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FUNCTIONAL CALCULUS AND DILATION FOR Cy,-GROUPS OF
POLYNOMIAL GROWTH

CH. KRIEGLER

ABSTRACT. Let U(t) = €P be a Cy-group on a Banach space X. Let further ¢ € C2°(R)
satisfy >, ¢(- —n) = 1. For a > 0, we put

ES, ={f € Cy@®): ||fllme = Y (1+n)|Lf % [¢(- = n)] [z m < oo},
neZ

which is a Banach algebra. It is shown that ||U(¢)|| < C(1 + |¢t|)* for all ¢t € R if and only
if the generator B has a bounded E functional calculus, under some minimal hypothesis,
which exclude simple counterexamples. A third equivalent condition is that U(t) admits a
dilation to a shift group on some space of functions R — X. In the case U(t) = A" with
some sectorial operator A, we use this calculus to show optimal bounds for fractions of the
semigroup generated by A, resolvent functions and variants of it. Finally, the £ calculus
is compared with Besov functional calculi as considered in [4, 16].

1. INTRODUCTION

Throughout the article, we let X be a Banach space and U (t) a strongly continuous group
on X. Our major issue is to investigate groups satisfying

(1.1) O <Cc+[t)* (teR)

for some constants C,« > 0. In Theorem 4.9, a characterization of the polynomial growth
(1.1) will be given in terms of the functional calculus of its generator.

Let iB be the generator of U(t), i.e. U(t) = ¢"B. Condition (1.1) implies that ||U(t)| <
e“lfl so that the spectrum of B is contained in the closure of Str, = {z € C: |Imz| < w}.
This holds for any w > 0, so that it is contained in fact in R. If f € H*(Str,), i.e. [ is
a bounded holomorphic function on Str,, for some w > 0, then, with the Cauchy Integral
Formula in mind, it is reasonable to define

1 -1
(12 1) =5 | gyt
As the resolvents of B are uniformly bounded on the contour 0 Str,,, the right hand side is
well defined at least if | f(2)] < Ce~9Re?l for some C, € > 0. If an estimate || f(B)|| < C|| f]loow
holds for some C' > 0, where || f||oow = SUP,cgyr, |f(2)], then, by an approximation procedure
(see Proposition 2.2), the operator f(B) can be defined for any f € H*(Str,), and f — f(B)
is an algebra homomorphism H>°(Str,,) — B(X), called the H* calculus. The H* calculus
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2 CH. KRIEGLER

has by now a well established history [4, 11, 14, 19] and important applications e.g. in the
spectral theory of elliptic differential equations and maximal regularity of parabolic evolution
equations. Here the boundedness of the functional calculus is crucial, and the algebra of
functions it is defined on reflects its quality.

Connections between growth conditions on the group U(t) and functional calculus have
been investigated in several articles [2, 10, 13]: First, if X is a Hilbert space, then B has a
bounded Cy(R) calculus (and consequently is of scalar type) if and only if U(t) is a uniformly
bounded group. This has been extended by Boyadzhiev and deLaubenfels [2] to arbitrary
groups. Namely,

(1.3) {e=MlU(t) : t € R} is a bounded subset of B(X) for any w > 6
if and only if
(1.4) B has a bounded H*°(Str,,) calculus for any w > 6.

If X is a general Banach space, this is false. A group generator need not to have a bounded
H®>(Str,,) calculus at all, even for large w. A counterexample is the shift group U(t)f(s) =
f(s+1t) on X = LP(R). In this case, [|U(t)| px) = 1, so that one could even choose § = 0 in
(1.3), but the generator has a bounded H> calculus if and only if p = 2 [4]. However it is
true in any Banach space X that if the sets in (1.3) are y-bounded (see Subsection 2.1 for
the definition), then (1.4) holds. Moreover, if the space X has Pisier’s geometric property
(a) (see Subsection 2.3 for the definition), then also the converse holds [13, Theorem 6.8].
A different approach avoiding the notion of y-boundedness is given in [9, Theorem 3.2].

The following class of functions on R will be at the center of our interest. Let a > 0 and
p € [1,00] be given parameters. Let (¢, ),cz be a smooth partition of unity on the real line
such that supp ¢, C [n — 1,n+1],ie. > _, ¢n(t) =1 for all t € R. Then we set

B = {f € DP(R) : || fllzg = S (1+ DS * dullooie) < oo}-

ne”L

This definition resembles formally that of classical Besov spaces By, with the only differ-
ence that (¢,)nez have their support in equidistant intervals [n — 1,n 4+ 1]. As for Besov
spaces, the holomorphic and bounded functions on Str, form a dense subspace of £, and
E¢ is a Banach algebra. However, the Fourier analysis and differentiability properties of the
two concepts £ and By, are quite different and this requires particular attention (Section 3).

The main result which is in Section 4 states that U(t) = € satisfies the polynomial growth
(1.1) if and only if B has a E2 calculus, under some further minimal calculus hypothesis:
e.g. {U(t) :t €[0,1]} is y-bounded, or alternatively, if X has Pisier’s property («), then it
suffices that B has a H*(Str,,) calculus. However some additional condition is necessary, as
the above shift group example shows.

We will prove the non-trivial direction “only if” by showing that U(¢) admits a dilation
to a shift group W (t) acting on a further space Z which contains L*(R, (1 + |¢])72*dt) ® X.
This means that there exist an injection I : X — Z and a surjection P : Z — X (both



FUNCTIONAL CALCULUS AND DILATION FOR Cy-GROUPS OF POLYNOMIAL GROWTH 3

continuous), such that
U(t)
X—X
I P

A war A

commutes for any ¢ € R. The shift group W(t) satisfies again the polynomial bound (1.1).
Moreover, the above diagram also holds with f(By) and f(By ) in place of U(t) and W(t),
and thus, any functional calculus of W (t) transfers to a functional calculus of U(t). In this
sense, the shift group on Z is an extremal example of a group satisfying (1.1). The space Z
will be a variant of the so-called Gaussian function space. These have been introduced in a
series of articles, e.g. [14, 12], notably in connetion with H* functional calculus.

The use of such dilations is not new in spectral theory. For example it is shown in [§],
that if —A is the generator of a bounded analytic semigroup U(t) on a UMD space X, then
the H* calculus of A is bounded if and only if U(¢) admits a dilation to a bounded group
on Z = L*([0,1], X). A survey on dilations of (semi)groups can be found in Davies’s book [5].

We close this introduction with a short overview of Sections 2 — 6.

In Section 2, we introduce the necessary background on Banach space geometry, i.e. the
notions of Gaussian function spaces, y-boundedness, as well as type, cotype and Pisier’s
property (). We will explain the H* functional calculus which will serve as a foundation
for all functional calculi we consider.

Section 3 is entirely devoted to the function spaces Ey. In particular, for p € [2, 00}, we
show that a function f € EJ admits an atomic decomposition

(1.5) f(t) = Z Z anmemtﬁﬁo(t —mm),

neEZ meZ

where ¢ is a smooth rapidly decreasing function, and the coefficients satisfy

Z<n>aH(anm)mHZP = HfHEg < 0.

nel

This resembles somewhat a wavelet decomposition of Besov spaces as e.g. in [26, Theorem
3.5], but containing a Fourier sum component in place of a (space) dilation component as
for wavelets.

Section 4 contains the main Theorem 4.9 of the article, i.e. the dilation of the polynomially
bounded group and the equivalence to its ES functional calculus.

In Section 5, the EY calculus is extended to functions with values in the commutant set
{T" e B(X): TU(t) = U(t)T Vt € R}, which is called operator valued calculus in the
literature. As a by-product, we obtain y-bounded operator families associated with U(t).
Here we focus on spaces X having property (a).

In Section 6, £ norms of some typical functions are explicitly calculated. Here we have
in mind the case U(t) = A”, where A is a sectorial operator and functions corresponding to
the analytic semigroup generated by —A, as well as variants of its resolvent. This will give
bounds and y-bounds of operators such as z° A% exp(—zA), Rez > 0, and AP A7Y(\ + A%)~1,
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and these bounds are optimal within the class of sectorial operators such that A% satisfies
(1.1). Then we compare the ES, calculus with the Bg, | calculus. In [4, Theorem 4.10], the
following interesting equivalence was established:

Theorem 1.1. Let U(t) = ¢ be a Cy-group. Let a > 0. Then the following are equivalent:

(1)a B has a bounded Bg, ; functional calculus.
(2)o For any w > 0, B has a bounded H>(Str,,) calculus, say ¥, : H>*(Str,) — B(X),
and ||V, || < Cw™* as w — 0.

Let us contrast this with our result.

Theorem 1.2. Let U(t) = P be a Cyp-group on a space X with property (a). Let 8 > 0.
Then the following are equivalent

as a bounde unctional calculus.

1); Bh bounded E? f ional calcul

(2)23 For any w > 0, B has a bounded H*(Str,) calculus, and |[e®Z| = [|[¥,(f;)| <
CW_BHftHw,oo for f, = ) and any t € R.

This follows immediately from Theorem 4.9, noting that inf,e (o 1) w e = (14 [¢|)? and
| ftllsow = €Il For v = 3, condition (2)}; is clearly a weaker condition than (2),. Thus, E%
functional calculus is weaker than BS_ ; calculus, i.e.

(1.6) (1) = (1),

«

In [4, Theorem 5.4], it is shown that the functional calculus of the f; can be used to
measure the H* calculus angle:

Theorem 1.3. Let U(t) = ¢® be a Cy-group and assume that B has a bounded H>(Str,,)
calculus for some w € (0, 7). Let u € (0,w). The following are equivalent.

(1) B has a bounded H*(Stry) calculus for any 6 > pu.
(2) For any 6 > pu, there exists Cp such that |[e"P|| < Cpexp(0|t|).

Theorem 1.2 shows that replacing the exponential growth of the norm of ¢# in Theorem
1.3 (2) by a polynomial growth, the ES calculus takes a (refined) role of the H> calculus.

At the end of Section 6, we will focus on the reverse of (1.6) and study the gap between
a and 3 for the implication (1'), = (1)3 where 3 depends on X (and «). First we will
consider the most general case and allow any Banach space X, in which case § = o + 1.
Second we treat spaces X having non-trivial type and cotype. In this case, the geometry
of X allows to narrow the gap between group growth « and Besov calculus order 3, see

Theorem 6.8.

