivated by
the various applications of automatic differentiation in machine learning or formal calculus. This work
focuses on the typing system used to express differentiation. The first part of this paper is devoted
to expressing the Dialectica transformation as a reverse automated differentiation transformation on a
higher-order lambda-calculus with positive types. The second part builds on the intuitions provided by
Dialectica to provide a lambda-calculus with an internal differentiation operator, with a typing system
inspired by Differential Linear Logic, allowing to express backward automatic differentiation as a call-
by-name strategy and forward automatic differentiation as a call-by-value strategy. The target language
of Dialectica is then given a semantics in smooth models of Differential Linear Logic.

1 Introduction

At the core of automatic differentiation (AD) there is the choice of an evaluation strategy for differentials,
and in particular for the differential of a composition of functions. More specifically reverse-mode AD
in machine learning is mostly implemented in imperative languages, as TensorFlow in Python [ABC+16]
or PyTorch [PGC+17]. However, a common principle amongts theoretical computer scientists is that
any programming language should have a functionnal and typed core. This observation has triggered
a new research area from the community of researchers in the theory of programming languages. To
our understanding, differentiable programming explores the syntax and the semantics of programming
languages endowed with differential transformations. This allows proofs of soundness [AP20], of com-
plexity results [BMP20] or the encoding of automatic differentation algorithms through more primitive
programming functions [WZD+19, Ell18].

We take in this paper the point of view of type theory. Until now, differentiable programming were
mostly typed with minimal logic with pairs. We use Linear Logic and its Differential refinement to type
differentiable programming.

Dialectica was originally introduced by Gödel [G5̈8] as a way to constructively interpret an extension
of HAω [AF98]. It has a strong connection with Linear Logic (LL) [dP89], and in its intuitionistic
version, it consists in two inductively defined transformation on terms of the λ-calculus. We argue
that one corresponds to a partial substitution on terms while the other one is a reverse automated
differential transformation. These two transformations are a kind of a reverse-AD account of differential
λ-calculus [ER03]. As in the differential λ-calculus, thaving two separate differential transformations
allows for the differentiation of higher-order terms. The main exception between that our version of
Dialectica [Péd14] is a transformation between two different logical system. The type system at the
target is indeed enriched with an abstract multiset operation M . This allows to handle differentiation on
positive and dependant types.

Differentiation has in fact been studied as a primitive rule of Linear Logic by Ehrhard and Reg-
nier [ER06]. Differential Linear Logic (DiLL) endows !, the traditional exponential object of LL which
encodes the non-linearity of proofs, with co-structural laws alike the one of M . DiLL adds to it an
internal differentiation operator which combine a linear argument with a non-linear one and acts. Its
denotational interpretation is a linear form which acts on functions, that is a distribution :

Dut : (f : E ⇒ F ) 7→ ((Duf)t : R)
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where Duf denotes the differential of f at the point t. We develop a term-language ΛAD for Differential
Linear Logic by making explicit the use of distributions and the algebraic operations they use. Building
on the semantics of Differential Linear Logic, arguments are encoded through diracs:

δu : f 7→ f(u).

Finally, we give a sound denotational semantic to the target language of Pédrot’s Dialectica in ΛAD and
in a smooth model of Differential Linear Logic.

To our knowledge, it is the first time that the differential features of the Dialectica transformation
are identified, making it the first differential transformation to operate on positive and dependant types.
Moreover, ΛAD seems to be the first λ-calculus expressing both forward and reverse automatic differen-
tiation it its reduction rules.

Outline We begin the paper by giving an introduction to automated differentiation (Section 2.1) and
differentiable programming (Section 2.2). Section 3 is devoted to the study of Dialectica from a differential
perspective. Section4 constructs a term language for DiLL, after introducing DiLL and its semantics in
Section 4.1. Section 5 finally expresses the target language of Dialectica in ΛAD.

Related work This work is in the line recent work on differentiable programming languages, which are
detailed in Section 2.2. It is also close from term languages typed by (polarized) LL [BBPH93, Mun09,
KPB15, ET19]. The main difference is that we handle syntactic constructions corresponding exactly
to structural rules of LL, and make use of the co-structural exponential rules of DiLL. As such, the
reduction rules of ΛAD for the convolution are similar to the one of the convolution λ̄µ-calculus [Vau07],
with the exception that in the latter they operate in an untyped setting.

Notation 1. Borrowing notations from LL, we write E ( F the space of (continuous) linear maps
between two (topological) vector spaces. We denote by − ·− the pointwise multiplication of reals or real
functions.

2 Differentiation in programming languages

2.1 Automatic differentiation

We give here an introduction oriented towards differential calculus and higher-order functional program-
ming. Thus our presentation is at first free from partial derivatives and Jacobians notations. We refer
to [BPRS17] for fuller introduction to automatic differentiation. Let us recall the chain rule: consider
two differentiable functions f : E // F and g : F //G.

Dt(g ◦ f) = Df(t)(g) ◦Dt(f).

When computing the value of Dt(g◦f) at a point v : Rn one must determine in which order the follow-
ing computations must be performed: f(t), Dt(f)(v), the functionDf(t)(g) and finallyDf(t)(g)(Dt(f)(v)).
The first two computations are independent from the other ones.

In a nutshell, reverse-mode automatic differentiation1 consists in computing first f(t), then g(f(t)),
then the function Df(t)(g), then computing Dt(f) and lastly computing the application of Df(t)(g) to
Dt(f) . Forward differentiation consists in computing first f(t), then Dt(f), then g(f(t)) , then Df(t)(g)
and lastly applying of Df(t)(g) to Dt(f). This explanation is the one which fits our higher-order functional
setting: for a diagrammatic interpretation, see for example [BMP20].

These two techniques have different efficiency when one considers the dimension of E and F as vector
spaces. For more specific case of differentiable functions between Euclidean spaces -which is the one on
which techniques of automatic differentiation are implemented - one can describe these two algorithms
with partial derivatives. Consider f : Rn // Rm and g : Rm // Rk.

