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FUNCTIONAL CALCULUS AND DILATION FOR C0-GROUPS OF
POLYNOMIAL GROWTH

CH. KRIEGLER

Abstract. Let U(t) = eitB be a C0-group on a Banach space X. Let further φ ∈ C∞
c (R)

satisfy
∑
n∈Z φ(· − n) ≡ 1. For α ≥ 0, we put

Eα∞ = {f ∈ Cb(R) : ‖f‖Eα
∞

=
∑
n∈Z

(1 + |n|)α‖f ∗ [φ(· − n)]̌ ‖L∞(R) <∞},

which is a Banach algebra. It is shown that ‖U(t)‖ ≤ C(1 + |t|)α for all t ∈ R if and only
if the generator B has a bounded Eα∞ functional calculus, under some minimal hypothesis,
which exclude simple counterexamples. A third equivalent condition is that U(t) admits a
dilation to a shift group on some space of functions R → X. In the case U(t) = Ait with
some sectorial operator A, we use this calculus to show optimal bounds for fractions of the
semigroup generated by A, resolvent functions and variants of it. Finally, the Eα∞ calculus
is compared with Besov functional calculi as considered in [4, 16].

1. Introduction

Throughout the article, we let X be a Banach space and U(t) a strongly continuous group
on X. Our major issue is to investigate groups satisfying

(1.1) ‖U(t)‖ ≤ C(1 + |t|)α (t ∈ R)

for some constants C, α ≥ 0. In Theorem 4.9, a characterization of the polynomial growth
(1.1) will be given in terms of the functional calculus of its generator.

Let iB be the generator of U(t), i.e. U(t) = eitB. Condition (1.1) implies that ‖U(t)‖ .
eω|t|, so that the spectrum of B is contained in the closure of Strω = {z ∈ C : | Im z| < ω}.
This holds for any ω > 0, so that it is contained in fact in R. If f ∈ H∞(Strω), i.e. f is
a bounded holomorphic function on Strω for some ω > 0, then, with the Cauchy Integral
Formula in mind, it is reasonable to define

(1.2) f(B) =
1

2πi

∫
∂ Strω

f(z)(z −B)−1dz.

As the resolvents of B are uniformly bounded on the contour ∂ Strω, the right hand side is
well defined at least if |f(z)| ≤ Ce−ε|Re z| for some C, ε > 0. If an estimate ‖f(B)‖ ≤ C‖f‖∞,ω
holds for some C > 0, where ‖f‖∞,ω = supz∈Strω |f(z)|, then, by an approximation procedure
(see Proposition 2.2), the operator f(B) can be defined for any f ∈ H∞(Strω), and f 7→ f(B)
is an algebra homomorphism H∞(Strω)→ B(X), called the H∞ calculus. The H∞ calculus
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has by now a well established history [4, 11, 14, 19] and important applications e.g. in the
spectral theory of elliptic differential equations and maximal regularity of parabolic evolution
equations. Here the boundedness of the functional calculus is crucial, and the algebra of
functions it is defined on reflects its quality.

Connections between growth conditions on the group U(t) and functional calculus have
been investigated in several articles [2, 10, 13]: First, if X is a Hilbert space, then B has a
bounded C0(R) calculus (and consequently is of scalar type) if and only if U(t) is a uniformly
bounded group. This has been extended by Boyadzhiev and deLaubenfels [2] to arbitrary
groups. Namely,

(1.3) {e−ω|t|U(t) : t ∈ R} is a bounded subset of B(X) for any ω > θ

if and only if

(1.4) B has a bounded H∞(Strω) calculus for any ω > θ.

If X is a general Banach space, this is false. A group generator need not to have a bounded
H∞(Strω) calculus at all, even for large ω. A counterexample is the shift group U(t)f(s) =
f(s+ t) on X = Lp(R). In this case, ‖U(t)‖B(X) = 1, so that one could even choose θ = 0 in
(1.3), but the generator has a bounded H∞ calculus if and only if p = 2 [4]. However it is
true in any Banach space X that if the sets in (1.3) are γ-bounded (see Subsection 2.1 for
the definition), then (1.4) holds. Moreover, if the space X has Pisier’s geometric property
(α) (see Subsection 2.3 for the definition), then also the converse holds [13, Theorem 6.8].
A different approach avoiding the notion of γ-boundedness is given in [9, Theorem 3.2].

The following class of functions on R will be at the center of our interest. Let α ≥ 0 and
p ∈ [1,∞] be given parameters. Let (φn)n∈Z be a smooth partition of unity on the real line
such that suppφn ⊂ [n− 1, n+ 1], i.e.

∑
n∈Z φn(t) = 1 for all t ∈ R. Then we set

Eα
p =

{
f ∈ Lp(R) : ‖f‖Eαp =

∑
n∈Z

(1 + |n|)α‖f ∗ φ̌n‖Lp(R) <∞

}
.

This definition resembles formally that of classical Besov spaces Bαp,1, with the only differ-
ence that (φn)n∈Z have their support in equidistant intervals [n − 1, n + 1]. As for Besov
spaces, the holomorphic and bounded functions on Strω form a dense subspace of Eα

p , and
Eα
∞ is a Banach algebra. However, the Fourier analysis and differentiability properties of the

two concepts Eα
p and Bαp,1 are quite different and this requires particular attention (Section 3).

The main result which is in Section 4 states that U(t) = eitB satisfies the polynomial growth
(1.1) if and only if B has a Eα

∞ calculus, under some further minimal calculus hypothesis:
e.g. {U(t) : t ∈ [0, 1]} is γ-bounded, or alternatively, if X has Pisier’s property (α), then it
suffices that B has a H∞(Strω) calculus. However some additional condition is necessary, as
the above shift group example shows.

We will prove the non-trivial direction “only if” by showing that U(t) admits a dilation
to a shift group W (t) acting on a further space Z which contains L2(R, (1 + |t|)−2αdt)⊗X.
This means that there exist an injection I : X → Z and a surjection P : Z → X (both



FUNCTIONAL CALCULUS AND DILATION FOR C0-GROUPS OF POLYNOMIAL GROWTH 3

continuous), such that

X
U(t)

//

I
��

X

Z
W (t)

// Z

P

OO

commutes for any t ∈ R. The shift group W (t) satisfies again the polynomial bound (1.1).
Moreover, the above diagram also holds with f(BU) and f(BW ) in place of U(t) and W (t),
and thus, any functional calculus of W (t) transfers to a functional calculus of U(t). In this
sense, the shift group on Z is an extremal example of a group satisfying (1.1). The space Z
will be a variant of the so-called Gaussian function space. These have been introduced in a
series of articles, e.g. [14, 12], notably in connetion with H∞ functional calculus.