2. PRELIMINARIES AND NOTATIONS

2.1. Gaussian function spaces. We recall the construction of Gaussian function spaces
from [13], see also [27].

Let H be a Hilbert space. We consider the tensor product H ® X as a subspace of
B(H,X) in the usual way, i.e. by identifying Y ,_ hy ® 2 € H ® X with the mapping
w:h— Y, (h hy)xy for any finite families hy,..., h, € H and x1,...,2, € X. Choose
such families with corresponding u, where the hy shall be orthonormal. Let ~,...,7, be
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independent standard Gaussian random variables over some probability space. We equip
H ® X with the norm

1
2
HuH'y(H,X) - HZ% ®$kHGauss(X) - <EHZ’W€ ®xk||§()
k k

By [6, Corollary 12.17], this is independent of the choice of the hy representing u. Then we
let v, (H, X) be the space of all u € B(H, X) such that

lwllya,x) = sup {||uP||yz,x): P: H — H finite rank orthogonal projection} < co.

Further we denote v(H, X) the closure of H ® X in v, (H, X). We refer to v(H, X) as a
Gaussian function space. If X does not contain ¢y isomorphically, then v(H, X) = v, (H, X)
[13, Remark 4.2]. In the sequel, we will only make use of y(H, X) and not of v, (H, X). If H
is separable, then |lu||ym,x) = sz Vi @ uleg where the e, form an orthonormal

basis of H [13, Remark 4.2].

) HGauss(X)’

Assume that (€2, u) is a o-finite measure space and H = L?(Q2). Denote P(2, X) the space
of Bochner-measurable functions f :  — X such that 2’ o f € L*(Q) for all 2/ € X'. We
identify P»(©, X) with a subspace of B(L*(Q2), X") by assigning to f the operator u; defined
by

2.1) (ush, oy = / (8, 2Vt du(t).

An application of the uniform boundedness principle shows that, in fact, us belongs to
B(L*(Q), X) [13, Section 4], [7, Section 5.5]. Then we let
QLX) ={f € R(Q,X) : uy €4(L*(Q), X))
and set
1f lyx) = lugllyz2@.x)-

The space {u; : f € y(Q, X)} is a proper subspace of v(L?(2), X) in general. It is dense in
v(L?*(2), X) as it contains L*(Q) ® X.

Resuming the above, we have the following embeddings of spaces, cf. also [21, Section 3.

L) @ X = (2, X) = 4(L*(Q), X) — B(L*(Q), X).

In some cases, 7(L*(2), X) and (€, X) can be identified with more classical spaces. If
X is a Banach function space with finite cotype, e.g. an LP space for some p € [1,00), then
for any step function f = >, xxxa, : @ — X, where z;, € X and the A} s are measurable
and disjoint with p(Ag) € (0,00), we have (cf. [13, Remark 3.6, Example 4.6])

Gauss(x)z]\@u(Ak)rxm?) (e Idu>

The second equivalence follows from [6, Theorem 16.18]. The last expression above is a
(classical) square function (see e.g. [4, Section 6]), whence for an arbitrary space X, |Jul(m,x)
is called generalized square function [13, Section 4]. In particular, if X is a Hilbert space,

1f o) = HZ%@u (At
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then (Q, X) = L*(Q, X) with equal norms.

A further notion which is important for our purposes is the v-boundedness.
Let 7 C B(X). Then 7 is called y-bounded if there is a constant C' < oo such that for any
finite families 71, ...,7T, € 7 and x4,...,x, € X,

sz:’Yk ® Tkxk”(}auss(X) < CH%:’Y’f ® xkllGauss(X)

We denote by v(7) the smallest admissible constant C' above, and set v(7) = oo if 7 is not
v-bounded. Note that one always has v(7) > sup{||T|| : T € 7}. We record some properties
which will be useful in subsequent sections.

Lemma 2.1. Let (€2, 1) be a o-finite measure space.

(1) Suppose that (f,), is a sequence in L*(Q2) with sup,, || fulleo < 0o and f,(t) — 0 for
almost all t € Q. Then || f,.g]/,@,x) = 0 for all g € y(2, X).
(2) For f € ~v(2,X) and g € v(Q2, X'), we have

/ (), 9O () < 1o 9.

(3) Suppose that X does not contain ¢y isomorphically. If t — N(t) is strongly continuous
Q — B(X) and {N(t) : t € Q} is y-bounded with constant C, then for any g €
~7(2, X), N(t)g(t) belongs to v(2, X), and

IN@)g(®)ll0.x) < Cliglhex):
(4) Let T' € B(X) and K € B(H,, H;), where Hy, Hy are Hilbert spaces. Then for
u € v(Hy, X), we have TuK € ~(Hy, X) and
1Tk s, x) < NN el ) [
Thus, any K € B(Hs, Hy) can be lifted to an operator
K® : ’Y(HlaX) — V(HQaX)ﬂ U uo K/a
with ||K®|| = || K]||. In particular,
(a) if m € L=(Q2) and u € v(L*(Q), X), then m - u, defined by [m - u] (h) = u(m-h),
satisfies [[m - ully < [lm]|o]lull;-
(b) Tl ety ) = gl gezcam - for g = 2 = (0, 00) amd u € A(L2(g(1)%dr), X).

(5) Extended triangle inequality. Let (Ql p1) and (€, o) be o-finite measure spaces.

Let g : 1 x Q5 — X be weakly measurable and assume that for any 2’ € X', we

have )
/ ( |<g(t,8),x’>|ds) dt < .
Q1 Qz

Then

/ g( s)ds € (€, X) and || [ g(-,s)ds|yx) < [ [lg(8)llyix)ds
Qo Q2 Q2

hold as soon as the right most expression is finite.
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Proof. For a proof of (1)-(4), we refer to [13, Lemma 4.10, Corollary 5.5, Proposition 4.11,
Example 5.7, Proposition 4.3]. The equalities in (4) (a) (resp. (b)) follow from the bound-
edness (resp. isometry) of the mappings L*(Q2) — L*(Q), f — m - f and L%*(g(t)%dt) —
L2(dt)7 f =g f

(5) We have [ g(-,s)ds € P»(£, X), since

/ /<g<t,s>,x'>ds as | (/ ol s), |ds> it

where the right expression is finite due to the assumptions.
Further, for any 2/ € X’ and h € L?*(€);), we have

//(g(t, s), " Yh(t)dsdt = // (t,s), t)dtds.

Indeed, we can apply Fubini’s theorem, since

//| (t,5), ' Vh(t)| dsdt = /</| (t,5), |ds>|h()|dt

is finite due to the same assumption as above.
Then the claim follows from the following calculation:

|| Z’Yk ®/ t S dShk( )dt”Gauss - || Z’Yk // t S hk dtdSHGauss(X)

- ( JI1X o [ [t s)hk@)dms%{dA);

/(/“Z% ) [ sttt )dt|§<d>\>éds
< [llat-5)ionds

where 7 are independent standard Gaussians and hy, form any orthonormal system in L?(€),).

O

2.2. Preliminaries on the H* calculus. Let § > 0. We define: Stry := {x +iy: x €
R, Jy| < 0} and H*>(Strg) := {f : Stry — C : f is analytic and bounded}. This space is
equipped with the norm || f||oe,s = Supyegiy, |/ (A)] and is complete. Put H§®(Strg) := {f €
H™>(Stry) : 3e,C > 0 s.th. |f(2)| < Ce~IRe#l} Let B be a densely defined operator on some
Banach space X. We say that B is a strip-type operator, if o(B) C Str,, for some w > 0, and
if for any 6 > w, there exists C' such that

IA=B)<C

for any A € C\ Stry. One denotes by w(B) the strip height, which is the infimum of all w > 0
satisfying the above.
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An important class of strip-type operators is given by Cy-groups: If U(t) is a strongly
continuous group with infinitesimal generator C, such that ||U(t)| < e*l, then B = —iC' is
a strip-type operator with w(B) < w [9, p. 91].

A strip-type operator has a holomorphic functional calculus [9]. Namely, for w > w(B)
and f € H§°(Str,), one defines the operator

1
7(B) = 5 [ FOROL BYix
where I' is the boundary 0 Str, with w(B) < v < w oriented counterclockwise.

The definitions do not depend on 7 and the resulting mapping f +— f(B) is an algebra
homomorphism H§°(Str,,) — B(X).

One says that B has a (bounded) H*(Str,) calculus if H§°(Str,) — B(X), f — f(B)
is bounded. In this case, one can extend that mapping to a bounded homomorphism
H>(Str,,) — B(X). It satisfies the following proposition, usually called convergence lemma
in the literature, (see e.g. [4, Lemma 2.1] and [9, Proposition 5.1.7]). In particular, one
recovers the Co-group from the functional calculus by U(t) = €*()(B).

Proposition 2.2. Let B be a strip-type operator with bounded H*(Str,,) calculus for some
w > w(B). Let further (fi)r be a sequence in H*°(Str,) such that fi(2) — f(z) for any
z € Str, as k — 00, and such that supy, || fi||cow < 00.

Then f belongs to H>(Str,) and f(B)x = limy fx(B)z for arbitrary x € X.

As a particular example, note that for any w > 0, the sequence

1
e® F
(22) wk(Z’) = (m) (Z S (C, ke N)
approximates the function z — 1, and by the above proposition, for any f € H*(Str,), the
operator f(B) can be recovered as the strong limit limy (¢ f)(B).
We remark that there is a sectorial version of all the above strip-type definitions, which
plays an important role in the literature (see e.g. [4], [19]). More precisely, let ¥, be the
image of Str,, under the conformal mapping exp : z — €*. Let also H)(X.) = H{) (Stry,) o

{exp}. An injective and densely defined operator A is called sectorial if o(A) C X, for some
€ (0,7), and if for any € > w, there exists C' > 0 such that [|AR(\, A)|| < C for any

A € C\y.
2m/f

Then for f € H§°(Xy), one sets
where I' = 90X, and w < v < 0. If || f(A)]] < C||f]l,0, then A is said to have an H>(Xy)
calculus. In th1s case, similar to the strip case, one defines f(A) for f € H>(3y).

If A is a sectorial operator (having an H 00(29) calculus), then there is a strip-type oper-
ator B such that f(A) = (f oexp) (B) for f € H(X,) (having an H*(Stry) calculus [9,
Corollary 4.2.5].

For more information on the H* calculus, see e.g. [4], especially Section 2 and [19],
especially Chapter 9.
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2.3. Property («). Following [23], we say that X has property («) if there is a constant
C > 1 such that for any finite family (x;;) in X and any finite family (¢;;) of complex
numbers,

Gauss(Gauss(X))

Z?j

‘Z%@Wj & Tij

< C sup |t
Gauss(Gauss(X)) i,j i

Equivalently, X has property («) if and only if we have a uniform equivalence

)

SP— L S os
H; J J Gauss(Gauss(X)) ; J J Gauss(X)

where (7;5):;>1 be a doubly indexed family of independent standard Gaussian variables.