Let us denote x1, . . . , xn , y1, . . . , ym and w1, . . . , wk the canonical basis of Rn, Rm and Rk respectively.
We write fj (resp. gl) for the j-th projection of f . We write (t1, . . . , ti, . . . , tn) for the projections of t
on the canonical basis of Rn. Thus fj : Rn //R and gl : Rm //R. The chain rules rewrites as follows:

1Backpropagation is an adaptation of reverse-mode to the very specific setting of neural networks
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∂(g ◦ f)

∂x
(t) =

∑
j

∂g

∂yj
· (f(t))

∂fj
∂x
· t

=
∑
j

∑
i

∂g

∂yj
· (f(t)) · ∂fj

∂xi
· ti · (∂xi.x)

Automatic Differentiation (AD) is in fact differentiation of nested deterministic algebraic expressions.
One is going to choose an order of execution for the intermediate computations in g ◦ f , and more
precisely for the way the outputs fj of f are going to be used by g. What makes the difference is
that a computation in forward-mode automatic differentiation pass is typically going to be initialized
with respect to one canonical real input variable xi. Each application of the forward-mode automatic
differentiation algorithm will compute the derivative of ∂gl

∂xi
·t for all output gl but a single input xi. Thus

the forward-mode automatic differentiation algorithm is computing derivative from inside to outside. It
is mainly efficient for programs with few inputs and many outputs: k >> n.

On the other hand, the reverse-mode AD algorithm computes derivatives from outside to inside, and
is more efficient for programs with few outputs and many inputs: n >> k. It is going to be initialized
with respect to one output derivative yj . After a first pass computing the values of fj(t) and gl(f(t), the

reverse derivative pass will compute derivatives of partial computations ∂g
∂yj
· (f(t)) and

∂fj
∂x
· t for finally

computing their multiplication. Let us insists that the use of pointwise multiplications and projections
here is very specific to the Euclidean field.

Thus reverse mode AD is particularly well-fitted for several methods in machine learning where one
tries to optimize several parameters xi with respect to the variation an error y.

2.2 Differential programming languages

We give here a review of a few recent related work on differentiable programming. The differential λ-
calculus was introduced by Ehrhard and Regnier [ER03] as a syntactic account for the mathematical
theory of differential calculus. To the terms of λ-calculus is added a differential application Ds · u which
represents the term s linearly applied to u. Linearity is understood through the intuition of call-by-name
LL: a linear variable is a variable which is going to be computed exactly one time. It also follows the
traditional mathematical intuition, that is head variables —acting as functions— are linear: one always
have

(f + g)(x) = f(x) + g(x)

while
f(x+ y) = f(x) + f(y)

asks for a special requirement on f . Differential λ-calculus is a forward higher-order differentibale lan-
guage whichenriches simply typed λ-calculus with a primitive differential construction Dt · u, which
represents the differential of a term t fed with u as linear argument2 It obeys the following reduction
rule:

D(λx.t) · u→βD λx.
∂t

∂x
· u (1)

The term ∂t
∂x
· u is the linear substitution of x by u in t and has an operational semantics similar to the

partial differentiation operation. It is performed as a static transformation on terms which distributes
over sums, recalled in Section 3.4.

Abadi and Plotkin [AP20] recently gave a syntax for a language with a first-order reverse differentation
operator. The operational semantics of this operator is based on the computation of the trace of a
program. They show adequacy with respect to a real-analysis semantics. Eliott [Ell18] gave in a series of
paper an account for automatic differentiation in Haskell as a cartesian functor. Wang and al. [WZD+19]
give a language with a compositional symbolic reverse-mode AD operator, based on continuation passing
style. In this way give a rich operational semantics, although it is symbolic and uses dynamic binding.

2The notations of differential λ-calculus are not the one of usual analysis. In analysis one fixes the (non-linear) point at
which a function must be differentiated, and the linear argument is latter on fed to the differential of the function. In differential
λ-calculus, and latter on in this paper, linearity of the argument means it must substitute a single (linear) occurrence of the
variable. Thus, the linear argument of the differential must come before its non-linear argument.
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Most importantly for us, Brunel Mazza and Pagani recently refined the work by Wang and al. using
a linear negation on ground types, and prove complexity results. What we present here is quit close. Let
us note that however their work relies mainly on computational graphs while ours is directed towards
type system and functional analysis. At the core, their differential transformation acts on pairs (as in
most of the litterature [AP20] [WZD+19] [Ell18]) in the linear substitution calculus [Acc18], so as to
make it compositional. Consider f : Rn // Rm differentiable. Then for every a ∈ Rn, one has a linear
map Daf : Rn ( Rm, and the forward differential transformation has the following type
−→
D(f) : (a, x) ∈ Rn × Rm 7→ (f(a), Daf · x) ∈ Rn × Rm where − · − represents the scalar product.

In backward mode, their transformation also acts on pairs, but with a contravariant second component,
encoded via a linear dual (−)⊥. The notation (−)⊥ is borrowed from LL, where the (hence linear)
negation is interpreted denotationaly as the dual on R-vector spaces:

JA⊥K := L(JAK,R).

Thus, an element of A⊥ is a map which computes linearly on A to return a scalar in R.

←−
D(f) : Rn × Rm⊥ →∈ Rm × Rn⊥

(a, x) 7→ (f(a), (v 7→ v · (Daf · x))

This encodes backward differentiation as, during the differentiation of a composition g◦f , the contravari-
ant aspect of the second component will make the derivative of g be computed before the derivative of f .
However, the fact that the first member is covariant while the second is contravariant makes it impossible
to lift this transformation to higher-order. Indeed, when one considers more abstractly function between
(topological) vector spaces: f : E // F , one has:

←−
D(f) : E × F ′ → F × E′

(a, `) 7→ (f(a), (v ∈7→ (v · (Daf · x)))

Consider g : F // G. Then
←−
D(f)F × G′ // G × F ′. If G and F are not self-dual, there is no way to

define the composition of
←−
D(f) with

←−
D(g). Thus higher-order differentiation must be attained with two

different differential transformations. This is the case in the differential λ-calculus for the forward AD
or the Dialectica Transformation for reverse AD, as we show in Section 3.

Synthesis We would like to draw a few general conclusion from the state of the art. Differentiable
programming languages are either:

• Either first-order languages with a primitive differential operator but which operates only on func-
tion variables [AP20].

• Or higher-order languages with a differentiation transformation, which applies only to first order
terms [BMP20].

They are typed by minimal logic with product and R as a base type, and linear dual.

3 Dialectica as a term language with two linear transformations

3.1 Dialectica is differentiation

In modern terms, it can be described as a realizability interpretation over an extended λ-calculus able to
export intensional content from the underlying terms, i.e. the way variables are used. Through the proof-
as-program lens, it is better presented as a program translation from a typed λ-calculus with datatypes
into another λ-calculus, together with a realizability relation which will be validated by any well-typed
term from the source. In this paper, we will follow the presentation given by Pédrot [Péd14], which relies
on a kind of Diller-Nahm variant [Dil74] to preserve the equational theory of the source calculus, and we
will not care about the realizability predicate, as we are merely interested in computation, not logic. For
the sake of simplicity, we recall the Dialectica translation of the simply-typed λ-calculus below.
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Types of the source language are inductively defined as

A,B := α | A⇒ B

and terms are the usual λ-terms endowed with the standard β-reduction.
The target language is a bit more involved, as it needs to feature negative pairs and abstract multisets.