The use of such dilations is not new in spectral theory. For example it is shown in [8],
that if −A is the generator of a bounded analytic semigroup U(t) on a UMD space X, then
the H∞ calculus of A is bounded if and only if U(t) admits a dilation to a bounded group
on Z = L2([0, 1], X). A survey on dilations of (semi)groups can be found in Davies’s book [5].

We close this introduction with a short overview of Sections 2 – 6.
In Section 2, we introduce the necessary background on Banach space geometry, i.e. the

notions of Gaussian function spaces, γ-boundedness, as well as type, cotype and Pisier’s
property (α). We will explain the H∞ functional calculus which will serve as a foundation
for all functional calculi we consider.

Section 3 is entirely devoted to the function spaces Eα
p . In particular, for p ∈ [2,∞], we

show that a function f ∈ Eα
p admits an atomic decomposition

(1.5) f(t) =
∑
n∈Z

∑
m∈Z

anme
intφ̌0(t− πm),

where φ̌0 is a smooth rapidly decreasing function, and the coefficients satisfy∑
n∈Z

〈n〉α‖(anm)m‖`p ∼= ‖f‖Eαp <∞.

This resembles somewhat a wavelet decomposition of Besov spaces as e.g. in [26, Theorem
3.5], but containing a Fourier sum component in place of a (space) dilation component as
for wavelets.

Section 4 contains the main Theorem 4.9 of the article, i.e. the dilation of the polynomially
bounded group and the equivalence to its Eα

∞ functional calculus.
In Section 5, the Eα

∞ calculus is extended to functions with values in the commutant set
{T ∈ B(X) : TU(t) = U(t)T ∀ t ∈ R}, which is called operator valued calculus in the
literature. As a by-product, we obtain γ-bounded operator families associated with U(t).
Here we focus on spaces X having property (α).

In Section 6, Eα
∞ norms of some typical functions are explicitly calculated. Here we have

in mind the case U(t) = Ait, where A is a sectorial operator and functions corresponding to
the analytic semigroup generated by −A, as well as variants of its resolvent. This will give
bounds and γ-bounds of operators such as zβAβ exp(−zA), Re z > 0, and λβAγ(λ + Aδ)−1,
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and these bounds are optimal within the class of sectorial operators such that Ait satisfies
(1.1). Then we compare the Eα

∞ calculus with the Bα∞,1 calculus. In [4, Theorem 4.10], the
following interesting equivalence was established:

Theorem 1.1. Let U(t) = eitB be a C0-group. Let α > 0. Then the following are equivalent:

(1)α B has a bounded Bα∞,1 functional calculus.
(2)α For any ω > 0, B has a bounded H∞(Strω) calculus, say Ψω : H∞(Strω) → B(X),

and ‖Ψω‖ ≤ Cω−α as ω → 0.

Let us contrast this with our result.

Theorem 1.2. Let U(t) = eitB be a C0-group on a space X with property (α). Let β ≥ 0.
Then the following are equivalent

(1)′β B has a bounded Eβ
∞ functional calculus.

(2)′β For any ω > 0, B has a bounded H∞(Strω) calculus, and ‖eitB‖ = ‖Ψω(ft)‖ ≤
Cω−β‖ft‖ω,∞ for ft = eit(·) and any t ∈ R.

This follows immediately from Theorem 4.9, noting that infω∈(0,1) ω
−βeω|t| ∼= (1 + |t|)β and

‖ft‖∞,ω = eω|t|. For α = β, condition (2)′β is clearly a weaker condition than (2)α. Thus, Eα
∞

functional calculus is weaker than Bα∞,1 calculus, i.e.

(1.6) (1)α =⇒ (1)′α.

In [4, Theorem 5.4], it is shown that the functional calculus of the ft can be used to
measure the H∞ calculus angle:

Theorem 1.3. Let U(t) = eitB be a C0-group and assume that B has a bounded H∞(Strω)
calculus for some ω ∈ (0, π). Let µ ∈ (0, ω). The following are equivalent.

(1) B has a bounded H∞(Strθ) calculus for any θ > µ.
(2) For any θ > µ, there exists Cθ such that ‖eitB‖ ≤ Cθ exp(θ|t|).

Theorem 1.2 shows that replacing the exponential growth of the norm of eitB in Theorem
1.3 (2) by a polynomial growth, the Eα

∞ calculus takes a (refined) role of the H∞ calculus.
At the end of Section 6, we will focus on the reverse of (1.6) and study the gap between

α and β for the implication (1′)α =⇒ (1)β where β depends on X (and α). First we will
consider the most general case and allow any Banach space X, in which case β = α + 1.
Second we treat spaces X having non-trivial type and cotype. In this case, the geometry
of X allows to narrow the gap between group growth α and Besov calculus order β, see
Theorem 6.8.

2. Preliminaries and notations

2.1. Gaussian function spaces. We recall the construction of Gaussian function spaces
from [13], see also [27].

Let H be a Hilbert space. We consider the tensor product H ⊗ X as a subspace of
B(H,X) in the usual way, i.e. by identifying

∑n
k=1 hk ⊗ xk ∈ H ⊗ X with the mapping

u : h 7→
∑n

k=1〈h, hk〉xk for any finite families h1, . . . , hn ∈ H and x1, . . . , xn ∈ X. Choose
such families with corresponding u, where the hk shall be orthonormal. Let γ1, . . . , γn be
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independent standard Gaussian random variables over some probability space. We equip
H ⊗X with the norm∥∥u∥∥

γ(H,X)
=
∥∥∑

k

γk ⊗ xk
∥∥

Gauss(X)
=

(
E
∥∥∑

k

γk ⊗ xk
∥∥2

X

) 1
2

.

By [6, Corollary 12.17], this is independent of the choice of the hk representing u. Then we
let γ+(H,X) be the space of all u ∈ B(H,X) such that

‖u‖γ(H,X) = sup
{
‖uP‖γ(H,X) : P : H → H finite rank orthogonal projection

}
<∞.

Further we denote γ(H,X) the closure of H ⊗ X in γ+(H,X). We refer to γ(H,X) as a
Gaussian function space. If X does not contain c0 isomorphically, then γ(H,X) = γ+(H,X)
[13, Remark 4.2]. In the sequel, we will only make use of γ(H,X) and not of γ+(H,X). If H
is separable, then ‖u‖γ(H,X) =

∥∥∑
k γk ⊗ u(ek)

∥∥
Gauss(X)

, where the ek form an orthonormal

basis of H [13, Remark 4.2].