Property («) is inherited by closed subspaces and isomorphic spaces as one can see directly
from Definition (2.3). Let (2, 1) be a measure space and 1 < p < oo. Using Kahane’s
inequality [20, Corollary 3.4.1], one can show that the spaces LP(€2) have property («), and
moreover, if X has property («), then also LP(2, X') has property ().

2.4. Type and cotype. A Banach space X is said to have type p € [1,2] if there exists
C > 0 such that for any finite family x,...,z, € X we have

1

p

<C E L I
Gauss(X) - ( P ||xk”X>

Further, X is said to have cotype ¢ € [2, 0] if there exists C' > 0 such that for any finite
family xy,...,x, € X, we have

(2.4) HZ'}%(XJ.CEk’

1
‘ q
(25) (;ka‘|x> = C“;7k®xk‘ Gauss(X)
(left hand side replaced by the sup norm for ¢ = 00).

Any Banach space X always has type 1 and cotype oo, whence these are also called trivial
type and cotype. The notions become more restrictive for larger p and smaller ¢q. A space X
has type 2 and cotype 2 if and only if it is isomorphic to a Hilbert space [6, Corollary 12.20].
It is clear that type and cotype are inherited by subspaces and isomorphic spaces.

Let (€2, 1) be a measure space and 1 < p < oo. Then LP(2) has type min(p, 2) and cotype
max(p,2) [6, Corollary 11.7]. More generally, for a Banach space X, LP(Q, X) has type
min(p, type X) and cotype max(p, cotype X) [6, Theorem 11.12]. This is false in general
for p = oo, and the space L*>°(2) has trivial type 1 (and no better type), if it is infinite
dimensional.

Property («), type and cotype are usually defined in terms of Rademacher instead of
Gaussian variables. One obtains equivalent notions [6, Theorem 12.26, 12.28].
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Let us resume the geometric properties of X that we considered in this section by putting
them into a logical order.

X has non-trivial type == X has non-trivial cotype — X 2 ¢

ﬂ(*)

X has property (a)

As references for the above implications, we refer to [6, Chapters 11, 13 and 14]. In (%), the
converse holds if X is a Banach function space [23].

3. THE SPACES Eg

In this section, we develop the Fourier analysis of the spaces £, and compare them to
the Besov spaces By, = B, (R). The spaces £ are defined by a summability condition for
a decomposition in the Fourier image, in a similar way to the Besov spaces.

Let (¢n)nez be a dyadic partition of unity, i.e. the following conditions hold (cf. [1, Lemma
6.1.7]): 1, € C>®(R), suppvg C [—~1,1], supp, C [2"72,2"] for n > 1 and supp), C
[—2I7 —2I"1=2] for n < —1. Further, Yonez¥n(t) = 1forall t € R, ¢, = 1p1(27") for n > 1,
and ¢_, = ¢, (—-) for n € Z. Then one defines the Besov space [25, p. 45]

By, ={f: R— C, f uniformly continuous and bounded,

1Fllsg, = D 2™ f * Wl oy < 00},

neL

The new spaces E are defined with an equidistant partition of unity (¢n)nez in place of
(¥n)nez, which gives a new scale with different properties.

Let us give an overview of the section. After definition and some useful elementary prop-
erties of E, we show that the norm of E admits an atomic decomposition in the case
2 < p < oo. Namely, f can be written as an (infinite) linear combination of one rapidly
decreasing function shifted in space and Fourier phase, see (3.2). The decomposition reduces
for p = oo to the Fourier series in the case that f is periodic. Subsequently we show optimal
embedding results between the classical spaces B, | and the new ones EY.

We write in short (¢) = 1+ |¢t|. We have the following elementary inequalities:
(E+1) < k) + (D) < (k) - (D)

Definition 3.1. Let ¢y € C2°(R), and assume that supp ¢g C [—1,1]and > 7 do(t—n) =
1 for all t € R. For n € Z we put ¢,, = ¢o(- —n) and an = Zi:_l Onir- We call the collection

(¢n)nez an equidistant partition of unity. Note that ¢pd, = ¢, for m = n and (Emaﬁn =0
for [n —m| > 2.
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Let a > 0 be a parameter, 1 < p < oo and (¢,), an equidistant partition of unity. We
define

(3.1) Ey ={f € P(R): |[fllmg = > _{m)*[If * dully < o0}
nez
and equip it with the norm || f||zs. Further, we set
E§={fe EL: lim f(t)=0}
[t|—o0
with the norm || f||ge = || f]| 5o -

Let us record some elementary properties of the spaces E} and Eg.

Proposition 3.2. Let a > 0 and 1 < p < o0.

(1) Ey and Eg are Banach spaces.

(2) Dense subset. For any w > 0, H*(Str,) N By is dense in Ey. More precisely, for
f € Ey, Zﬁi_Nf % ¢, converges to f in EY (N, M — o0).

(3) Multiplicativity. For f € ES and g € Ej, we have fg € Ej and |[|fgllgs <
| fllze l9llg - Similarly, for f € ES and g € Ef, we have fg € Ef.

(4) Ey is independent of the choice of the partition of unity, and different choices give
equivalent norms.

(5) Translations f — f(- —t) and dilations f — f(a-) (t € R,a > 0) are isomorphisms
EY — E.

(6) Let Ju(f) = ((-)=*f)". Then J, is an isomorphism E — E and B ; — B2,

Proof. (1): For E, this can be shown as for Besov spaces. Then Eg is a Banach space
because || - [l < || - || 22, and thus, convergence to 0 at infinity is preserved by limits in .

(2): Let v = S0 ér € C=(R). As f+¢) = (f1) is the Fourier transform of a distribution
with compact support the Paley—Wierler theorem yields that f=1) is an entire function given
by fxip(t+is) = [ f(r—t)[e=*Oy] (r)dr. In particular for |s| < w,
£ %50 + is)lm < Il O] ey < CUN. M) < oo,

Therefore, f * ¢ € H>(Str,) for any w > 0. As 1/1() =0fort € [-N—-1,M+1]
(resp. ¢(t) = 1 for t € [N, M]) and supp¢, C [n — 1,n + 1], we have ¢ x ¢, = 0 for
ne€[—N—2,M+ 2] (resp. ¥ x ¢, = ¢, for n € [-N + 1, M — 1]). Thus

If=Fdlleg =Y (M) N fxdu—frdsdally < D () Fxdullp D ()Nl *dullo(1+3]dolh),

nez ner nelG

where F = Z\{-N—2,-N—1,...,M+1,M+2}and G = {-N —2,—N —1,—N, M, M +
1, M +2}. We used that ||¢,||1 = [|@ol1 is a constant. For N, M — oo, the first sum converges
to 0 since f € E, and the second sum converges to 0 by the same reason.

(3): Let f € ES and g € E. For k,l € Z, we put fj, = f*¢rand g, = g * ¢ By (2), it
suffices to consider the case that there exist K, L € N such that f = ZI_{K fr, g = ZEL gi.
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For n € Z, we have
1(fx91) * Gullp < [1&nll1 ]l fogellp < N1l frlloollgallp-
Note that
supp(frg1) = supp(f * Gi) C supp(dy,) + supp(¢y) C [k +1— 2,k + 1 +2].

Thus if |n— (k+1)| > 2, we have (frg)) *dn = 0. If [n— (k+1)| < 2, then (n)* < (k)*+(1)* <
(k)*(l)*. Therefore,

Ifallzg =D (M) *dulls < D > > ()N fugu * dully

nez k| <K [I|<L |n—(k-+1)|<2
SO0 B fellocllglly = 111l eg llglleg-
|k|<K |I|<L

If g € Ef, then fg € ES by the above, and clearly limy, o f(t)g(t) = 0. Thus, fg € Ef.

(4): Let (¢)n and (), be two equidistant partitions of unity. Then f % ¢, = f % ¢, % b,
and consequently,

1
Y @S * Gally < D NSl f + G I < Y D (0 +B)NS * sl

neL nez k=—1n+k€eZ

S D °If * Pullp-

ne”L

Exchanging the roles of (¢,,), and (1,), gives the result.

(5): For translations, the isomorphism follows directly from f(- —1) x b = (f % dn)(- — 1).
For dilations, note that f(a:) * ¢, = (f * ¥y,)(a-) with 1, = ¢, (a-). There exists N = N(a)

such that ¢, = 1, - (Zngzv ¢Ln/aJ+k) . Since ||t |1 = [|¥ho]]1 We have

N N
1 (@) % Gully S IIF *Wallp = Hf * 1y * ( > $L3J+k> < > I S parllplidols.
k=—N p k=—N

As moreover (n) = (|n/a| + k) for |k| < N, we get

If(@)llsg =Y )1 (@)xdully S D D I *Smaisnlls S D) *ully = I1f 15

neZ neZ |k|I<N neZ
Exchanging a and 1/a gives the estimate the other way around.

(6): If ()| Jaf * dully = |If * Gullp for any f € ED, then clearly, J, : ES — E2 is an
isomorphism. We have

| Jof * Q;an = ||f * D * (<'>7a(gn)va
<N * Gullp () n) |1
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and
1) Pn) Ml < 1) Pnllwy < ()~
Since this is also valid for negative o, we get
1T f * dully S ()~ * Gully = () 1T-aaf * Gullp S I Jaf * bl
The case J, : BY, ;| — B% , is proved in the same manner, see [1, Lemma 6.2.7 and Theorem

6.2.7). O

For 2 < p < oo, the space £’ can be described in terms of an atomic decomposition, both
in space variable and, once spatially localized, in phase variable in the spirit of the Fourier
series.

We give first a heuristic view of these two steps. Let f € EJ.

(1) Space decomposition. Consider the rapidly decreasing function do on R. Discrete
translations of it sum up to a constant. Indeed, we have,

1 1
% = %%( ¢050 Z% 50 —Qk Z% —7Tm
kEZ meZ

where we used the Poisson summation formula in the fourth equation.

(2) Fourier series expansion. Then split up f = >, fm, where f,, = fdo(- — mm) is
concentrated around mm. Consider the Fourier series expansion f,, = > Anme™) valid
on ((m — $)m, (m+ 3)m).

nez

The next proposition will show that the two steps give a representation f =) Apme™)

m,ne’
¢o(- — mm) and that the norm of f can be expressed in terms of the a,,’s.
We let

Ei(@p) = EI(Z> (), °(Z2)) = {(anm) e CH7 . Hanmnel p) = Z<n>a”(anm)m”€p(z) < OO} )

nez

equipped with the norm ||aum||e (») above.