Definition 1. An abstract multiset is a parameterized type M (−) equipped with the following primitives:

Γ ` ∅ : MA

Γ ` m1 : MA Γ ` m2 : MA

Γ ` m1 ~m2 : MA

Γ ` t : A

Γ ` {t} : MA

Γ ` m : MA Γ ` f : A⇒MB

Γ ` m>>= f : MB

We furthemore expect that abstract multisets satisfy the following equational theory.

Monadic laws

{t}>>= f ≡ f t t>>=(λx. {x}) ≡ t

(t>>= f)>>= g ≡ t>>=(λx. f x>>= g)

Monoidal laws

t~ u ≡ u~ t ∅~ t ≡ t~∅ ≡ t

(t~ u) ~ v ≡ t~ (u~ v)

Distributivity laws

∅>>= f ≡ ∅ t>>=λx.∅ ≡ ∅

(t~ u)>>= f ≡ (t>>= f) ~ (u>>= f)

t>>=λx. (f x~ g x) ≡ (t>>= f) ~ (t>>= g)

Formally, this means that MA is a monad with a semimodule structure over N.

We now turn to the Dialectica interpretation itself, which is defined at Figure 1, and that we comment
hereafter. We need to define the translation for types and terms. For types, we have two translations
W(−) and C(−), which correspond to the types of translated terms and stacks respectively. For terms,
we also have two translations (−)• and (−)x, where x is a λ-calculus variable from the source language.

Theorem 2 (Soundness [Péd14]). If Γ ` t : A in the source then we have in the target

• W(Γ) ` t• : W(A)

• W(Γ) ` tx : C(A)⇒MC(X) provided x : X ∈ Γ.

Furthermore, if t ≡ u then t• ≡ u• and tx ≡ ux.

From [Péd14], it follows that the (−)x translation allows to observe the uses of x by the underlying
term. Namely, if t : A depends on some variable x : X, then tx : C(A)⇒MC(X) applied to some stack
π : C(A) produces the multiset of stacks against which x appears in head position in the Krivine machine
when t is evaluated against π.

In particular, every function in the interpretation comes with the intensional contents of its bound
variable as the second component of a pair. We claim that this additional data is essentially the same as
the one provided in the Pearlmutter-Siskind untyped translation implementing reverse AD [PS08]. As
such, it allows to extract derivatives in this very general setting.

Lemma 3 (Generalized chain rule). Assuming t is a source function, let us evocatively and locally write
t′ := t•.2. Let f and g be two terms from the source language and x a fresh variable. Then, writing
f ◦ g := λx. f (g x), we have

(f ◦ g)′ x ≡ λπ. (f ′ (g x)• π)>>=(g′ x).
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W(α) := αW

C(α) := αC

W(A⇒ B) := (W(A)⇒W(B))× (W(A)⇒ C(B)⇒MC(A))

C(A⇒ B) := W(A)× C(B)

x• := x

xx := λπ. {π}

xy := λπ.∅ if x 6= y

(λx. t)• := (λx. t•, λxπ. tx π)

(λx. t)y := λπ. (λx. ty) π.1 π.2

(t u)• := (t•.1) u•

(t u)y := λπ. (ty (u•, π)) ~ ((t•.2)u• π>>=uy)

Figure 1: Dialectica Interpretation

W(R) := R C(R) := 1

ϕ• := (ϕ, λαπ. {() 7→ ϕ′(α)}) ϕx := λπ.∅

Figure 2: Dialectica Derivative Extension

It is not hard to recognize this formula as a generalization of the derivative chain rule where the field
multiplication has been replaced by the monad multiplication. We do not even need a field structure to
express this, as this construction is manipulating free structures, in a categorical sense.

By picking a specific instance of abstract multisets, we can formally show that the Dialectica intepre-
tation computes program differentiation.

Definition 4. We will instantiate M (−) with the free vector space over R, i.e. inhabitants of MA are
formal finite sums of pairs of terms of type A and values of type R, quotiented by the standard equations.
We will write

{t1 7→ α1, . . . , tn 7→ αn}
for the formal sum Σ0<i≤n (αi · ti) where αi : R and ti : A.

It is easy to check that this data structure satisfies the expected equations for abstract multisets, and
that ordinary multisets inject into this type by restricting to positive integer coefficients.

We now enrich both our source and target λ-calculi with a type of reals R. We assume furthermore
that the source contains functions symbols ϕ,ψ, . . . : R → R whose semantics is given by some deriv-
able function, whose derivative will be written ϕ′, ψ′, . . . The Dialectica translation is then extended at
Figure 3.1.

The soundness theorem is then adapted trivially.

Theorem 5. The following equation holds in the target.

(ϕ1 ◦ . . . ◦ ϕn)•.2 α () ≡ {() 7→ (ϕ1 ◦ . . . ◦ ϕn)′(α)}

Proof. Direct consequence of Lemma 3 and the observation that for any two α, β : R we have

{() 7→ α× β} ≡ {() 7→ α}>>=λπ. {() 7→ β}.

We insist that the theory is closed by conversion, so in practice any program composed of arbitrary λ-
terms that evaluates to a composition of primitive real-valued functions also satisfy this equation. Thus,
Dialectica systematically computes derivatives in a higher-order language.
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Γ ` Dt : B⊥ ⇒ (A⇒ Tr(A⊥)) Γ ` u : A

Γ ` ((Dt)u) : B⊥ ⇒ Tr(A⊥) Γ ` w : B⊥

Γ ` ((Dt)u)w : Tr(A⊥) Γ ` uy : A⊥ ⇒ Tr(Y ⊥)

Γ ` uy >>=(((Dt)u)w) : Tr(Y ⊥) Ξ
∗

Γ ` (tu)yw : Tr(Y ⊥)

where Ξ stands for

Γ ` ty : A⇒ B⊥ ⇒ Tr(Y ⊥) Γ ` u : A

Γ ` (ty)u : B⊥ ⇒ Tr(Y ⊥) Γ ` w : B⊥

Γ ` ((ty)u)w : Tr(Y ⊥)

Figure 3: Reverse-mode AD in the dialectica translation

3.2 Dialectica is reverse-mode AD

In order to show that the linearized Dialectica transformation corresponds to reverse AD, one needs
to understand how the differential applies dynamically. A first solution would have been to look at the
Dialectica transformation on Krivine Machine as in [Péd14]. For concision, we choose to weaken the
target language by recovering the dual of LL and a type Tr of traces, and introduce reduction rules.
Construct a target λ× calculus, with the following typing rules and syntax:

A,B := α | A⇒ B | A×B | A⊥ | Tr(A)

t, u := x | (t)u | λx.t | (t, u) | t | u~ v | ∅.