Assume that (Ω, µ) is a σ-finite measure space and H = L2(Ω). Denote P2(Ω, X) the space
of Bochner-measurable functions f : Ω → X such that x′ ◦ f ∈ L2(Ω) for all x′ ∈ X ′. We
identify P2(Ω, X) with a subspace of B(L2(Ω), X ′′) by assigning to f the operator uf defined
by

(2.1) 〈ufh, x′〉 =

∫
Ω

〈f(t), x′〉h(t)dµ(t).

An application of the uniform boundedness principle shows that, in fact, uf belongs to
B(L2(Ω), X) [13, Section 4], [7, Section 5.5]. Then we let

γ(Ω, X) =
{
f ∈ P2(Ω, X) : uf ∈ γ(L2(Ω), X)

}
and set

‖f‖γ(Ω,X) = ‖uf‖γ(L2(Ω),X).

The space {uf : f ∈ γ(Ω, X)} is a proper subspace of γ(L2(Ω), X) in general. It is dense in
γ(L2(Ω), X) as it contains L2(Ω)⊗X.

Resuming the above, we have the following embeddings of spaces, cf. also [21, Section 3].

L2(Ω)⊗X → γ(Ω, X)→ γ(L2(Ω), X)→ B(L2(Ω), X).

In some cases, γ(L2(Ω), X) and γ(Ω, X) can be identified with more classical spaces. If
X is a Banach function space with finite cotype, e.g. an Lp space for some p ∈ [1,∞), then
for any step function f =

∑n
k=1 xkχAk : Ω→ X, where xk ∈ X and the A′ks are measurable

and disjoint with µ(Ak) ∈ (0,∞), we have (cf. [13, Remark 3.6, Example 4.6])

‖f‖γ(Ω,X) =
∥∥∥∑

k

γk⊗µ(Ak)
1
2xk

∥∥∥
Gauss(X)

∼=
∥∥∥(∑

k

µ(Ak)|xk|2
) 1

2∥∥∥
X

=
∥∥∥(∫

Ω

|f(t)(·)|2dµ(t)

) 1
2∥∥∥

X
.

The second equivalence follows from [6, Theorem 16.18]. The last expression above is a
(classical) square function (see e.g. [4, Section 6]), whence for an arbitrary space X, ‖u‖γ(H,X)

is called generalized square function [13, Section 4]. In particular, if X is a Hilbert space,
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then γ(Ω, X) = L2(Ω, X) with equal norms.

A further notion which is important for our purposes is the γ-boundedness.
Let τ ⊂ B(X). Then τ is called γ-bounded if there is a constant C <∞ such that for any

finite families T1, . . . , Tn ∈ τ and x1, . . . , xn ∈ X,∥∥∑
k

γk ⊗ Tkxk
∥∥

Gauss(X)
≤ C

∥∥∑
k

γk ⊗ xk
∥∥

Gauss(X)
.

We denote by γ(τ) the smallest admissible constant C above, and set γ(τ) = ∞ if τ is not
γ-bounded. Note that one always has γ(τ) ≥ sup{‖T‖ : T ∈ τ}. We record some properties
which will be useful in subsequent sections.

Lemma 2.1. Let (Ω, µ) be a σ-finite measure space.

(1) Suppose that (fn)n is a sequence in L∞(Ω) with supn ‖fn‖∞ <∞ and fn(t)→ 0 for
almost all t ∈ Ω. Then ‖fng‖γ(Ω,X) → 0 for all g ∈ γ(Ω, X).

(2) For f ∈ γ(Ω, X) and g ∈ γ(Ω, X ′), we have∫
Ω

|〈f(t), g(t)〉|dµ(t) ≤ ‖f‖γ(Ω,X)‖g‖γ(Ω,X′).

(3) Suppose that X does not contain c0 isomorphically. If t 7→ N(t) is strongly continuous
Ω → B(X) and {N(t) : t ∈ Ω} is γ-bounded with constant C, then for any g ∈
γ(Ω, X), N(t)g(t) belongs to γ(Ω, X), and

‖N(t)g(t)‖γ(Ω,X) ≤ C‖g‖γ(Ω,X).

(4) Let T ∈ B(X) and K ∈ B(H2, H1), where H1, H2 are Hilbert spaces. Then for
u ∈ γ(H1, X), we have TuK ∈ γ(H2, X) and

‖TuK‖γ(H2,X) ≤ ‖T‖ ‖u‖γ(H1,X)‖K‖.
Thus, any K ∈ B(H2, H1) can be lifted to an operator

K⊗ : γ(H1, X)→ γ(H2, X), u 7→ u ◦K ′,
with ‖K⊗‖ = ‖K‖. In particular,
(a) if m ∈ L∞(Ω) and u ∈ γ(L2(Ω), X), then m ·u, defined by [m · u] (h) = u(m ·h),

satisfies ‖m · u‖γ ≤ ‖m‖∞‖u‖γ.
(b) ‖u‖γ(L2(g(t)2dt),X) = ‖g·u‖γ(L2(dt),X), for g : Ω→ (0,∞) and u ∈ γ(L2(g(t)2dt), X).

(5) Extended triangle inequality. Let (Ω1, µ1) and (Ω2, µ2) be σ-finite measure spaces.
Let g : Ω1 × Ω2 → X be weakly measurable and assume that for any x′ ∈ X ′, we
have ∫

Ω1

(∫
Ω2

|〈g(t, s), x′〉|ds
)2

dt <∞.

Then∫
Ω2

g(·, s)ds ∈ γ(Ω1, X) and ‖
∫

Ω2

g(·, s)ds‖γ(Ω1,X) ≤
∫

Ω2

‖g(·, s)‖γ(Ω1,X)ds

hold as soon as the right most expression is finite.
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Proof. For a proof of (1)-(4), we refer to [13, Lemma 4.10, Corollary 5.5, Proposition 4.11,
Example 5.7, Proposition 4.3]. The equalities in (4) (a) (resp. (b)) follow from the bound-
edness (resp. isometry) of the mappings L2(Ω) → L2(Ω), f 7→ m · f and L2(g(t)2dt) →
L2(dt), f 7→ g · f.