The decomposition in the next proposition is not independent of the choice of the (¢, )n,
so we fix one. We further assume that supp ¢y C (—1,1) and choose some 779 € C2°(R) such
that suppno C [—1, 1] and no(t) = 1 for all ¢ € supp ¢g. Put n,, = no(- — n).

Proposition 3.3. Let « > 0 and 2 < p < 0.

(1) The linear mappings
T:ES‘%K;(W’) f=(Tf)um /f e”™ig(t — mm)dt

and

(3.2) S L") = B, (anm) = > Y apme™ V(- — 7m)

n€Z meZ
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are well-defined, continuous and ST = Idg. . Here, in the definition of S, the sum
over m converges locally uniformly, and the sum over n converges in £. In particular,
every [ € E has a decomposition

ft) = Z A€ ™ o (t — M)

such that
105 = S0 @l
nez
(2) In the particular case that p = oo and f € E2 is m-periodic, (Tf)nm = (—1)""a,
with a, = 3 fR ~intpo(t)dt, and the above decomposition of f reduces to the

Fourier series:
) = 5750 = (z<—1>nmqso<t )= 3
n€Z \meZL
Conversely, any m-periodic function f(t) =Y, o, a,e™ belongs to E if and only if

we have ) ., (n)%|a,| < 0o, and in this case, || f|lze = >, con(n)®|an].

Proof. (1): Let f € Ey and app = (T'f )pm- For any n € Z, [|(anm)mllp S || f * anvﬂp. Indeed,
if p = oo, then

] = 5 / F () Inne™ O] (1)t

< [(f mne™ )|

= {fén, nne™™ V)]

= [(f % &, [mne™OT))|

< I * 6 llooll[mne™™ ) 1,

and the last factor is a constant. Thus, ||anm|lco < ||/ *n ||so- If p = 2, then by the Plancherel
identity for both Fourier series and Fourier transforms,

[(nm)mlls = [1f0all 2@ = I1f % all 2@y = |1 % 7 * On N2y < N0l f * @n |2
Finally, the case 2 < p < oo follows by complex interpolation. Thus,

ITF Ml ery = D) N@nm)unlly S D 1f 5 G llp < D D n+B)F # dully S 11f g

nel nez k=—1n€ezZ

so T is a bounded operator.
We turn to the operator S and consider a fixed (@) € £2,(¢P).

e Step 1: For any n € Z, Zn]\f:_ vt @€ do(- — mm) converges locally uniformly as
M — oo and || 3,z anmem(.)qbg(' —mm)|lp < [[(@nm)mllp-

e Step 2: > ez Anm€™ Vo (- — wm) converges in EY as N — oo.

e Step 3: If apm = (T'f)nm for some f € E, then ), A€ do(- — Tm) = f * &y,
for any n € Z.
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e Step 4: Conclusion.
Step 1: Since ¢y € C§°(R), by is rapidly decreasing, and thus in particular, for any R > 0,
Z sup |do(t — wm)| < Z sup (t — mm) 2 < oo.
TTLEZ |t‘§R meZ |t‘SR
Hence for any F' C Z finite,
sup | Z anmemtqg()(t —mm)| < [[(@nm)mlloo Z sup |¢30(t —mm)|.
ltI<R mekF mekl ltI<R

This shows the locally uniform convergence (note that ||(aum)mllco < ||(@nm)mllp). For the
claimed estimate, we proceed again by complex interpolation. If p = oo, for any ¢ € R fixed,

1> awne™o(t — 7m)| < [[(@um)mlloc Y 1ot —7m)|

MEZ meZ

< [[(@nm)mlloo Z sup |Q§0(t — mm)|

MmEZ |t|§7T
S 1 (@nm)m |l oo-
For p =1,

/R|Zanme Golt — mm)|dt < Z|anm|/R|qb0(t—7rm)|dt

meZ meZ
S H@nm)mll1,

since [, |¢o(t — wm)|dt does not depend on m and is finite.

Step 2: Let n,ng € Z. Since the series in step 1 converges locally uniformly and is bounded
in L*°(R), by dominated convergence

[Z anmo(- = wmkm(')] *Png = ) G [Bo(- — )™ ]

meZ mez
We keep in mind that
[po(- — Wm)ei"(')]A = ™M e,
The support condition on (¢,,), yields that the sum vanishes for |n—ng| > 2. For [n—ng| <
1, by step 1,

1Y anmol- = 7m)e™ O] % ugllp < 1Y~ anmo(- = 7m)e™ b1

meZ meZ
Thus for any F' C Z finite and F* ={n+k: ne€ F, k=-1,0,1},

133" amnol- = mm)e™Ollgg = 3~ (o) D D~ anmol- = 7m)e™ ) 5 g

neF meZ no€EZ neF meZ

S Z Z(n + k) 1(@nm)mllp

k=—1neF
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S D () N (@am)mllp-

neF*

This shows the stated convergence of the double series defining S(a,,) and that S is a
bounded operator.

Step 3: Let b € C2(R).
(f # Gny ) = (fbn, )
= (1, D)
= (e 3 540, gm0y

mEZ

= Z (Fins €70 (G070, )
= 3 S TN TG — mm)en ), )
_ zm: i (€O o (- — Tm), V)
ST R——

In the third equality, we develop bn10 in a Fourier series. Note that its coefficients are rapidly
decreasing, since ¢,1 € C°(R). Hence, the sum can be taken out in the subsequent equal-
ity. In the last equality, the sum can be taken inside by dominated convergence, because
[(@nm)mllse < [[(@nm)mllp < oo

Step 4: According to step 3, for any f € EJf and n € Z,
fxdn= Zanmei"(')éo(- —7m).

m

Take the sum over n € Z on both sides of this equation. The left hand side converges to
Jin B after Proposition 3.2, and the right hand side converges to ST'f. This shows f = ST'f.

(2): Let f € E2 be m-periodic.
/f o(t — mm)dt = /ft—wm) tpo(t — Tm)dt
= ¢ / F(t)e i ()t = (~1)"a
R

We show that

o )™ mneven
> qso(t—wm)—{o e

m
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For the case n even, note that ) do(t — mm) is a m-periodic function and thus admits a
Fourier series expansion ZkeZ ape?** Hence it suffices to check that ay = dx—¢, for which we
refer to [16, Proof of 5.3]. For the case n odd, note that 3 (—1)™¢(t —wm) is 27-periodic.
Similarly, one can compute the Fourier coefficients [16, Proof of 5.3].

This shows that ST'f is the Fourier series of f, and the “only if” part. For the “if”
part, define a,,, = (—1)""a, for even n and a,, = 0 for odd n. Then f = S(an,) and

1l 2e, S Nlanmlley ey = 2 nean(m)®lan] S ez (m)lasnl S | flleg - m

Remark 3.4. The decomposition f(t) = > Unm€ ™ do(t — mm) is not unique. Indeed,

let 77(()1) > 77(()2) be two different choices of 7y with corresponding 7, 7(2)

proposition. Let f € Ey such that f(t) >0 for t € [~1,1]. Then

as in the above

(T(l)f)oo = %<J?, 77(()1)> > %U?, 7782)> = (T(Q)f)oo-

From Proposition 3.3 we obtain the following optimal embedding result between ES and
the classical Besov spaces By, ;.

Proposition 3.5. Let a > 0.
(1) If 8> a+1, then BL ;, — ES < B ;.
(2) If B < a+ 1, then BZ | 4 E2.
B) IS >a+ %, then for,any fe 850,1 periodic or with compact support, f € ES and
there exists C' > 0 depending on the period or the length of the support such that

Il < Ol s
(4) If B < o+ 3, then there exists a periodic f € qul such that f & ES.
Proof. (1): Let (¢r)rez be an equidistant partition of unity and (1,)ncz a dyadic one, as at
the beginning of Section 3. Further, let ¢, = ZZZ}l_l Y. Forn € N, we let A, = {k € N:
2l <k <2"—1}, A, = —A, and Ay = {0}. Further we let :4\; =A, 1UA,UA, 1. Then
Unez An = Z as a disjoint union, Y, -+ épthn = ¢, and for k € ;lvn, (k) = 2"l Therefore,

s, = Y 2"+ dalloe < 2™ Y 1 %4 * el

nez neZ ke,
< DB * Brlloolldally < 11 f N
kEL

In the other direction, as cardA, < 2 and for k € A,,, anbk = o,

fllee =D D RS * bk oo S D 22 5 G oo S I1f N
nEZ kEAn nez
(2): Since J, in Proposition 3.2 (6) is an isomorphism BY,; — BS,, and Ej — ES simul-
taneously, it suffices to consider the case a =0, § < 1. Let

fu(t) =Y (n)"'e™Go(t — ),
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where the sum ranges over all even n € N such that 1 < n < N. For such an n fixed, we
have in turn

v * Salloo = 1 D (R) 7 (Br0ne™ ) [loo = (0) 7M1 (02) (= 71) |oc

k<N even

and the last factor is a constant. Thus, || fx || g, > Zgzl | fn % Pnlloo = D e even () T = 00
for N — oo. On the other hand, fy is bounded in B2, ;. Indeed, || fx|| 4 S llee + 11 n oo
by [25]. But ’

N 00
| fvllee < sup 1> ()t o(t — wn)| < su]gz go(t — mn)| < oo, and
teR 4 S

N N
| Fille < sup | ()~ ne™G(t = 7n)| + sup | 3 ()~ () (¢ = 7))
€ n=1 < n=1

< supz |go(t — mn)| + | (o) (t — 7n)| < 0.

teR n=1

(3): Since J, maps periodic functions to periodic functions, we can again assume o = 0. By
[25], any f € qul is #'-Holder continuous with 8’ € (1, 3). Then by [15, p. 34], the Fourier
coefficients a,, of f are absolutely summable. By Proposition 3.2 (5), we can assume that f
is m-periodic, and by Proposition 3.3, || f||go = >, o5 |an| < o0o.

If f has compact support, say [N 7, (N +1)7] for some N € Z, then g =3, f(-—mm) is
periodic, and by [25, p. 110], ||g||85o = Hf”Bfo - Thus, the first part yields g € EZ,, and con-

sequently || fllge. = ||g@|lpe S HQHE& ol e, < 00, where ¢ € C*°(R) is chosen appropriately.