Γ ` t : A
Γ ` {t} : Tr(A)

Γ ` t : Tr(A) Γ ` u : Tr(A)

Γ ` t~ u : Tr(A)

Γ ` ∅ : Tr(A)
Γ ` t : Tr(A) Γ ` u : A⇒ Tr(B)

Γ ` t>>=u : Tr(B)

Notation 2. We write Dt for p2t
• when t : !A( B.

Then with the Dialectica transformations one has :

Proposition 6. When Γ ` t : !A( B, we have:

Γ ` Dt : B⊥ ⇒ (A⇒ Tr(A⊥))

Γ ` ty : A×B⊥ ⇒ Tr(Y ⊥)

Then the differentiation of the composition t◦(λy.u) of two terms at a point w, encoded as λy.(tu)yw,
is typed through the proof-tree in Figure 3.

The term ty equals ∅ when y is free in t [Péd14, Proposition 6], which is the case when one is actually
computing a composition of functions. If one were to choose a reduction strategy agreeing with ≡β
defined in Section 3.1, the key point consists in the computation of uy >>=(((Dt)u)w). Thus one must
compute the differential of t before computing uy: the differentials are computed in reverse order and we
are facing a reverse differentiation strategy. As Dialectica agrees with a call-by-name abstract machine,
this hints that backward propagation agrees with call-by-name. We will make this correspondence clear
in Section 4 by interpreting Tr(A) as !!A.

3.3 Higher dimensions

It is well-known that Dialectica also interprets negative pairs, whose translation will be recalled here.
Quite amazingly, they allow to straigthforwardly provide differentials for arbitrary functions Rn → Rm.
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W(A+B) := W(A) + W(B)
C(A+B) := (W(A)→MC(A))× (W(B)→MC(B))
W(∀α.A) := ∀αW. ∀αC.W(A)
C(∀α.A) := ∃αW. ∃αC.C(A)

Figure 4: Extensions of Dialectica (types only)

Let us write A×B for the negative product in the source language. It is interpreted directly as

W(A×B) := W(A)×W(B), C(A×B) := C(A) + C(B).

Pairs and projections are translated in the obvious way, and their equational theory is preserved, assuming
a few commutation lemmas in the target [Péd15].

Writing Rn := R× ...× R n times, we have the isomorphism

C(Rn)→MC(Rm) ∼= Rnm.

In particular, up to this isomorphism, Theorem 5 can be generalized to arbitrary differentiable func-
tions ϕ : Rn → Rm, and the second component of a such function can be understood as an (n,m)-matrix,
which is no more than the Jacobian of that function.

Theorem 7. The Dialectica interpretation systematically computes the total derivative in a higher-order
language.

3.4 Scaling up

The main strength of our approach lies in the expressivity of the Dialectica interpretation. Due to the
modularity of our translation, it can be extended to any construction handled by Dialectica, provided the
target language is rich enough. For instance, via the linear decomposition [dP89], the source language
can be equipped with inductive types. It can also be adapted to second-order quantification and even
dependent types [Péd14]. We sketch the type interpretation for sum types and second-order in Figure 4.

This is in stark contrast with other approaches to the problem, that are limited to weak languages,
like the simply-typed λ-calculus. The key ingredient of this expressivity is the generalization of scalars
to free vector spaces, as R ∼= M 1. The monadic structure of the latter allows to handle arbitrary type
generalizations.

Interpreting Dialectica in the differential lambda calculus We recall below the essential rules for
Ehrhard and Regnier linear substitution (see Equation 1).

∂x
∂x
· t = t ∂y

∂x
· t = 0 ∂λy.s

∂x
· t = λy. ∂s

∂x
· t

∂su
∂x
· t = ( ∂s

∂x
· t)u+ (Ds · ( ∂u

∂x
· t))u

Dialectica encodes reverse-mode AD directly with the use of linear continuations π. Let us define a direct
transformation J−K on top of Dialectica, with the differential λ-calculus as target. As Differential calculus
is endowed with a minimal type system which does not distinguish a type of traces, this makes possible
to define the differential transformation as a transformation with Differential λ-calculus as a source and
a target.

J∅K := 0 Jt~ uK := JtK + JuK J{t}K := JtK.

Proposition 8. Consider two λ-terms t u. Then JtxKu ≡ ∂t
∂x
· u and ((λx.t)•.2))u ≡ Dt · u.

4 A lambda-calculus typed by DiLL

While the previous language indeed encodes higher-order reverse-mode AD, it does not handle algebraic
expressions at the start nor does it handle an internal differentiation operator. We solve this issue by
refining the type system to DiLL. This allows in particular to handle forward and backward propagation
as reduction choices. This is done at the cost of the modularity described in Section 3.4.
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The formulas of DiLL are constructed according to the same grammar as LL, see Figure 5. The
negation of a formula A is denoted A⊥ and defined as follows:

(!A)⊥ =?(A⊥) (A&B)⊥ = A⊥ ⊕B⊥ (A⊕B)⊥ = A⊥ &B⊥

(?A)⊥ =!(A⊥) (A`B)⊥ = A⊥ ⊗B⊥ (A⊗B)⊥ = A⊥ `B⊥

1⊥ = ⊥ ⊥⊥ = 1 0⊥ = > >⊥ = 0

We recall the rules for the exponential connectives {?, !} of DiLL in Figure 5. The other rules correspond
to the usual ones for the MALL group {⊗,`,⊕,×} [Gir87].

Formulas of DiLL:

E,F := 0|1|>|⊥|A⊥|A⊗B|A`B|A⊕B|A×B|!A|?A

Exponential rules of DiLL:

` Γ w
` Γ, ?E

` Γ, ?E, ?E
c

` Γ, ?E

` Γ, E
d` Γ, ?E

` Γ
w̄` Γ, !E

` Γ, !E ` ∆, !E
c̄` Γ,∆, !E

` Γ, E
d̄` Γ, !E

` ?Γ, E
p

` ?Γ, !E

Figure 5: Syntax for the formulas and proof-trees of DiLL

Proofs of DiLL are finite sums of proof-trees generated by these rules. In particular, the empty sum
is a proof. The cut-elimination procedure are detailed for example by Ehrhard [Ehr18] and follow the
intuitions for the differentiation in Euclidean spaces.