(5) We have
∫
g(·, s)ds ∈ P2(Ω1, X), since∫ ∣∣∣∣∫ 〈g(t, s), x′〉ds

∣∣∣∣2 dt ≤ ∫ (∫ |〈g(t, s), x′〉|ds
)2

dt,

where the right expression is finite due to the assumptions.
Further, for any x′ ∈ X ′ and h ∈ L2(Ω1), we have∫ ∫

〈g(t, s), x′〉h(t)dsdt =

∫ ∫
〈g(t, s), x′〉h(t)dtds.

Indeed, we can apply Fubini’s theorem, since∫ ∫
|〈g(t, s), x′〉h(t)| dsdt =

∫ (∫
|〈g(t, s), x′〉|ds

)
|h(t)|dt

is finite due to the same assumption as above.
Then the claim follows from the following calculation:

‖
∑
k

γk ⊗
∫
g(t, s)dshk(t)dt‖Gauss(X) = ‖

∑
k

γk ⊗
∫ ∫

g(t, s)hk(t)dtds‖Gauss(X)

=

(∫
‖
∑
k

γk(λ)

∫ ∫
g(t, s)hk(t)dtds‖2

Xdλ

) 1
2

≤
∫ (∫

‖
∑
k

γk(λ)

∫
g(t, s)hk(t)dt‖2

Xdλ

) 1
2

ds

≤
∫
‖g(·, s)‖γ(Ω1,X)ds,

where γk are independent standard Gaussians and hk form any orthonormal system in L2(Ω1).

�

2.2. Preliminaries on the H∞ calculus. Let θ > 0. We define: Strθ := {x + iy : x ∈
R, |y| < θ} and H∞(Strθ) := {f : Strθ → C : f is analytic and bounded}. This space is
equipped with the norm ‖f‖∞,θ = supλ∈Strθ

|f(λ)| and is complete. Put H∞0 (Strθ) := {f ∈
H∞(Strθ) : ∃ε, C > 0 s.th. |f(z)| ≤ Ce−ε|Re z|}. Let B be a densely defined operator on some
Banach space X. We say that B is a strip-type operator, if σ(B) ⊂ Strω for some ω > 0, and
if for any θ > ω, there exists C such that

‖(λ−B)−1‖ ≤ C

for any λ ∈ C\ Strθ . One denotes by ω(B) the strip height, which is the infimum of all ω > 0
satisfying the above.
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An important class of strip-type operators is given by C0-groups: If U(t) is a strongly
continuous group with infinitesimal generator C, such that ‖U(t)‖ . eω|t|, then B = −iC is
a strip-type operator with ω(B) ≤ ω [9, p. 91].

A strip-type operator has a holomorphic functional calculus [9]. Namely, for ω > ω(B)
and f ∈ H∞0 (Strω), one defines the operator

f(B) =
1

2πi

∫
Γ

f(λ)R(λ,B)dλ,

where Γ is the boundary ∂ Strγ with ω(B) < γ < ω oriented counterclockwise.
The definitions do not depend on γ and the resulting mapping f 7→ f(B) is an algebra

homomorphism H∞0 (Strω)→ B(X).
One says that B has a (bounded) H∞(Strω) calculus if H∞0 (Strω) → B(X), f 7→ f(B)

is bounded. In this case, one can extend that mapping to a bounded homomorphism
H∞(Strω)→ B(X). It satisfies the following proposition, usually called convergence lemma
in the literature, (see e.g. [4, Lemma 2.1] and [9, Proposition 5.1.7]). In particular, one
recovers the C0-group from the functional calculus by U(t) = eit(·)(B).

Proposition 2.2. Let B be a strip-type operator with bounded H∞(Strω) calculus for some
ω > ω(B). Let further (fk)k be a sequence in H∞(Strω) such that fk(z) → f(z) for any
z ∈ Strω as k →∞, and such that supk ‖fk‖∞,ω <∞.

Then f belongs to H∞(Strω) and f(B)x = limk fk(B)x for arbitrary x ∈ X.

As a particular example, note that for any ω > 0, the sequence

(2.2) ψk(z) =

(
ez

(1 + ez)2

) 1
k

(z ∈ C, k ∈ N)

approximates the function z 7→ 1, and by the above proposition, for any f ∈ H∞(Strω), the
operator f(B) can be recovered as the strong limit limk(ψkf)(B).

We remark that there is a sectorial version of all the above strip-type definitions, which
plays an important role in the literature (see e.g. [4], [19]). More precisely, let Σω be the
image of Strω under the conformal mapping exp : z 7→ ez. Let also H∞(0)(Σω) = H∞(0)(Strω) ◦
{exp}. An injective and densely defined operator A is called sectorial if σ(A) ⊂ Σω for some
ω ∈ (0, π), and if for any θ > ω, there exists C > 0 such that ‖λR(λ,A)‖ ≤ C for any
λ ∈ C\Σθ.

Then for f ∈ H∞0 (Σθ), one sets

f(A) =
1

2πi

∫
Γ

f(λ)R(λ,A)dλ,

where Γ = ∂Σγ and ω < γ < θ. If ‖f(A)‖ ≤ C‖f‖∞,θ, then A is said to have an H∞(Σθ)
calculus. In this case, similar to the strip case, one defines f(A) for f ∈ H∞(Σθ).

If A is a sectorial operator (having an H∞(Σθ) calculus), then there is a strip-type oper-
ator B such that f(A) = (f ◦ exp) (B) for f ∈ H∞0 (Σω) (having an H∞(Strθ) calculus [9,
Corollary 4.2.5].

For more information on the H∞ calculus, see e.g. [4], especially Section 2 and [19],
especially Chapter 9.
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2.3. Property (α). Following [23], we say that X has property (α) if there is a constant
C ≥ 1 such that for any finite family (xij) in X and any finite family (tij) of complex
numbers,

(2.3)
∥∥∥∑
i,j

γi ⊗ γj ⊗ tijxij
∥∥∥

Gauss(Gauss(X))
≤ C sup

i,j
|tij|

∥∥∥∑
i,j

γi ⊗ γj ⊗ xij
∥∥∥

Gauss(Gauss(X))
.

Equivalently, X has property (α) if and only if we have a uniform equivalence∥∥∥∑
i,j

γi ⊗ γj ⊗ xij
∥∥∥

Gauss(Gauss(X))

∼=
∥∥∥∑
i,j

γij ⊗ xij
∥∥∥

Gauss(X)
,

where (γij)i,j≥1 be a doubly indexed family of independent standard Gaussian variables.
Property (α) is inherited by closed subspaces and isomorphic spaces as one can see directly

from Definition (2.3). Let (Ω, µ) be a measure space and 1 ≤ p < ∞. Using Kahane’s
inequality [20, Corollary 3.4.1], one can show that the spaces Lp(Ω) have property (α), and
moreover, if X has property (α), then also Lp(Ω, X) has property (α).