(4): Again we can assume a = 0. Choose a periodic 3-Holder continuous function f whose

Fourier coefficients are not absolutely summable [15, p. 36]. By [25], f € Bfo’l, and by

Proposition 3.3 (2), f € EY.. O

4. THE ES CALCULUS

Throughout the section, we let iB be a generator of a Cy-group U(t) = B on some space
X not containing c¢q isomorphically. Then B is a strip-type operator and we can consider
its extended holomorphic calculus from Section 2.2. Boyadzhiev and deLaubenfels [2], see
also [4, Theorem 2.4], have shown that if X is a Hilbert space, then an exponential growth
|1U@)| < e?l can be characterized by the strip height w of the bounded H> functional
calculus of B (up to w =+ €). This result has been extended by Kalton and Weis to spaces
X with property («), where the boundedness of e~“!IU(#) is replaced by y-boundedness [13,
Theorem 6.8].

We will show in this section that there is an analogous characterization of polynomial
group growth

(4.1) U@ < ¢+ [e)*
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for some C, > 0, in terms of a ES functional calculus. In fact, we shall construct this
calculus for one distinguished group W (¢), which will be a shift group satisfying (4.1), on a
space €§°(L2, X) defined in terms of a Gaussian function space. The E% functional calculus
for a general group U(t) is then obtained by a dilation to that case, in the sense that there
exists an injection I from X to £3°(L? X) and a surjection P from (°(L? X) back to X
such that the groups U(t) and W (t) are linked by the equation U(t) = PW (t)I. Dilations
are a classical tool in the study of (semi)groups, see e.g. the book of Davies [5, Chapter 6]
for a survey.

Heuristically, we want to define f(B) by making sense of the “windowed Fourier inversion
formula”

(4.2 1By = o= [ foU©ed= 53 [ fo. 00

where f is partitioned by some equidistant Fourier partition of unity (¢, )ncz. We shall see
that f € £ is a natural condition in order that the above sum converge.

In Definition 4.1 through Proposition 4.7, we assume that U(t) satisfies the polynomial
bound (4.1) for some o > 0, and that {U(¢) : t € [0,1]} is 7-bounded. Recall the Gaussian
function spaces and v-boundedness from Section 2.

Definition 4.1. Let (¢,), be an equidistant partition of unity. We set ¢!(L?) = {f : R —
C: [[fllewy = 2nez llonfll2¢ey—20ay < oo} which is a Banach space with respect to
| fllex(z2)- For an element v € B(¢*(L?), X ), we have ¢, u € B(L*((t)"**dt), X) where we put

[dnu](f) = u(¢pnf). Then we let
€$O<L2,X) - {U c B(£1<L2)7X) : ||UJ||L°/°(L27X) = Slé]z) ||¢nu||,y(L2(<t>72adt),X) < oo}

We let ZSYVO be the subspace of £2°(L?, X) consisting of elements of the form f: R — X such
that ¢, f € P,(R, X), so a g € ¢'(L?) is mapped to [, g(t)f(t)(t)"**dt.
Lemma 4.2.
(1) The space (°(L?, X) is complete, and !7?70 is a dense subspace of £2°(L?, X).
(2) The norm of £2°(L?, X) is independent of the choice of (¢,) and moreover, one has
the norm equivalence

[[wllego 2, x) = Slél;(?ﬁ_a|I¢nUIlw(L2(dt>,X)‘

Proof. We show the completeness of £°(L?, X). Let (ug)ren be a sequence in £5°(L?, X) such
that >, [luklee(r2 x) is finite. It is easy to check that ||lul|per(z2)x) S [lullee(z2,x) (see also

27, p. 12]). Thus, there exists u € B(¢'(L?), X) such that ), uj, converges to u in the latter
space. We show that u belongs to E:o(Lz, X) and that the convergence holds in E:"(L2, X).

It is easy to check that we have ¢, S0 | up — dpu in y(L2((t)"2*dt), X). Thus,

sup [ Pntely L2 ((y-2ear),x) = sup || Z Orir
ne n k

< sup E | pnur]l~
n
k
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<D sup dnull,
k n

= Z Hung%o(Lz’X) < 0
k

and therefore, u € £3°(L?, X). Now replacing in the above argument u by u — 27]:[:1 uy, which
equals YU, ug in B(ﬁl( %), X), shows the convergence u = Y, uy in £5°(L?, X). We have
shown that (2°(L?, X) is complete and turn to the density statement.

Let u € ((L* X) arbitrarily. Decomposing u = =37 > k(@) PnU =t Uo + U1 + uz,

one sees that it is enough to show that wg,u;, us can be approxnnated by elements in 620.
We consider only ug in the sequel, as u; and uy can be treated similarly. Fix e > 0. For
n=0(3), let v, € L>((t)"22dt) ® X with [|v, — @ntio|ly(12((1)-2ear).x) < € Such a v, exists,
as L*((t)?*dt) ® X is dense in y(L*((t)~2*dt),X). Let v = > _, (3) Un- We claim that
v € LX(L? X). For f € (*(L?) with compact support, one has

n+1

lo(H)llx =1l Z un (DI = Z v ) o)l

(3) k=n—1

where the sum is finite if we assume that ¢ - v, = 0 for supp ¢ N [n — 2,n + 2] = 0, which is
obviously possible. Thus

[o()llx < sup loallaqy-2ednx 3 6 flizciy-2oar

< (su;Z; I Buttollry-2ean ) + ) Il < (2luollesnn +€) 1 las.
ne

As such f form a dense subset of £!(L?), v belongs to B(¢*(L?), X). Moreover, putting v,, = 0
for n # 0 (3), we have

n=0

ollese 22, x) = sup [@nvlly = sup [én (-1 + vn + vn)lly < sup, [[only < 3lluollese(z2.x) + €.

Thus v belongs to £°(L?, X). Also

||v_u[)||£’5iO = Sup ||¢nv_¢nu0””/ = sup ||¢n(vn—1+vn+vn+1>_anq;nuO”’Y S (Sup ||¢n||oo> € S, €.
v n neZ neZ

Part (2) of the lemma is left to the reader. O
We define the operators
I=1U): X —(X(L*X), 2= U(—t)x
and
P=PU): G(I%X) = X, £ [ xonOU [0t

where f € E} Then P extends boundedly to €:°(L2, X), by density Z?YVO C E?(L{ X) and the
next lemma.
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Lemma 4.3. The operators I and P are bounded.
Proof. Since U(t) is a group, {U(t) : t € [n,n+1]} = U(n)o{U(t) : t € [0,1]}, and therefore,
YU 5 te rn+ 1) < [UINAUE : te 0,11 S ()
Thus, for n € Z, by Lemma 2.1 (3), ¢,,U(—-)z belongs to vy(L*(dt), X) and satisfies
[6n (U (=t)2|lyz2a.x) < NOnll2@ny({U(=1) = ¢ € [n = Ln+1]})lz[ S (n)*[]-

Thus, I is bounded. Now let f € EAgJO and ' € X’. We have by Lemma 2.1
(Py,a’)| = / VoMU F(8),2)
< [ 1oV £0). xo (0
R

< HX[O,I]U(')fH'y(LQ(dtLX)HX[O,I}x/ny(LQ(dt),X’)
<A{U®) : t €[0,1]})Ix10.1] (D=1 + @0 + D1) fllvr2ean,x) X017 |2 |2 || x-

1
S Y enflazanxoll2’ | x

n=-—1

< Hf”ego(L2,X)||$,||X'-
Taking the supremum over ||z’|| < 1 shows the boundedness of P. O

For t € R, let
W(t) : (5(L2,X) = E3(L2,X), f > f(-—1)
be the shift operator, where the definition extends boundedly to (3°(L? X), by the next
proposition.

Proposition 4.4. The group t — W (t) just defined satisfies [|[W (¢)|| < C(1 + [¢])*.

Proof. Let n € Z and t € R, and put mg = |n —t] the rounded down. Then > 7*? L Om

o m=mg—
equals 1 on supp ¢, (- +1t) C [(n —1t) —1,(n —t) + 1]. Let y € (. Note that the shift
f = f(-—1t) is an isometry on L?(dt). Thus, by Lemma 2.1, y — y(- — t) also defines an
isometry on ~y(L?(dt), X). Therefore,

[nW (B)ylly(z2an.x) = llPny(- = Dl

= llon(- + )yl
mo+2

= > Gmbnl-+0)yl,

m=mo—1

mo—+2

<ol + 0w D lImylly.

m=mgo—1
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Note that sup {% :née€Z, m—|n—t] e{-1,0, 1,2}} = (t). Then

mo—+2
IW (O)ylleez,x) S suptn)™ > lomylly
n m=mg—1
mo—+2
=Sl£<n>“" > m) ((m)~*(lémylly)
n m=mg—1
mo—+2
§825Z><n>‘“ Z <m>a||y||zgo(L2,X)
n m=mo—1

S O yllese 2, x)-

As W (t) might not be strongly continuous on ¢3°(L?, X), we consider the subspace
Z={uelX(L*X): Wt)u—uin (L X) ast — 0}.

It is easy to check that Z is closed and W (t)-invariant for any ¢ € R. By construction, W (¢)
is strongly continuous on Z. Furthermore, Im(I) C Z, since

IWOU(=)z = Ul=)zllew2.x) = supln) = gn (U(E = )2 = U(=)2) [hz2n,x)

<supy ({U(s) = s € [n = Ln+1}) (m)"*[[U({t)x — ||

ne”L
—0 (t—0).

Also Z N £ is dense in Z, the verification is left to the reader.

In the sequel, the shift group W (t) will serve as a universal model in the class of polyno-
mially bounded, y-bounded groups. The reason is that it dilates the original group U(t) in
the sense of the following proposition.

Proposition 4.5. Let I, P and W (t) be defined as above. Then for any t € R, the following
diagram commutes:

U(t)

! E

0 2 00 2
(LX) o (7(L2 X)

Proof. For x € X and t € R, we have

PW(t)I(z) = PW(H)U(—)z = PU(t — )z — /R o ($)U(S)U(t — s)ads

= /RX[O,l](s)U(t)a:ds =U(t)x.
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Let us now investigate the functional calculus of the strongly continuous part of W (¢) on
Z C (L, X) (or its generator B, where W (t) = exp(itB)).

Proposition 4.6. Let w > 0.
(1) For any f € H, ‘X’(Strw) the following representation formula holds

(4.3) =5 / FOW(tydt (y e lnZ).

(2) There exists some C' > 0 such that for any f € H>(Str,), we have ||f(B)| <

C||flles.- In particular, B has a bounded H* calculus.
(3) Moreover, this calculus extends continuously to a mapping ¥ : ES — B(Z), and

V()= D, (f=ou) (B) (fe€EL).
Proof. (1): We let f € Hg°(Str,). By the Cauchy integral formula, also f*) € Hge(Str,)
for any k € N, so |f(2)], |f(2)],...,|f®(2)] < e IRzl This implies (t)*f(t) € Co(R), so

choosing k > a + 1, this shows that f belongs to LY ({t)*dt). Tt is easy to check that for such
functions, the holomorphic functional calculus coincides with the Philipps calculus, which
are the left hand resp. right hand side of (4.3).