Semantically, in the category interpreting these proofs as morphisms, it means that the hom-sets must
be enriched over commutative monoids, and that any sequent has a zero proof. In the concrete semantics
of vector spaces this not a shock, as any vector space has indeed at least an inhabitant, namely its 0
element.

4.1 The language of distributions typed by DiLL

In this section, we give the denotational intuitions on which the language ΛAD (Figures 6 and 7) is
constructed.

While traditionally LL is understood in terms of resources, DiLL is instead better understood from a
functional analysis point of view. In a smooth model of DiLL, which enjoys an involutive linear negation,
formulas E are interpreted by some topological vector space JEK. In particular, exponential connectives
are interpreted as

J?EK := C∞(JE⊥K,R) (2)

J!EK := C∞(JEK,R)′ (3)

where C∞(E,R) denotes the space of scalar smooth functions on a topological R-vector space E, and
where E′ := L(E,R) denotes a certain topological dual of E. See [Ker18] for a rigorous exposition of
these results. The lesson is that elements typed by ?E are smooth functions f g, while elements typed by
!E are distributions φ, ψ, that is linear continuous scalar functions acting on a space of smooth functions.

A crash course on distribution theory We introduce the basic idea of distribution theory without
providing any proof nor details on the topology of spaces of functions or distributions. A distribution
(with compact support) φ ∈ C∞(E,R)′ is a linear continuous scalar map acting on smooth functions.
The archetypal distribution is the dirac operator δx at a point x ∈ E:

δx : f 7→ f(x).
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One can check easily that δx is indeed linear in f . Distributions are sometimes called generalized functions
as smooth functions with compact support can indeed act as distributions. Consider g ∈ C∞c (Rn,R) such
a function, one can consider the distribution with compact support Tg : f 7→

∫
f(t)g(t)dt.

No operation generalizing multiplication is available on spaces of distributions [Sch54]. However,
convolution is an important monoidal symmetric and associative operation than acts on distributions.
Given two distributions φ and ψ with compact support, one defines the convolution ∗ of two distributions
as

φ ∗ ψ := f 7→ φ(x 7→ ψ(y 7→ f(x+ y))).

This newly defined map is indeed a distribution with compact support. The neutral for the convolution
operation is δ0, the dirac at 0 . As such, one has indeed δx ∗ δy = δx+y. Thus if E is endowed with
an commutative associative monoidal operation, so is !E. That is, convolution is a higher-order lift of
addition3.

Rules of DiLL from a dual perspective These intuitions allow to interpret the rules DiLL adds to
LL, and shed a new light on the LL exponential rules. In the perspective of Equations 2 and 3, let us give
the interpretation of the exponential rules in terms of functions and distributions. For a formal proof
that this is indeed a model of DiLL, see for example previous work by Kerjean [Ker18].

In a categorical model L of DiLL, the bigebra structure on every object !E is formally derived from
the presence a biproduct � on the L and from the strong monoidality of !, as !(A � B) ' !A ⊗ !B. In
distribution theory, this strong monoidality is interpreted as the Kernel Theorem. It is deduced by duality
from the surjectivity of the morphism (see for example the proof detailed by Treves [Trè67]):

f ⊗ g ∈ C∞(E,R)⊗ C∞(F,R) 7→ f · g ∈ C∞(E × F,R).

Thus, in a classical smooth model of DiLL, the contraction c is interpreted by the pointwise multiplication
between functions:

cP (f, g) : x ∈ JP⊥K 7→ f(x) · g(x) ∈ R.
The weakening w is interpreted the introduction of function constant at 1:

wP := x ∈ JP⊥K 7→ 1R.

The co-contraction c̄ is interpreted by the convolution between two distributions and the co-weakening
by the dirac at 0.

c̄N (φ, ψ) := φ ∗ ψ ∈ !N

w̄N := δ0 ∈ !N.

The dereliction maps a linear function to itself, seen as a smooth function whose linearity has been
forgotten:

dP (`) := ` ∈ J?P K.

The promotion is the dirac: when a proof of the sequent !Γ ` A is interpreted by a smooth function
f ∈ C∞(JΓK, JAK), the proof of the sequent !Γ ` !A deduced from the later by the promotion rule is:

p(f) = δ ◦ f := x ∈ JΓK 7→ δf(x).

The codereliction d̄ allows then, by precomposition on a function from !E to F , that is by a cut rule
on a sequent `?E⊥, F to find the differential at 0 of f , that is a sequent ` E⊥, F . Thus the coderelection
corresponds to the precomposition by the differentiation operator at 0, denoted D0:

D0 : v ∈ E 7→ (f 7→ D0fv),

d̄N (v ∈ JNK) := D0v ∈ J!NK.

Let us insist that these interpretations are valid in the setting of a classical model of DiLL, interpreting
the involutive linear negation.

3The authors are grateful to Pr. Panangaden for this remark
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4.2 A higher-order differentiable language

In this section we introduce a higher order language with an internal differentiation operator expressing
AD in its reduction. Based on the intuitions explained above, the contraction rule of DiLL allows to type
addition, and its higher-order version convolution. This allows us to get rid of the ad-hoc sums of proofs
of DiLL.

Likewise, the co-contraction rule of LL correspond to multiplication in R and its higher-order version,
the pointwise multiplication of functions.

Polarization Polarization in LL very basically distinguishes between two classes of formulas, the posi-
tive and negative ones, motivated by proof-search issues that won’t be developed here. This distinction
can also be observed semantically: Negatives connective operate on spaces of functions while positive
connectives preserve spaces of distributions. Thus, in the term language described in Figure 6, the gen-
eralized addition ∗ operates on positives while the generalized pointwise multiplication ( · ) operates on
negatives.

We make use of focused sequents with a possibly empty stoup distinguishing the positive formula:

` t1 : N1, ..., tn : Nn | u : P ` t1 : N1, ..., tn : Nn | u
abridged as ` N , X⊥ | P .

We will use DiLL rules in their generalized version (see the sequent calculus LLP [Lau02, 4.1.2]). In
a polarized sequent calculus, a rule implying an exponential !N (resp. ?P ) is admissible when considered
on any positive formula (resp. negative formula). Semantically, in the language of distributions and
functions detailed informally in Section 4.1, this amounts to say that any dual x⊥ is in particular a
smooth function, and any variable x is a distribution δx acting on linear maps. Based on denotational
intuitions, we ask for an additive co-contraction DiLL.