2.4. Type and cotype. A Banach space X is said to have type p ∈ [1, 2] if there exists
C > 0 such that for any finite family x1, . . . , xn ∈ X we have

(2.4)
∥∥∥∑

k

γk ⊗ xk
∥∥∥

Gauss(X)
≤ C

(∑
k

‖xk‖pX

) 1
p

.

Further, X is said to have cotype q ∈ [2,∞] if there exists C > 0 such that for any finite
family x1, . . . , xn ∈ X, we have

(2.5)

(∑
k

‖xk‖qX

) 1
q

≤ C
∥∥∥∑

k

γk ⊗ xk
∥∥∥

Gauss(X)

(left hand side replaced by the sup norm for q =∞).
Any Banach space X always has type 1 and cotype∞, whence these are also called trivial

type and cotype. The notions become more restrictive for larger p and smaller q. A space X
has type 2 and cotype 2 if and only if it is isomorphic to a Hilbert space [6, Corollary 12.20].
It is clear that type and cotype are inherited by subspaces and isomorphic spaces.

Let (Ω, µ) be a measure space and 1 ≤ p <∞. Then Lp(Ω) has type min(p, 2) and cotype
max(p, 2) [6, Corollary 11.7]. More generally, for a Banach space X, Lp(Ω, X) has type
min(p, typeX) and cotype max(p, cotypeX) [6, Theorem 11.12]. This is false in general
for p = ∞, and the space L∞(Ω) has trivial type 1 (and no better type), if it is infinite
dimensional.

Property (α), type and cotype are usually defined in terms of Rademacher instead of
Gaussian variables. One obtains equivalent notions [6, Theorem 12.26, 12.28].
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Let us resume the geometric properties of X that we considered in this section by putting
them into a logical order.

X has non-trivial type +3 X has non-trivial cotype +3 X 6⊇ c0

X has property (α)

(∗)

KS

As references for the above implications, we refer to [6, Chapters 11, 13 and 14]. In (∗), the
converse holds if X is a Banach function space [23].

3. The spaces Eα
p

In this section, we develop the Fourier analysis of the spaces Eα
p , and compare them to

the Besov spaces Bαp,1 = Bαp,1(R). The spaces Eα
p are defined by a summability condition for

a decomposition in the Fourier image, in a similar way to the Besov spaces.
Let (ψn)n∈Z be a dyadic partition of unity, i.e. the following conditions hold (cf. [1, Lemma

6.1.7]): ψn ∈ C∞c (R), suppψ0 ⊂ [−1, 1], suppψn ⊂ [2n−2, 2n] for n ≥ 1 and suppψn ⊂
[−2|n|,−2|n|−2] for n ≤ −1. Further,

∑
n∈Z ψn(t) = 1 for all t ∈ R, ψn = ψ1(2−n·) for n ≥ 1,

and ψ−n = ψn(−·) for n ∈ Z. Then one defines the Besov space [25, p. 45]

Bαp,1 = {f : R→ C, f uniformly continuous and bounded,

‖f‖Bαp,1 =
∑
n∈Z

2|n|α‖f ∗ ψ̌n‖Lp(R) <∞},

The new spaces Eα
p are defined with an equidistant partition of unity (φn)n∈Z in place of

(ψn)n∈Z, which gives a new scale with different properties.

Let us give an overview of the section. After definition and some useful elementary prop-
erties of Eα

p , we show that the norm of Eα
p admits an atomic decomposition in the case

2 ≤ p ≤ ∞. Namely, f can be written as an (infinite) linear combination of one rapidly
decreasing function shifted in space and Fourier phase, see (3.2). The decomposition reduces
for p =∞ to the Fourier series in the case that f is periodic. Subsequently we show optimal
embedding results between the classical spaces Bα∞,1 and the new ones Eα

∞.

We write in short 〈t〉 = 1 + |t|. We have the following elementary inequalities:

〈k + l〉 . 〈k〉+ 〈l〉 . 〈k〉 · 〈l〉.

Definition 3.1. Let φ0 ∈ C∞c (R), and assume that suppφ0 ⊂ [−1, 1] and
∑∞

n=−∞ φ0(t−n) =

1 for all t ∈ R. For n ∈ Z we put φn = φ0(·−n) and φ̃n =
∑1

k=−1 φn+k. We call the collection

(φn)n∈Z an equidistant partition of unity. Note that φ̃mφn = φn for m = n and φ̃mφn = 0
for |n−m| ≥ 2.
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Let α ≥ 0 be a parameter, 1 ≤ p ≤ ∞ and (φn)n an equidistant partition of unity. We
define

(3.1) Eα
p = {f ∈ Lp(R) : ‖f‖Eαp =

∑
n∈Z

〈n〉α‖f ∗ φ̌n‖p <∞}

and equip it with the norm ‖f‖Eαp . Further, we set

Eα
0 = {f ∈ Eα

∞ : lim
|t|→∞

f(t) = 0}

with the norm ‖f‖Eα0 = ‖f‖Eα∞ .

Let us record some elementary properties of the spaces Eα
p and Eα

0 .

Proposition 3.2. Let α ≥ 0 and 1 ≤ p ≤ ∞.
(1) Eα

p and Eα
0 are Banach spaces.

(2) Dense subset. For any ω > 0, H∞(Strω) ∩ Eα
p is dense in Eα

p . More precisely, for

f ∈ Eα
p ,
∑M

n=−N f ∗ φ̌n converges to f in Eα
p (N,M →∞).

(3) Multiplicativity. For f ∈ Eα
∞ and g ∈ Eα

p , we have fg ∈ Eα
p and ‖fg‖Eαp .

‖f‖Eα∞‖g‖Eαp . Similarly, for f ∈ Eα
∞ and g ∈ Eα

0 , we have fg ∈ Eα
0 .

(4) Eα
p is independent of the choice of the partition of unity, and different choices give

equivalent norms.
(5) Translations f 7→ f(· − t) and dilations f 7→ f(a·) (t ∈ R, a > 0) are isomorphisms

Eα
p → Eα

p .

(6) Let Jα(f) = (〈·〉−αf̂ )̌ . Then Jα is an isomorphism E0
p → Eα

p and B0
∞,1 → Bα∞,1.