(2): Let n € Z and y € [23 N Z. First assume f € H{°(Str,). In the following calculation,
we use that ¢, - (¢ x p) = 0 as soon as supp®) C [m — 1,m+ 1], suppp C [k — 1,k + 1] and
|k —(n—m)| > 3.

n%/f ywmmmm—wm/f (- t)d,

lk—(

meZ —(n—m)|<3

m,k
< énlloolldmf * (a2 x>0l erylly-
m,k

The above norm of a convolution transfers from the scalar valued L? space to the Gauss-
ian function space in the following sense: Let T : L*(R,dt) — L?*(R,dt) be the con-

volution operator g — (¢mf) * g. We have 27| T|| = [|(émf) lloe = lldm * flloo, since
21Tg = F(¢nf) F~'g, where F is the Fourier transform. It is easy to check that for
g € v(R,dt, X), we have T®g = (¢,f) * g, where T® is defined in Lemma 2.1. Thus, we

have ||y f * (I ez ), x)—~(L2@),x) = 27| * fl|os. Consequently,
1f(B )y||1zw 12,x) < Sup Z||¢m*f||oo||¢ky”v L2(dt),
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= sup(n Z||¢m*f|\oo m)*(m) | Grylly(z2(a0).x)

S fllze SUP< )N Dryllyr2(ar),x)
kez

= HfHEgoHyHego(L?,X),
where we have used that (k) < (n)-(m) for the above summing range m € Z, |k—(n—m)| < 3.

Now let f € H*(Str,,). Recall the functions ¢, from (2.2) and that y = limy, ¢ (B)y by
Proposition 2.2. We have fi, € H3°(Str, ), and thus by the above, for any y € Z,

IF(B)yll = lim ||f (B)w(B)yll < liminf || fxllps Iyl < I1fllzg liminf ez 1y
S 1 lleg, Tim inf {[3g | e sy 1yl S 11F 1w [y
(3): This follows from Proposition 3.2 (2). O
Then the functional calculus W of W (t) has the following convergence property.

Proposition 4.7. If (f;)r, C ES with

(1) > ,ez{n)® supy || fi * énHoo < o9,
(2) fe(t) — f(t) for all t € R for some function f,

then f € ES and

(4.4) U(fe)y = (fly (ye2).

Note that H>(Str,) C F%, and that the above extends the H> calculus convergence lemma:
If (fx)r € H*®(Str,) is a bounded sequence for some w > 0, and fx(z) — f(z) pointwise on
Str,,, then (1) and (2) above are satisfied for any o > 0.

Proof. We have f x Gn(t) = limy i = ¢n(t) for any t € R by dominated convergence. In
particular, |f * ¢, (t)| < supy | fi * ¢ (t)] < supy || fi * Gnlloc. Thus, f € E,. As the sequence
(f&)x is bounded in £, by condition (1), it suffices to check (4.4) on the dense subset (>N Z.

If y € (>N Z and N € N, then
1)y — Uyl < IS (F = fo) * duBhyll + S NI(F = fi) * bu(B)yll.

|n|<N [n|>N

For the first sum, note that (f — fi)*dy, i>VO pointwise on R and that supy, ||(f — fi)* &nles <
co. Thus, for any g € L*(dt), [(f — fx) * ¢n] g — 0 in L?(dt). This carries over to

™ [(f = fi) % 6u] (B)(05y) = ((f = fi) % bn) " * (d59) = 0 in y(L2(dr), X),
for j,n € Z, where we use once again Lemma 2.1 and the fact that pointwise multiplication
and convolution are conjugated by the Fourier transform. One now easily deduces that

(f = fi) * Gu(B)y = 0 in Z. )
The second sum, we simply estimate by 2C 3 -y (n)* supy, || fi * ¢nllool|yll, Which con-

verges to 0 for N — oo. We have proved the convergence property (4.4).

It remains to show that this entails the H> calculus convergence property. Let [ €
H>(Str,,) and |0| < w. By the Cauchy integral formula, f * ¢, (t) = f(- —i0) * ¢, (- — i0)(1),
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so that || f x anHLoo(R < | fllsoollfn(- — i0)|| L1 () But |pn(t +10)| = |do(t +i6)|e™. Choosing
nf < 0, we get ||f * @pllrom® S €™ f]loe. Now consider the sequence (f;.), C H>(Str,).
Applying the above to f = fk gives

(4.5) > (0} sup [ f# 9l < (Z e”'9'<n>a> Sup |

neZ ne”z
and the last sum is finite for any o > 0. OJ

Definition 4.8. Let U(t) be a Cy-group and B its generator. Let w > 0. Then B is said to
have a bounded E¢ calculus if there exists C' > 0 such that

IFBI < Cllfllee,  (f € H*(Str.)).
By density of H*(Str,) in ES for any w, this definition is independent of w.

The main theorem of this section reads as follows.

Theorem 4.9. Let B be a O-strip-type operator on some space X not containing ¢y iso-
morphically such that iB generates a strongly continuous group U(t) = €"®, and let further
a > 0. Assume that {U(t) : t € [0,1]} is y-bounded. Let £2°(L? X) be as in Definition 4.1

and W (t) as before. Then the following are equivalent.

(D) U@ < (t)* and B has a bounded H>°(Str,,) calculus for some w > 0.

(2) B has a bounded E<, calculus.

(3) U(t) has a dilation to the shift group W(t) on (°(L? X), i.e. there exist some
bounded operators I : X — £2°(L?, X) and P : £°(L* X) — X such that

oo (T2 o0 (T2
(L2, X) Wﬁv (L* X)

Proof. (1) = (3): This is the content of Proposition 4.5.

(3) => (2): By Proposition 4.6, the generator B of W (t) on Z C ngo has a bounded ES cal-

culus. Let f € H§°(Stry,) for some w > 0. As in the proof of Proposition 4.6 (1) one can show

that for arbitrary z € X, f(B > Jo f@U(t)zdt. Thus, f(B)z = o = [ F(6)PW (t)[xdt =

Pf(B)Iz. From this, we 1mmed1ate1y deduce that NFB) < PN NfBNN S N1 fllee,- As

H*>(Str,) — E2, thls entails that B has a bounded H* calculus. It is easy to check now

that Definition 4.8 is satisfied.

(2) = (1): If B has a bounded EZ calculus, then it has also a bounded H°(Str,)

calculus for any w > 0, since H>*(Str,) C E%. Further, we have U(t) = f;(B) with

fi(s) = €', so it only remains to estimate ||fi|ga. But fi * ¢u(s) = €*¢,(t), whence

1 fellB, = 2 jng<a (M) [0 (B)] == () O

Remark 4.10.
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Note that if the underlying Banach space X has in addition property («), then the
above theorem can be stated without the assumption that {U(¢t) : t € [0,1]} is 7-
bounded. Indeed, condition (2) and thus also (3) still implies that B has a bounded
H*>(Str,,) calculus, which yields by property («) that {U(¢) : t € [0, 1]} is y-bounded
[13, Corollary 6.6].

The polynomial growth in condition (1) of the theorem does not guarantee the bound-
edness of the H* calculus. A counterexample is the shift group U(t) f(x) = f(z —t)
on LP(R), which is even uniformly bounded. In [4, Lemma 5.3], it is shown that its
generator does not have a bounded H* calculus unless p = 2.

Compare Theorem 4.9 to [4, Theorem 4.10]. The latter tells that B has a bounded
B, 1 calculus for some o > 0, if and only if B has a bounded H* calculus ¥, :
H>(Str,) — B(X) for any w > 0 and

Wl S w™,

Let BIP = {¢"0) : ¢ € R} € H*(Str,). Theorem 4.9 shows that replacing B ; by
the smaller class E is equivalent to the restricted condition

Vo lppl| Sw™.

Assume that the equivalent conditions of the theorem hold. Then it is easy to see

that the dilation can be transferred to the functional calculus by f(B) = Pf(B)I for

any f € ES. We immediately deduce the following properties of that calculus.

(a) The windowed Fourier inversion formula (4.2) holds, where the right hand side
converges in X for any z € X and any f € E.

(b) The convergence property, Proposition 4.7, holds literally with U(¢) in place of
W (t) and X in place of Z.

5. OPERATOR VALUED AND 7-BOUNDED FUNCTIONAL CALCULUS

In this section, we let again X be a space not containing ¢y isomorphically and fix some

a > 0. In [19, Theorem 12.7], it is shown that if a sectorial operator A has a bounded
H> calculus, then this calculus extends boundedly to a certain class of operator valued
holomorphic functions.

We will show a similar result for O-strip-type operators B and the E calculus. As for

the H* calculus, if the space X has property («), this procedure can be used to obtain
v-bounded families of the type {f(B) : f € 7} with convenient 7 C E<..

Let [B] ={T € B(X) : TR(\,B) = R(\, B)T ¥ A € C\R} denote the commutant set of

B. Let further H>°(Str,,) = H*>(Str,, [B])

={F: Str, — [B]' : F analytic and y({F(z) : z € Str, }) < oo}

and H(Str,) = H§°(Strw, [B]) = {F € H®(Str,) : [|[F(2)]| < e R for some e > 0} .
We define an operator valued calculus by

(5.1)

H(Str,) — B(X), F— F(B) = / F\) (X — B) tdx

- 21
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for the usual contour T'. Here the restriction of functions with values in [B]" rather than
B(X) ensures the multiplicativity of the calculus. As in [19, Theorem 12.7], one can show
that if B has a bounded H* calculus to some strip height § < w, then the calculus in (5.1)
extends boundedly to H>(Str,). We will not make use of this fact, but rather show that
under polynomial growth of the group U(t) = €®P, there is an extension to an operator
valued variant £¢ of the space ES . We define

E*={F: R — [B] strongly cont. and bdd, ||F|ga = Z(n}o‘fy({F * On(t) 1 t € RY) < o0}
nez
and equip it with the norm || F||ga. At first, we record the following properties of £*.
Proposition 5.1. (1) £~ is a Banach algebra.
(2) £ contains H(Stry,).
(3) For any F € £*, n € Z and w > 0, F * ¢, belongs to H>(Str,,), and 32 F * ¢,

converges to F'in €% (N, M — 00).
(4) Different choices of the partition (¢, ), give the same space £* with equivalent norms.