Negation changes the polarity of a formula but also its role: from hypothesis to conclusion and vice-
versa in logic, or from context to term and vice-versa in the calculus. We make use of shifts, which are
unary connectives changing the polarity of formulas but not its role. They are supposed to be involutive
on negatives, as is negation. Note that involutive linear negation allows to consider all points as functions,
and thus to get rid of constraints on a separate class of function variables as in [AP20].

Typing arguments We describe in Figure 6 the terms and typing rules for ΛAD with internal automatic
differentiation. This calculus handles two primary different sorts of exponential objects. On one hand
diracs δv are typed by a promotion rule and correspond to the usual non-linear substitution rule. On the
other hand differential operators Dut are typed by the D rule, inferred from DiLL by using co-contraction
and a co-dereliction. When u is a non-linear argument of type !N , t is a linear argument fed to the same
function, thus t is typed by N .

An abstraction λx.t can then handle two case of arguments: the first one is a dirac δt, which will
lead to the usual substitution rule. The other one is Dut, that is a linear argument t followed by a
non-linear argument u. The second case corresponds, with the intuitions of differential λ-calculus, to the
differentiation of λx.t at u fed by the linear term t. The rules for the differentiation must then be local,
i.e. are defined inductively on t.

Typing abstractions While the codereliction d̄ allows to introduce linear arguments, dereliction allows
to introduce linear abstractions. The d rule of Figure 6 is could be decomposed via a dereliction rule and
a ` of DiLL (see Figure 5). The term dx.t : P ⇒M represents a linear map from JP K to JMK. Likewise,
the usual abstraction corresponds to the ` rule of LL. It represents the usual application through the
call-by-name translation of Intuitionistic Logic in LL: A⇒ B := (!A)⊥ `B.

A linear classical setting We give a syntactic account of the elimination of double linear negation. In
the denotational semantics, it means that any φ ∈ E′′ is in fact the evaluation at point:

evx : ` ∈ E′ 7→ `(x)

11



4 Thus, for a distribution φ : !A acting on smooth functions, we can make it an element of A ' A⊥⊥ by
restricting it to linear function K : A⊥ :

d(φ) := dkA
⊥
.φ(dx.kx).

Then reduction rule 7 encodes the elimination of double negation.

Neutral types and terms We use ∅ to denote the neutral for the addition ∗, so as not to clash with the
notations of LL, where 0 denotes the neutral for the coproduct. Likewise, we use 1 to denote the neutral
for the multiplication − · −, so as not to clash with the notations of LL, where 1 denotes the neutral for
the tensor. In a vectorial model, while 1 is a term interpret by the 1 element of a vector space, 1 is a type
interpret by field (R here) underneath the vector space. In models of DiLL, the neutral for ` denoted as
⊥ is also interpreted by R.

Reduction rules The reduction rules of ΛAD are introduced in Figure 7. For readability, we sometimes
precise the types of the terms involved. They are direct translations of the denotational intuitions
behind DiLL. The usual β-reduction rule applies to linear and non-linear abstractions when applied to
a dirac δu. Differentiation rules are local and bear strong similarity with the algebraic subsitution of the
differential λ-calculus detailed in Section 2.2. Notice that Equation 18 gives a symmetrical account of the
differentiation for the application, leaving the actual chain rule to Equation 19. This supports the idea of
a decomposition of the application rule in a µµ̃-calculus for DiLL [CH00]. The linearity of the abstraction
dx.t is witnessed through Rule 11: when fed with a linear argument s and a non-linear argument u, dx.t
takes into account only the linear argument. It is a direct translation of the cut-elimination between a
dereliction and a co-dereliction in DiLL. The algebraic rules express nothing but the fact that ∗ acts on
arguments of functions while the product − · − acts on functions. Notice Rule 33 expressing the fact
that the convolution of differentials is the composition of differentials. The usual substitution is defined
inductively on the terms and distributes on operations:

δu[v/x] := δ[v/x] (Dus)[v/x] := Du[v/x]s[v/x] (t · s)[v/x] := t[v/x] · s[v/x]
(u ∗ w)[v/x] := u[v/x] ∗ w[v/x]

By induction on the last rule used in a typing derivation, one shows the following.

Theorem 9. Consider t any term (positive or negative) such that ` Γ, t : A. If t′ is such that t →∗ t′,
then ` Γ, t′ : A.

Example 10. The usual differentiation of x 7→ x2 holds:

(λx.ˆx · ˆx)(Dus)→ ˆ(´(((λx.ˆx)Dus · x[u/x])∗
´(x[u/x] · (λx.ˆx)Dus))

→ ˆ(´(s · ˆu) ∗ ´(ˆu · s)).
Lemma 11. If x is free in t, then for any u and r one has (λx.t)Dur →∗ ˆ∅.
Example 12. We retrieve the usual chain-rule via the composition of Rules 18 and 19. Consider two
terms λx.t : A⇒ B and λy.s : B ⇒ C. A cut-rule between these two abstractions is not possible as it is,
as one must use promotion on the type of t: (λy.s) ◦ (λx.t) := λx.((λy.s)δt). Then the differentiation of

4Note that ev is δ restricted to linear functions.
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Terms:

u, v := x | t⊥ | u ∗ v | ∅ | u⊗ v | 1 | δu | Du(t) | ´t
t, s := u⊥ | t · s | w1 : N | λx.t | dx.t | ˆu

Types:

P,Q := X | 1 | !P | ´N | P ⊗Q
N,M := X⊥ | ⊥ | ?N | ˆP | N `N

Notation:
P ⇒M := (!P )

⊥ `M

Typing rules:

(ax)
` x⊥ : P⊥ | x : P

` N , t : P⊥ | ` M | u : P
(cutL)

` N ,M, (t)u : ⊥ |

` N , t : N ⇒M | ` M | u : !N
(cut)

` N ,M, (t)u : N |

` N , t : M,x⊥ : (!P )
⊥ |

(λ)
` N , λx.t : (!P )

⊥ `M |

` N , x⊥ : P⊥, t : M |
(d)