Proof. (1): For Eα
p , this can be shown as for Besov spaces. Then Eα

0 is a Banach space
because ‖ · ‖∞ ≤ ‖ · ‖Eα∞ , and thus, convergence to 0 at infinity is preserved by limits in Eα

0 .

(2): Let ψ =
∑M

k=−N φk ∈ C∞c (R). As f ∗ψ̌ = (f̂ψ)̌ is the Fourier transform of a distribution

with compact support, the Paley-Wiener theorem yields that f ∗ ψ̌ is an entire function given
by f ∗ ψ̌(t+ is) =

∫
R f(r − t)[e−s(·)ψ]̌ (r)dr. In particular, for |s| < ω,

‖f ∗ ψ̌(·+ is)‖L∞(R) ≤ ‖f‖Lp(R)‖[e−s(·)ψ]̌ ‖Lp′ (R) ≤ C(f,N,M, ω) <∞.

Therefore, f ∗ ψ̌ ∈ H∞(Strω) for any ω > 0. As ψ(t) = 0 for t ∈ [−N − 1,M + 1]c

(resp. ψ(t) = 1 for t ∈ [−N,M ]) and suppφn ⊂ [n − 1, n + 1], we have ψ̌ ∗ φ̌n = 0 for
n ∈ [−N − 2,M + 2]c (resp. ψ̌ ∗ φ̌n = φ̌n for n ∈ [−N + 1,M − 1]). Thus

‖f−f∗ψ̌‖Eαp =
∑
n∈Z

〈n〉α‖f∗φ̌n−f∗ψ̌∗φ̌n‖p ≤
∑
n∈F

〈n〉α‖f∗φ̌n‖p+
∑
n∈G

〈n〉α‖f∗φ̌n‖p(1+3‖φ̌0‖1),

where F = Z\{−N −2,−N −1, . . . ,M + 1,M + 2} and G = {−N −2,−N −1,−N,M,M +
1,M+2}. We used that ‖φ̌n‖1 = ‖φ̌0‖1 is a constant. For N,M →∞, the first sum converges
to 0 since f ∈ Eα

p , and the second sum converges to 0 by the same reason.

(3): Let f ∈ Eα
∞ and g ∈ Eα

p . For k, l ∈ Z, we put fk = f ∗ φ̌k and gl = g ∗ φ̌l. By (2), it

suffices to consider the case that there exist K,L ∈ N such that f =
∑K
−K fk, g =

∑L
−L gl.



12 CH. KRIEGLER

For n ∈ Z, we have

‖(fkgl) ∗ φ̌n‖p ≤ ‖φ̌n‖1‖fkgl‖p ≤ ‖φ̌1‖1‖fk‖∞‖gl‖p.
Note that

supp(fkgl)ˆ = supp(f̂k ∗ ĝl) ⊂ supp(φk) + supp(φl) ⊂ [k + l − 2, k + l + 2].

Thus if |n−(k+ l)| > 2, we have (fkgl)∗ φ̌n = 0. If |n−(k+ l)| ≤ 2, then 〈n〉α . 〈k〉α+〈l〉α .
〈k〉α〈l〉α. Therefore,

‖fg‖Eαp =
∑
n∈Z

〈n〉α‖(fg) ∗ φ̌n‖p ≤
∑
|k|≤K

∑
|l|≤L

∑
|n−(k+l)|≤2

〈n〉α‖fkgl ∗ φ̌n‖p

.
∑
|k|≤K

∑
|l|≤L

〈k〉α〈l〉α‖fk‖∞‖gl‖p = ‖f‖Eα∞‖g‖Eαp .

If g ∈ Eα
0 , then fg ∈ Eα

∞ by the above, and clearly lim|t|→∞ f(t)g(t) = 0. Thus, fg ∈ Eα
0 .

(4): Let (φn)n and (ψn)n be two equidistant partitions of unity. Then f ∗ φ̌n = f ∗ φ̌n ∗ ψ̃nˇ

and consequently,∑
n∈Z

〈n〉α‖f ∗ φ̌n‖p ≤
∑
n∈Z

〈n〉α‖φ̌n‖1‖f ∗ ψ̃nˇ‖p ≤
1∑

k=−1

∑
n+k∈Z

〈n+ k〉α‖f ∗ ψ̌n+k‖p

.
∑
n∈Z

〈n〉α‖f ∗ ψ̌n‖p.

Exchanging the roles of (φn)n and (ψn)n gives the result.

(5): For translations, the isomorphism follows directly from f(· − t) ∗ φ̌n = (f ∗ φ̌n)(· − t).
For dilations, note that f(a·) ∗ φ̌n = (f ∗ ψ̌n)(a·) with ψn = φn(a·). There exists N = N(a)

such that ψn = ψn ·
(∑N

k=−N φbn/ac+k

)
. Since ‖ψ̌n‖1 = ‖ψ̌0‖1 we have

‖f(a·) ∗ φ̌n‖p . ‖f ∗ ψ̌n‖p =

∥∥∥∥∥f ∗ ψ̌n ∗
(

N∑
k=−N

φ̌bn
a
c+k

)∥∥∥∥∥
p

≤
N∑

k=−N

‖f ∗ φ̌bn
a
c+k‖p‖ψ̌0‖1.

As moreover 〈n〉 ∼= 〈bn/ac+ k〉 for |k| ≤ N, we get

‖f(a·)‖Eαp =
∑
n∈Z

〈n〉α‖f(a·)∗φ̌n‖p .
∑
n∈Z

∑
|k|≤N

〈n〉α‖f∗φ̌bn/ac+k‖p .
∑
n∈Z

〈n〉α‖f∗φ̌n‖p = ‖f‖Eαp .

Exchanging a and 1/a gives the estimate the other way around.

(6): If 〈n〉α‖Jαf ∗ φ̌n‖p ∼= ‖f ∗ φ̌n‖p for any f ∈ E0
p , then clearly, Jα : E0

p → Eα
p is an

isomorphism. We have

‖Jαf ∗ φ̌n‖p = ‖f ∗ φ̌n ∗ (〈·〉−αφ̃n)̌ ‖p
≤ ‖f ∗ φ̌n‖p‖(〈·〉−αφ̃n)̌ ‖1
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and

‖(〈·〉−αφ̃n)̌ ‖1 ≤ ‖〈·〉−αφ̃n‖W 1
p
. 〈n〉−α.

Since this is also valid for negative α, we get

‖Jαf ∗ φ̌n‖p . 〈n〉−α‖f ∗ φ̌n‖p = 〈n〉−α‖J−αJαf ∗ φ̌n‖p . ‖Jαf ∗ φ̌n‖p.