The proof is mostly a copy of that of Proposition 3.2, replacing L>°(R) norms by ~y-bounds,
and is outlined in [16, Proposition 5.12]. For F' : R — B(X) such that {F(¢) : t € R} is
~v-bounded, we put

Mp : y(R, X) = v(R, X), g(t) = F(t)g(t).
By Lemma 2.1 (3), [[Mrg| < v({F(t) : t € R})||g||. Since y(R, X) is dense in y(L*(R), X),
Mp extends uniquely to a bounded operator

Mp : y(L*(R), X) = y(L*(R), X).

Let F be the Fourier transform on L?(R) and denote F® the extension to v(L*(R), X) given
as in Lemma 2.1 (4). Further let

Sp = (FO)"MpF®: y(L*(R),X) = v(L*(R), X)
and

1
Trg(t) = o / F(t—s)g(s)ds (g €~v(R,X)NLYR, X), g compact support).

The remaining technicalities for the construction of the calculus are collected in the next
lemma.

Lemma 5.2.

(1) Assume that F' € LY(R,B(X)) and F(t) = [, e " F(s)ds has compact support.
Then for any g € v(R, X) N L}(R, X) w1th compact support, we have
(5.2) Trg belongs to v(R, X) and ur,, = Spu,.

(2) Let (Fy)r be a sequence of functions R — B(X) such that sup, y({Fr(t) : t €
R}) < oo and Fi(t) — 0 strongly for almost all ¢ € R. Then for any ¢ € L'(R) N
L>*(R) and any R > 0, v({Fy x¥(t) : |t| < R}) — 0. Consequently, for any g €
7(R, X), HMFk*ngV(RvX) — 0as k — oo.
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Proof. (1): First note that {F(t) : t € R} is y-bounded by the convex hull lemma of -
bounded sets, see [3, Lemma 3.2] or [21, Lemma 2.2]. Then by Lemma 2.1 (5) and the
estimate

/ VE()g(t — ) lmnrds < Cv({E(s) : s € supp EV)gllzx) < oo
R

we deduce immediately that Trg belongs to fy(R X) If we let Fx : LNR, X) = Cy(R, X)
be the vector valued Fourier transform, i.e. Fxg(¢ fR ~#sg(s)ds, then we can express

FxTry(t) =3 // e F(r — 5)g(s)drds = / e_itSF(t)g(s)ds = F(t)Fxg(t).
T R
It is easy to check (see also [13, Example 4.9 b)]) that
UFxf = J—-@uf
as soon as f € v(R, X) N LY(R, X). Applying this to both f = Trg and f = g, we deduce
FoUTLg = UFyTrg = UP()Fxg() = Mpuzcg = MpFu,.

Now the claim follows by applying (F®)~! to both sides.

(2): Write Fy % (t) = f|s|<C Fre(s)y(t — s)ds + f|S|ZC Fr(s)y(t — s)ds. For the first integral,
note that for any « € X, x_c,c1(-)Fi(-)x — 0 in L*(R, X) by assumption and dominated
convergence. Since ¢ € L"O(R), by [19, Corollary 2.17],

Y{(X—cc1Fx) *(t) - [t| < R}) = 0 for k — oo.
For the second integral, we appeal again to [3, Lemma 3.2], noting that

|s‘up [t —)(1 = x—cc) |1 = 0 for C' — o0,
tI<R

and thus supy, ,<g Y({(1 — xjc,0) Fi * ¥(t) = [t| < R}) — 0. Then the rest follows from
Lemma 2.1. U

Recall égo(LQ,X ) from Definition 4.1 and its dense subspace ngo of elements that allow

a representation as a function f : R — X. We also let W(t) = e*? be the shift group on
Z C IP(L? X), where it is strongly continuous.

Proposition 5.3. Let w > 0.
(1) For F € H(Str,) and y € Z N €°° we have

- 1

F(Bly=5- / F(OW (tyyt,

where F(B) is defined in (5.1).
(2) There exists a C' > 0 such that for any F € H(Str,), we have ||F(B)|| < C||F||go.
(3) Recall the functions ¥y (2) = (e*/(1 + e*)?)V/*¥ € H>(Str,,) from (2.2). For any F €
H>(Str,), the strong limit W(F) = limy, (¢, F)(B) exists, and extends continuously
to a mapping ¥ : £* — B(Z) such that

(5.3) U(F)=F(B) (F e Hy(Str)).
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(4) Convergence Property. If (), C £ with 3", (n)* sup, y({Fyx¢n(t) : t € R}) < 00
and Fi(t)y — F(t)y forany y € Z and any t € R, then F' € £ and V(F)y — V(F)y
for any y € Z.

Proof. (1): This can be shown exactly as in the scalar case, cf. Proposition 4.6.

(2): Letne€Z and y € ZN 250 As in the scalar case in the proof of Proposition 4.6, we get

H%/RF(t)W(t)ydtML?(dt),X) < Z P llooll@mE % ()l (22 (de), x)—v (L2 (@), x) | Pxylly (22 (ae).x)

where the sum is over m € Z and k € Z such that |k — (n —m)| < 3. Lemma 5.2 (1) shows
that [[@mF * () ||lyz2a0),x)>v(p2@@),x) = 277({(¢mF) (t) : t € R}). As in the scalar case, we
conclude that |W(F)y[| < [|Fle=[lyl-

(3): Recall that limg 1 (B) = Idy strongly. Thus, for I € Hg(Stry), we have by the
multiplicativity of the Hg® calculus W(F) = limg(pF)(B) = limg FI(B)yy(B) = F(B).
Let now F € H*(Str,). Then by Proposition 5.1, we have [|(xF)(B)| < [[¢xFle« <

|Vrllge || Fllea S || F|| g, so that (1 F")(B) is a uniformly bounded sequence. For y = ¢y(B)z
for some z € Z and [ € N,

(UnF)(B)y = (Ve F)(B)hy(B)z = (bh F)(B)z = (W F)(B)¢n(B)z — (0F)(B)z  (k — o0).

As moreover, such y form a dense subset of Z, we can easily conclude with Proposition 5.1.

(4): We have Fxo,(t)y = limy Fy*¢,(t)y for any y € Z and t € R by dominated convergence.
It is easy from the definition of y-boundedness to check that this implies y({F * ¢, (t) : t €
R}) < sup, v({Fi * ¢,(t) : t € R}). Now argue as in the proof of Proposition 4.7, using
Lemma 5.2 (2) instead of Lemma 2.1. O

Remark 5.4. The bounded homomorphism ¥ : £ — B(Z) is uniquely determined by (5.3)
and the Convergence Property (4) in the above proposition, and we shall call such a ¥ the

£ calculus of the group generator B. We write henceforth F(B) instead of W(F).

Indeed, if F' € H>(Str,,), then Fy(2) = x(2)F(2) defines a sequence in H(Str,) which
approximates F' in the sense of (4) in the above proposition: Argue as in the proof of
Proposition 4.7 to show that

Z(n)asgpy({Fk * dn(t) : t €RY) < (Z e‘”'w_d(n)a) sgpv({Fk(z) : z € Stry, }).

nes nez
This determines W|ys (s, ). By Proposition 5.1 (3), a bounded extension to £ is unique.

In the main theorem of this section below, we now are able to produce y-bounded operators
by means of the £% calculus.

Theorem 5.5. Let U(t) = € be a Cy-group on some space X not containing ¢y iso-
morphically such that {U(¢) : t € [0,1]} is y-bounded. Then the following conditions are
equivalent:
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W 10O < 6
(2) B has a bounded E$, calculus.
(3) B has a bounded £% calculus.
If in addition, X has property (a), then the following conditions are also equivalent to (1)-(3).

(4) B has a bounded E<, calculus and moreover, for any G C ES with

> () sup || f # Gullo = Cg < o0,
neZ feg
{f(B): f C G} is y-bounded with constant < Cjg.
(5) B has a bounded £“ calculus and moreover, for any G C £“ with

Z(n}o"y({F $Op(t): teR, FeG})=Cgy < oo,

neZ

{F(B): F C G} is y-bounded with constant < Cjg.

Proof. (1) = (3): Denote as before space and operators of the dilation of U(t) by Z, P, I
and W(t) = ¢i*? By Proposition 5.3, the generator B of W (t) has a £ calculus, where
£ is the operator valued space associated with B. Let J : B(X) — B(Z) be defined
first for u € Z N 29;5 by J(T)[u] = T ow. It is easy to check with Lemma 2.1 (4) that

[T(T) [l ezo (2, x) < (1T By l|wllee (z2,x)- Thus J(T') extends by density of Z N €5 to Z, and

J is contractive. Further J(B(X)) C [B]'. For F € £, put F;(t) = J(F(t)) which belongs

to £2. It is a simple matter to check that W(F) = PF;(B)I defines the £* calculus for B.
Then by Theorem 4.9, (1) - (3) are equivalent. Assume now in addition that X has prop-

erty (). We clearly have the implications (5) = (4) = (2), so that it remains to show

(1) = (5) : Write Gauss(X) = ~v(¢?, X). Clearly, the span of elements of the form e, ®
ZTn, n € N, x,, € X form a dense subset. For t € R, let V() € B(Gauss(X)) be defined by
V(t)(en®@xy,) =€, @U(t)x,. By Lemma 2.1 (4), V(t) is a Cy-group and ||V (t)|| = [|U®)|| <
(t)~. It is immediately checked that v({V(¢) : t € [0,1]}) = v({U(¥) : t € [0,1]}) < oc.
By the first part of the proof, the generator C' of V() = ¢ has a bounded &% calculus,
where E§ is the operator valued space associated with C. We consider Fi, ..., Fy € G, where
G C&*isgivenin (5). Fort e Randn=1,..., N, put

F(t)(e, ®x,) = e, ® F,(t)x,

and F(t)(e, ® z,) = 0 (n > N). Clearly, F(t) extens linearly to /> ® X and then boundedly
to Gauss(X ), and moreover, belongs to [C]. Also F' € £8, since

8 ({(F * ng)(t) tte R}) = Sup ” Z’WC ® (F * ng)(tk)yk’||Gauss(Gauss(X))
k

= Sup || Z Ve @ Yn & (Fn * ém)(tk)xn,k||Gauss(Gauss(X))
k.n

S ({E+dn)(0): teR Fegy),
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and the last quantity is in £*(Z, (m)®) by assumption. Here, the supremum runs over all
finite sums in k, ¢, € R, Y, ex @ yp = > ex ® €, @ T, in Gauss(Gauss(X)) of norm less
than 1. The last estimate above follows from property («). Using Remark 5.4, it is easy to
check that F(C)(32, Yn ® 2n) = S0 | 4, @ F(B)x,. Now

YH{FLU(B), ..., Fn(B)}) = [[F(C)| ausx) S [1Flea
<Y () ({(ﬁ xd)(t): teR, Fe g}) .