` N , dx.t : (!P )
⊥ `M |

` N | x : P ` M | y : Q
⊗

` N ,M | x⊗ y : P ⊗Q

` N | u : P ˆ` N , ˆu : ˆP |
` N , t : N | ´` N | ´t : ´N

` N |
w

` N , w1 : N, |
` N , f : N, g : N |

c
` N , f · g : N |

w̄
` ∅ : P

` N , X⊥ | u : P ` M, X⊥ | v : P
c̄

` N ,M, X⊥ | u ∗ v : P

` N , t : N | ` M | u : !N
D` N ,M | Dut : !N

` ?N | t : P
p

` ?N | δt : !P

Figure 6: A differentiable higher-order calculus ΛAD: terms and types
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Non-Linear substitution:

(λx.t)δu →β t[u/x] (4)

(dx.t)δu → t[u/x] (5)

η-rules:

λx.(tx)→ t (6)

(dx.t)δd(φ) → φ(dx.t) (7)

Functional Context:

s→ s′

Dus→ Dus
′ (8)

t→ t′

(t)s→ t′(s)
(9) s→ s′

(t)s→ (t)s′
(10)

Differentiation:

(dx.t)Dus→ t[´s/x] (11)

(λx.ˆx)Dus→ s (12)

(λx.dz.t)Dus→ dz.((λx.t)Dus) (13)

(λx.λz.t)Dus→ λz.((λx.t)Dus) (14)

(λx.ˆ∅P )Dus→ ˆ∅P (15)

(λx.w1N )(Dus)→ ˆ∅´N (16)

(λx.ˆy)Dus→ ˆ∅ where ∅ : ´N when t : N (17)

(λx.(t)u)Dws→ ˆ(´((λx.t)Dws)u ∗ ´(t((λx.u)Dws))) (18)

(λx.ˆδt)Dus→ (λz.ˆ(Dz((λx.t)Dus)))((λx.t)(u))) (19)

(λx.ˆDwt)Dus→ (λz.ˆDz((λx.t)(Dus)))((λx.w)(Dus)) (20)

(λx.ˆw1 ∗ w2)Dus→ ˆ(´(λx.ˆw1)Dus ∗ ´(λx.ˆw2)Dus) (21)

(λx.(t · r))(Dus)→ ˆ(´(λx.t(Dus)) · (r[u/x]) ∗ ´(t[u/x])) · (λx.r(Dus)))) (22)

Algebraic rules:

u ∗ ∅ → u
(23)

∅ ∗ u→ u
(24)

f · w1 → f
(25)

w1 · f → f
(26)

(d(x).t)∅ → ∅
(27)

(1 : P ⇒ ⊥)Dut→ ∅
(28)

(1 : P ⇒ ⊥)∅ → 1
(29)

δu ∗ δv → δu∗v (30)

δu ∗Dvs→ Du∗vs (31)

Dvs ∗ δu → Dv∗us (32)

Dut ∗Dvs→ DDu∗vts (33)

(λx.t) · (λy.s)→ λx.(t · s[x/y]) (34)

(λx.t) · (dx.s)→ λx.(t · s) (35)

(dx.t) · (dx.s)→ λx.(s · t) (36)

(dx.t)(u ∗ v)→ ´((d(x).t)u) ∗ ´((d(x).t)v) (37)

Algebraic Contexts:

u→ u′

u ∗ v → u′ ∗ v
u→ u′

v ∗ u→ v ∗ u′
f → f ′

f · g → f ′ · g
f → f ′

g · f → g · f ′
u→ u′

ˆu→ ˆu′
t→ t′

´t→ ´t′

Figure 7: A differentiable higher-order calculus: reduction rules
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(λy.s) ◦ (λx.t) at a point u = δw according to a vector r computes as follows:

(λx.((λy.s)δt))Dur → ˆ(´((λx.(λy.s))Dur)δt∗
´((λy.s)((λx.δt)Dur)))

→ ˆ(´((λy.((λx.s)(Dur)))δt

∗´((λy.s)((λx.δt)Dur))) by Rule 14

→∗ ˆ(´(((λx.s)(Dur)))[t/y]

∗´((λy.s)((λx.δt)Dur)))

→∗ ˆ(´(ˆ∅) ∗ ´((λy.s)((λx.δt)Dur))) by lemma 11

→∗ (λy.s)((λx.δt)Dur)) by involutivity of the shifts

→ (λy.s)(λz.ˆ(Dz((λx.t)Dur)))((λx.t)(u))) by rule 19

→ (λy.s)Dt[w/x]((λx.t)Dur) as u = δw

The last equation is the exact translation of the chain rule. Whether we compute first (λx.t)Dur, i.e.
the differential of λx.t, or proceed immediately with the computation of the differential of λy.s depends
of the reduction strategy chosen. One can choose to reduce the linear argument of differentials before
differentiating functions (call-by-value), or not (call-by-name). This remark is expanded upon in Section
4.5.

Example 13. We provide examples of typed multiplication and addition through structural rules:

` x⊥ : X⊥ | x : X
p

` x⊥ : X⊥ | δx : !X

` x⊥ : X⊥ | x : X
p

` x⊥ : X⊥ | δx : !X
c̄

` x⊥ : X⊥;x⊥ : X⊥ | δx ⊗ δx : !X

` x⊥ : P⊥ | x : P
d

` d(x).x : (!P )⊥
` x⊥ : P⊥ | x : P

d
` d(x).x : (!P )⊥

mix; `
` d(x).x : (!P )⊥ ` ˆP, d(x).x : !(!P )⊥ ` ˆP |

c
` (d(x).ˆx) · (d(x).ˆx) : !P⊥ ` ˆP ≡ P ⇒ ˆP

Normalization We acknowledge that we give no normalization nor confluence proof for this calculus:
it should follow from the one of DiLL [Pag09] and will be added to a long version of this paper. Indeed,
any reduction rule of the calculus is the direct translation of a cut-elimination rule for DiLL, with the
exception that sums of proofs are computed in the language through the generalized ∗. The rules for
linear substitution (via the application of differential arguments Duv) are the translation of commutative
rules involving the codereliction. We refer to the survey by Erhard [Ehr18] for a detailed exposition of
the cut-elimination rules.

Semantics While no shift operation is available, complete metrisable nuclear spaces and their dual
provide a first-order model for this calculus. Negative formulas are interpreted as nuclear Fréchet spaces
and positive formulas as nuclear DF-spaces5. The only nuclear spaces with are both Fréchet and DF
are the Euclidean spaces Rn. Thus, the Euclidean spaces interpret the types of programs on which one
can perform both addition and multiplication, corresponding to the scalar product between vectors of
Rn. The heavy use of shifts at higher-order is questionable but necessary to interpret multiplication at
higher-order. A solution similar to what is done in Dialectica would be to to encode addition directly in
the target through an exponential (see Section 5).