The case Jα : B0
∞,1 → Bα∞,1 is proved in the same manner, see [1, Lemma 6.2.7 and Theorem

6.2.7]. �

For 2 ≤ p ≤ ∞, the space Eα
p can be described in terms of an atomic decomposition, both

in space variable and, once spatially localized, in phase variable in the spirit of the Fourier
series.

We give first a heuristic view of these two steps. Let f ∈ Eα
p .

(1) Space decomposition. Consider the rapidly decreasing function φ̌0 on R. Discrete
translations of it sum up to a constant. Indeed, we have,

1

2π
=

1

2π
φ0(0) = [φ0δ0 ]̌ = [

∑
k∈Z

φ0(·)δ0(· − 2k)]̌ =
∑
m∈Z

φ̌0(· − πm),

where we used the Poisson summation formula in the fourth equation.

(2) Fourier series expansion. Then split up f =
∑

m∈Z fm, where fm = fφ̌0(· − mπ) is

concentrated around mπ. Consider the Fourier series expansion fm =
∑

n∈Z anme
in(·) valid

on ((m− 1
2
)π, (m+ 1

2
)π).

The next proposition will show that the two steps give a representation f =
∑

m,n∈Z anme
in(·)

φ̌0(· − πm) and that the norm of f can be expressed in terms of the anm’s.
We let

`1
α(`p) = `1(Z, 〈n〉α, `p(Z)) =

{
(anm) ∈ CZ×Z : ‖anm‖`1α(`p) =

∑
n∈Z

〈n〉α‖(anm)m‖`p(Z) <∞

}
,

equipped with the norm ‖anm‖`1α(`p) above.
The decomposition in the next proposition is not independent of the choice of the (φn)n,

so we fix one. We further assume that suppφ0 ⊂ (−1, 1) and choose some η0 ∈ C∞c (R) such
that supp η0 ⊂ [−1, 1] and η0(t) = 1 for all t ∈ suppφ0. Put ηn = η0(· − n).

Proposition 3.3. Let α ≥ 0 and 2 ≤ p ≤ ∞.
(1) The linear mappings

T : Eα
p → `1

α(`p), f 7→ (Tf)nm =
1

2

∫
R
f(t)e−intη̂0(t− πm)dt

and

(3.2) S : `1
α(`p)→ Eα

p , (anm) 7→
∑
n∈Z

∑
m∈Z

anme
in(·)φ̌0(· − πm)
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are well-defined, continuous and ST = IdEαp . Here, in the definition of S, the sum
over m converges locally uniformly, and the sum over n converges in Eα

p . In particular,
every f ∈ Eα

p has a decomposition

f(t) =
∑
nm

anme
intφ̌0(t− πm)

such that
‖f‖Eαp ∼=

∑
n∈Z

〈n〉α‖(anm)m‖p.

(2) In the particular case that p = ∞ and f ∈ Eα
∞ is π-periodic, (Tf)nm = (−1)nman

with an = 1
2

∫
R f(t)e−intη̂0(t)dt, and the above decomposition of f reduces to the

Fourier series:

f(t) = STf(t) =
∑
n∈Z

(∑
m∈Z

(−1)nmφ̌0(t− πm)

)
ane

int =
∑
n∈2Z

ane
int.

Conversely, any π-periodic function f(t) =
∑

n∈2Z ane
int belongs to Eα

∞ if and only if
we have

∑
n∈2Z〈n〉α|an| <∞, and in this case, ‖f‖Eα∞ ∼=

∑
n∈2Z〈n〉α|an|.

Proof. (1): Let f ∈ Eα
p and anm = (Tf)nm. For any n ∈ Z, ‖(anm)m‖p . ‖f ∗ φ̃n ‖̌p. Indeed,

if p =∞, then

|anm| =
1

2
|
∫
R
f(t)[ηne

iπm(·) ]̂ (t)dt|

≤ |〈f̂ , ηneiπm(·)〉|

= |〈f̂ φ̃n, ηneiπm(·)〉|

= |〈f ∗ φ̃n ,̌ [ηneiπm(·) ]̂ 〉|

≤ ‖f ∗ φ̃n ‖̌∞‖[ηneiπm(·) ]̂ ‖1,

and the last factor is a constant. Thus, ‖anm‖∞ . ‖f∗φ̃n ‖̌∞. If p = 2, then by the Plancherel
identity for both Fourier series and Fourier transforms,

‖(anm)m‖2 = ‖f̂ηn‖L2(R) = ‖f ∗ η̌n‖L2(R) = ‖f ∗ η̌n ∗ φ̃n ‖̌L2(R) ≤ ‖η̌0‖L1(R)‖f ∗ φ̃n ‖̌L2(R).

Finally, the case 2 < p <∞ follows by complex interpolation. Thus,

‖Tf‖`1α(`p) =
∑
n∈Z

〈n〉α‖(anm)m‖p .
∑
n∈Z

〈n〉α‖f ∗ φ̃n ‖̌p ≤
1∑

k=−1

∑
n∈Z

〈n+ k〉α‖f ∗ φ̌n‖p . ‖f‖Eαp ,

so T is a bounded operator.
We turn to the operator S and consider a fixed (anm) ∈ `1

α(`p).

• Step 1: For any n ∈ Z,
∑M

m=−M anme
in(·)φ̌0(· − πm) converges locally uniformly as

M →∞ and ‖
∑

m∈Z anme
in(·)φ̌0(· − πm)‖p . ‖(anm)m‖p.

• Step 2:
∑N

n=−N
∑

m∈Z anme
in(·)φ̌0(· − πm) converges in Eα

p as N →∞.
• Step 3: If anm = (Tf)nm for some f ∈ Eα

p , then
∑

m∈Z anme
in(·)φ̌0(· − πm) = f ∗ φ̌n

for any n ∈ Z.
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• Step 4: Conclusion.

Step 1: Since φ0 ∈ C∞0 (R), φ̌0 is rapidly decreasing, and thus in particular, for any R > 0,∑
m∈Z

sup
|t|≤R
|φ̌0(t− πm)| .

∑
m∈Z

sup
|t|≤R
〈t− πm〉−2 <∞.

Hence for any F ⊂ Z finite,

sup
|t|≤R
|
∑
m∈F

anme
intφ̌0(t− πm)| ≤ ‖(anm)m‖∞

∑
m∈F

sup
|t|≤R
|φ̌0(t− πm)|.