Since y({F(B) : F € G}) equals the supremum of v({Fy(B),..., Fy(B)}) for all choices of
N and F,, (5) follows. O

The following ~-boundedness result is shown for the H> calculus in [14] (see also [19,
Theorem 12.8]).

Theorem 5.6. Let A be a sectorial operator on a Banach space with property (o). Assume
that for some angle w € (0,7), A has an H*(3,) calculus. Then for any 6 € (w, ), we have

YHS(A) ([ fllocy < 1}) < oo

In view of Theorem 5.5, we have the following partial extension to 0O-sectorial operators
with polynomially bounded imaginary powers.

Corollary 5.7. Let A be a sectorial operator on a Banach space with property (a). Assume
that for some angle w € (0,7), A has an H*(%,) calculus and that ||A%|| < (¢)®. Then there
is a constant C' > 0 such that for any f : (0,00) — C with f oexp € ES, we have

T{F(A) - £ > 0}) <O f oexpllpg

Proof. Clearly, B = log(A) and U(t) = A" satisfy the assumptions of Theorem 5.5. For
t >0, let fi(s) = f(te®). By the implication (1) = (4), it only remains to show that

(5.4) Y ) sup i * dulloo S ILf1llEa-

= >0
But f, % ¢n(s) = f1 % ¢n(s +log(t)), so that clearly, for any t > 0, || £ * dnlloe = || f1 * @nlloo,
and thus, the left hand side of (5.4) in fact equals || f1|| e - O

6. £ NORMS OF PARTICULAR FUNCTIONS AND BESOV CALCULUS

In this section, we show how the functional calculus obtained in Sections 4 and 5 can be
applied to classical operators and functional calculi. Firstly, we deduce optimal bounds for
semigroup and resolvents if the operator A is of the type considered so far. Secondly, we
compare the ES calculus with Besov functional calculus in several situations.

We start with calculating the £ norms for some special functions. They correspond to
semigroup operators generated by A = e, resolvents of A and variants of these. By Corollary
5.7, we will deduce y-boundedness results for semigroup and resolvent operators under the
condition that A has (norm) polynomially bounded imaginary powers and a bounded H*
calculus. The ES norm estimates are obtained by elementary calculus, yet they are sharp.
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We will repeatedly make use of the following lemma whose proof is elementary [16, Lemma
5.20].

Lemma 6.1. Let g : R — C be integrable. Assume that there exists an interval I of length
strictly less than 7 such that for any t € R with ¢g(t) # 0 we have arg(g(t)) € I. Then
dlloe = |lgll1, where the equivalence constants only depend on the length |I| < 7.

Consider the operator
(rA)? exp(—aA),
where A is O-sectorial, a = re? such that » > 0 and |0 < 5, and 8 > 0. We have
(rA)f exp(—aA) = f.(B), where B = log(A), and
fa(t) = (ae")? exp(—ace?).

Proposition 6.2. ||f,||ze = (5 — |€|)*(“+5+%).

Proof. We have || f|lge, = >,z (m)®
f. and using Lemma 6.1. This is outlined in [16, Proposition 5.19]. O

[ fa . (bn] VH . The proof consists now in determining

Combining the above proposition with Corollary 5.7, we get

Corollary 6.3. Let A be a 0-sectorial operator on a space X with property (a). Assume

that A has a bounded H>(3,,) calculus for some w € (0,7) and [|A”| < (¢)* for some a > 0.
Then for any 8 > 0, there exists C' > 0 such that

A —(a+B+3)

v ({(tA)? exp(—te®A): t > 0}) < C <g - |0|> ’

Next consider the operators
MNTTAY(A 4+ A) 7 and A\ + A%) 7!
where A = re? with r > 0 and 0| < 7, v € [0,1] and § > 1. We have A'77AT(\ + A)~! =
f,(B) and A(A + A%)~1 = g5(B) with f,(t) = M7 (XA + €')7! and gs5(t) = A(A + €)1,
Proposition 6.4.

(1) For any v € [0,1] and 6 € (—m, ), we have || f,||pe. = (7 —|0])~ (@Y with equivalence
constants independent of ~.
(2) For any § € (—m,m) and § > 1, we have

lgalloe & s — |9|)—(a+1) for a >0
WIS 7 tog(6) + (m — 10))~" (|og(x — 0] +1) for a =0

The proof follows the same idea as the one of Proposition 6.2 and is outlined in [16,
Proposition 5.22]. The immediate consequence of Corollary 5.7 and Proposition 6.4 for
0-sectorial operators is the following.

Corollary 6.5. Let A be a 0-sectorial operator on a space X with property (a). Assume
that A has a bounded H*™ calculus and [|A®| < (t) for some o > 0.
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(1) There exists C' > 0 such that for any v € [0, 1] and 6 € [0, 7), we have
v ((ATAT N+ AT Jarg M| = 6)) < O (m— )Y
(2) There exists C' > 0 such that for any 6 > 1 and 0 € [0, 7), we have

§%(m — )~ (ot for a >0

v (A + AN arg A = 0}) <C {log(é) 4 (m—0)"Y(|log(r — 0)] + 1) for a = 0.

Let us now have a look at Besov functional calculus. Let B be a O-strip-type operator
generating the group U(t) = ¢"P. Up to now we know that the polynomial growth of U(t)
is equivalent to the E calculus of B (Theorem 4.9). We recall the classical definition of
a Besov space 85,1 which is given at the beginning of Section 3, and focus on the case
B > 0, p = oo. While Proposition 3.3 shows that the £ norm is related to summability of
the Fourier coefficients representing the function f, it is well known that || f|] B satisfies

the almost norm equivalence

[flloeo S WA llge, | S 1l

1
for ap < B < vy, where C?* and C* are spaces of Holder continuous functions, see [25].
Therefore, the Bfo 1 horm is closely related to differentiability of functions, which in examples
is often easier to récognize than the summability of Fourier series. Thus, we shall investigate
the Bfo,l functional calculus and compare it with the ES calculus. Let us start with some
observations on the multiplication operator B,, where B,g(t) = tg(t) on X = Ey (X = Eg
for p = 00).

Proposition 6.6. Let 1 < p < oo and a > 0. If p < oo, we let X = E, and if p = oo, we
let X = Ef = ES N Co(R). Consider the group (U,(t))ier defined by

Uy(t): X = X, grs ey,

Then (U,(t))ier is a Co-group with ||U,(¢)|| = (¢)*. The associated 0-strip-type operator B,
has a ES calculus which is given by

f(By)g=fg (feES, geX).

Proof. Since €*) € E% with ||| ga = () according to the proof of Theorem 4.9,
Proposition 3.2 yields ||U,(t)||px) S (t)*. This estimate is also optimal. Indeed, we have
() g) % dp(s) = e ™ [gx dpn(- —1)](s). Thus if § has its support in [—1, 1], then ||U,(t)g]|x =
BNl x- It is clear that t — Up(t) is a group. It is further strongly continuous. Indeed, for
any g € X and n € Z, ||(e"Vg — g) * dnll, < ||dnll1]l(e*O) —1)g|l, — 0 as t — 0 by dominated
convergence for p < 0o, and by the fact that limp_, g(t) = 0 for the case X = E§. Now the
strong continuity follows from

> () sup [(Up(t)g) * Gull, = Y (m)*sup [lg * du(- + 1), < oo.
nez <1 nez ltl<1
Denote iB,, the generator of U,(t). For f € H$(Str,) for some w > 0 and g € X, we have

zw/f (t)gdt
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N AT
= 27T/Rf(t)e gdt
= fg.

In particular, ||f(B)g|l < [Ifllegllgllx < [[fllccwllgllx, so that B has a ES calculus (in
particular, an H* calculus). Then by an approximation argument, using Proposition 4.7,
f(B)g = fg for any f € E2 and g € X. O

At first, we focus on the multiplication operator B, on Ef. This is an extremal example
in the following sense.

Proposition 6.7. Let o > 0. Let B, be the multiplication operator on X = E§ as in
Proposition 6.6. Then

1f(Boo)ll = 1f 2 (f € EZ).

In particular, if C' is a further O-strip-type operator on some Banach space Y also having a
bounded ES calculus, then

1Ay S (Boo)llBx)  (f € ES)

Further, By, has a B’ 4 calculus if and only if

[e.o]

B>a+1.

Proof. In view of Proposition 3.5, all we have to show is

1 fllzg, = suptllfolles, = 9 € EG, [lglleg <1}

The inequality “2” follows from the fact that E is a Banach algebra. For the other
estimate, consider a sequence xj in EJ with the properties xx(t) — 1 for any ¢ € R and
sUPgen Xkl e, < 00 (e.g. xi(t) = x(f) for some x € C§°(R) such that x(0) = 1). Then
for any n € Z and ¢ € R, by dominated convergence (fxr) * on(t) = [ * @n(t), so that
limsupy, [|(fx&) * Pulloc > [f * Pnlloo- Thus,

sup 1 xkll g, = sup DN xw) # Gulloo > Sup > If * Palloo = [1f s,

T n|sN In|<N

O

Proposition 6.7 shows that in full generality, there is a gap of § — a = 1 between the
Besov functional calculus and polynomial group growth. This result can be refined in terms
of type and cotype of the underlying space X.

Theorem 6.8. Let X be a Banach space with property (). Let further B be a 0-strip-type
operator on X having an H> calculus such that ||e®Z| < (1)@ for some o > 0. Then B has

a Bfoyl calculus for
1 1 1

> J— J—
f>at maLX(typeX cotype X' 2

).
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On the other hand, for 2 < p < oo, the multiplication operator B, on X = EJ from
Proposition 6.6 does not have a Bfoyl calculus for any
1 1

< — .
B + type X  cotype X

Theorem 6.8 will be shown in a forthcoming article.

Remark 6.9. (1) The second part of the theorem could also be stated as follows: The
pointwise multiplication ES - £ maps to £, whereas

1
Bfo7l-E;‘—>E;“onlyifB2a+1—]—).

(2) If the difference typle < = CotyLe < is less than 1, then it is not clear what the optimal

order [y for the Besov calculus in Theorem 6.8 is. Theorem 6.8 only yields the range
60 —oc [O, %]

(3) If ¢B is the generator of a uniformly bounded Cy-group on a Hilbert space, then by
the transference principle of Coifman and Weiss, B has a bounded H*(Str,,) calculus
for any w > 0 and the norm of this calculus is independent of w [19, Theorem 10.5].
Thus, Sy — a = 0 in this case (see [17, Lemma 3.2] for the sectorial counterpart of
that last conclusion).
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