5Fréchet spaces are metrisable complete lcs, while DF spaces describe their strong duals. Nuclear spaces are the lcs on which
several different topological tensor product correspond. Precise definitions can be found in the literature [Jar81, 12.4, 21.1]

15



4.3 A differential call-by-push value

4.4 sec:cbpv

4.5 Automatic Differentiation as reduction strategies

In this section we merely formalize the remark issued from example 12. Consider the following term:

(λx.t)(Du(f(Dvs))

From Section 2.1 we gather that reducing the above term according to Rules 11 to 22 (depending on
t) would amount to a backward differentiation strategy. Reducing instead according to Rule 8 would
amount to a forward differentiation strategy.

We thus introduce a class of values defined inductively:

V,U := x | V ⊥ | ∅ | 1 | ´u | δu | λx.t | dx.t | DuV
We choose to reduce algebraic terms and application left to right, thus restricting the algebraic

contexts in the obvious way. We have then two reduction strategies:

Definition 14. On ΛAD defined in Figure 7 call-by-name strategy defined by the non-linear substitution
rules, Rules 9 10 and all the differentiation and algebraic rules.

Definition 15. On ΛAD defined in Figure 7 call-by-value strategy defined by the non-linear substitution
rules, Rules 8 9 10, the algebraic rules and the differentiation rules restricted to DuV where V is a value
as above.

5 Interpreting Dialectica in DiLL and its models

In this section we interpret the target language of the Dialectica transformation into ΛAD, by encoding the
multiset operation as a double exponential. The same translation gives a denotational smooth semantics
for it in the model of convenient vector spaces [BET12].

Let us define a translation on top of Dialectica’s (see Figure 1), with target a version of ΛAD enriched
with products and without pointwise multiplication:

u, v := t⊥ | u ∗ v | ∅ : P | δu | Du(t) | ´t t, s := x | u⊥ | (t, s) | λx.t | dx.t | ˆu P,Q := X⊥ | 1 | !P | ´N
N,M := X | ⊥ | ?N | ˆP | N ×M

with the usual typing rules on pairs:

` N , t : N ` N , s : M

` N , (t, s) : N &M

Then we define an interpretation on types and terms:

L(αW) := α L(αC) := ˆα⊥
L(MA) := ˆ!!L(A) L(A×B) := L(A)× L(B)

L(A⇒ B) := ´L(A)⇒ L(B)

[x] := x

[λx.t] := λx.[t] [(t, u)] := ([t], [u])

[∅] := ˆ∅ [{t}] := ˆ(δδ[t])

[u~ v] := ˆ(´[u] ∗ ´[v]) [m>>= f ] := (dx.[f ]x)[m]

Proposition 16. If Γ ` t : A in the target of Dialectica, then :

L(Γ) ` [t] : L(A)

and if t ≡ u in the target of Dialectica then [t] ≡ [u] in our calculus.
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Proof. Monadic laws. . Moral: when the image of the promotion (ie diracs) are dense in the exponential,
we have a monad.

Monoidal laws Immediate
Distributivity laws The compatibility with the distributivity laws justifies the use of a double expo-

nential. Indeed, a function f : A→ B ≡ !A 7→ B needs to be linear with respect to the sum ∗. That is,
the sum ∗ needs to operate on object typed by !!.

This proposition is in fact better understood in a concrete denotational model of DiLL.
We now use the interpretation of Dialectica in DiLL to provide a concrete denotational interpretation

of Dialectica in a model of intuitionistic DiLL. We recall below the main characteristic of convenient
spaces.

• Formulas are interpreted as real vector spaces with vector bornologies, which moreover verify a
certain notion of completion (Mackey completion).

• Linear proofs are interpreted by linear bounded maps. The space of all scalar linear bounded maps
on a convenient vector space E is denoted E′.

• Non-linear proofs are interpreted as maps f : E // F smooth for some notion which generalizes
the usual notion of smoothness between Euclidean spaces. Spaces of smooth maps from E to F are
denoted as C∞(E,F ).

• The exponential !E has as basis the set of all dirac δx : C∞(E,R) // R, for all x ∈ E. Thus the
interpretation for the structural and co-structural exponential rules of DiLL are defined directly on
diracs, and so are the >>= operations below. They can then be extended by linearity and by the
universal property of the completion.

The fundamental isomorphism of LL is verified:

χ : C∞(E,F ) ' L(!E,F ).

It is defined such that for all f and t well-typed:

χ(f)(δt) = f(t) (38)

We interpret inductively the target language of the dialectica translation on types and terms, exposed
in Figure 1, as follows:

JMAK := C∞((C∞(JAK,R)′),R)′

JA⇒ BK := C∞(JAK, JBK)

J∅K := δδ0:E J(δδe)>>= fK := χ(f)(δe)

J{t}K := δδJtK Ju ∗ vK := JuK ∗ JvK

Thanks to the monoidality of the convolution on sums of diracs, and to Equation 38, one checks
inductively:

Proposition 17. Consider two terms t, u in the target language of Dialectica. Then if t ≡ u, one has
JtK = JuK in the category of convenient spaces.

6 Conclusion

In this paper we detailed two results on differentiable programming: a first part identifies the linearized
Dialectica transformation as a differential transformation, which is the first typed differential transfor-
mation acting on dependant and positive types. The second part introduces a differential λ-calculus with
backward and forward differentiation, based on dual types for distributions and functions. DiLL acts
as a bridge between the two structures, but at this point the Dialectica transformation cannot be made
into a endo-transformation on a typed language, nor can the second differentiable language handle richer
types.

We believe that in the differences between the two parts lie many exciting research perspectives: how
to encode higher-order differentiation in Pédrot’s Dialectica abstract multiset transformation ? How to
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give a µµ̃-calculus for DiLL and handle co-structural rule explicitely ? Recursive fonctions and probabil-
ities might be added by studying the common points between our language and probabilistic languages
in call-by-push-value style [ET19].

This also raises denotational perspectives. To our knowledge, no axiomatization exists for categorical
models of polarized DiLL, and as such of our calculus. Contraints of higher-order polarization make
moreover the construction of a model of ΛAD non-trivial. Chiralities [Mel16] seem to be a strong basis on
which to build a categorical axiomatization for polarized model of DiLL, in which the double exponential
construction at the target of Dialectica could be implemented
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[Sch54] Laurent Schwartz. Sur l’impossibilité de la multiplication des distributions. C. R. Acad. Sci.
Paris, 239:847–8, 1954.
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