This shows the locally uniform convergence (note that ‖(anm)m‖∞ ≤ ‖(anm)m‖p). For the
claimed estimate, we proceed again by complex interpolation. If p =∞, for any t ∈ R fixed,

|
∑
m∈Z

anme
intφ̌0(t− πm)| ≤ ‖(anm)m‖∞

∑
m∈Z

|φ̌0(t− πm)|

≤ ‖(anm)m‖∞
∑
m∈Z

sup
|t|≤π
|φ̌0(t− πm)|

. ‖(anm)m‖∞.
For p = 1, ∫

R
|
∑
m∈Z

anme
intφ̌0(t− πm)|dt ≤

∑
m∈Z

|anm|
∫
R
|φ̌0(t− πm)|dt

. ‖(anm)m‖1,

since
∫
R |φ̌0(t− πm)|dt does not depend on m and is finite.

Step 2: Let n, n0 ∈ Z. Since the series in step 1 converges locally uniformly and is bounded
in L∞(R), by dominated convergence[∑

m∈Z

anmφ̌0(· − πm)ein(·)

]
∗ φ̌n0 =

∑
m∈Z

anm
[
φ̌0(· − πm)ein(·) ∗ φ̌n0

]
.

We keep in mind that
[φ̌0(· − πm)ein(·) ]̂ = eiπnmφne

−iπm(·).

The support condition on (φn)n yields that the sum vanishes for |n−n0| ≥ 2. For |n−n0| ≤
1, by step 1,

‖[
∑
m∈Z

anmφ̌0(· − πm)ein(·)] ∗ φ̌n0‖p ≤ ‖
∑
m∈Z

anmφ̌0(· − πm)ein(·)‖p‖φ̌n0‖1

. ‖(anm)m‖∞.
Thus for any F ⊂ Z finite and F ∗ = {n+ k : n ∈ F, k = −1, 0, 1},

‖
∑
n∈F

∑
m∈Z

anmφ̌0(· − πm)ein(·)‖Eαp =
∑
n0∈Z

〈n0〉α‖
∑
n∈F

∑
m∈Z

anmφ̌0(· − πm)ein(·) ∗ φ̌n0‖p

.
1∑

k=−1

∑
n∈F

〈n+ k〉α‖(anm)m‖p
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.
∑
n∈F ∗
〈n〉α‖(anm)m‖p.

This shows the stated convergence of the double series defining S(anm) and that S is a
bounded operator.

Step 3: Let ψ ∈ C∞c (R).

〈f ∗ φ̌n, ψ〉 = 〈f̂φn, ψ̌〉

= 〈f̂ηn, φnψ̌〉

= 〈f̂ηn,
∑
m∈Z

1

2
〈e−iπm(·), φnψ̌〉eiπm(·)〉

=
∑
m

1

2
〈f̂ηn, eiπm(·)〉〈φne−iπm(·), ψ̌〉

=
∑
m

1

2
〈f̂ηn, eiπm(·)〉e−iπnm〈φ̌0(· − πm)ein(·), ψ〉

=
∑
m

anm〈ein(·)φ̌0(· − πm), ψ〉

= 〈
∑
m

anme
in(·)φ̌0(· − πm), ψ〉.

In the third equality, we develop φnψ̌ in a Fourier series. Note that its coefficients are rapidly
decreasing, since φnψ̌ ∈ C∞c (R). Hence, the sum can be taken out in the subsequent equal-
ity. In the last equality, the sum can be taken inside by dominated convergence, because
‖(anm)m‖∞ ≤ ‖(anm)m‖p <∞.

Step 4: According to step 3, for any f ∈ Eα
p and n ∈ Z,

f ∗ φ̌n =
∑
m

anme
in(·)φ̌0(· − πm).

Take the sum over n ∈ Z on both sides of this equation. The left hand side converges to
f in Eα

p after Proposition 3.2, and the right hand side converges to STf. This shows f = STf.

(2): Let f ∈ Eα
∞ be π-periodic.

(Tf)nm =

∫
R
f(t)e−intη̂0(t− πm)dt =

∫
R
f(t− πm)e−intη̂0(t− πm)dt

= e−inmπ
∫
R
f(t)e−intη̂0(t)dt = (−1)nman.

We show that ∑
m

(−1)nmφ̌0(t− πm) =

{
π n even

0 n odd
.
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For the case n even, note that
∑

m φ̌0(t − πm) is a π-periodic function and thus admits a
Fourier series expansion

∑
k∈Z αke

2ikt. Hence it suffices to check that αk = δk=0, for which we

refer to [16, Proof of 5.3]. For the case n odd, note that
∑

m(−1)mφ̌0(t−πm) is 2π-periodic.
Similarly, one can compute the Fourier coefficients [16, Proof of 5.3].

This shows that STf is the Fourier series of f, and the “only if” part. For the “if”
part, define anm = (−1)nman for even n and anm = 0 for odd n. Then f = S(anm) and
‖f‖Eα∞ . ‖anm‖`1α(`∞) =

∑
n∈2Z〈n〉α|an| .

∑
n∈Z〈n〉α|a2n| . ‖f‖Eα∞ . �

Remark 3.4. The decomposition f(t) =
∑

n,m anme
intφ̌0(t − πm) is not unique. Indeed,

let η
(1)
0 ≥ η

(2)
0 be two different choices of η0 with corresponding T (1), T (2) as in the above

proposition. Let f ∈ Eα
p such that f̂(t) > 0 for t ∈ [−1, 1]. Then

(T (1)f)00 =
1

2
〈f̂ , η(1)

0 〉 >
1

2
〈f̂ , η(2)

0 〉 = (T (2)f)00.

From Proposition 3.3 we obtain the following optimal embedding result between Eα
∞ and

the classical Besov spaces Bα∞,1.

Proposition 3.5. Let α ≥ 0.

(1) If β ≥ α + 1, then Bβ∞,1 ↪→ Eα
∞ ↪→ Bα∞,1.

(2) If β < α + 1, then Bβ∞,1 6↪→ Eα
∞.

(3) If β > α + 1
2
, then for any f ∈ Bβ∞,1 periodic or with compact support, f ∈ Eα

∞ and
there exists C > 0 depending on the period or the length of the support such that
‖f‖Eα∞ ≤ C‖f‖Bβ∞,1 .

(4) If β < α + 1
2
, then there exists a periodic f ∈ Bβ∞,1 such that f 6∈ Eα

∞.

Proof. (1): Let (φk)k∈Z be an equidistant partition of unity and (ψn)n∈Z a dyadic one, as at

the beginning of Section 3. Further, let ψ̃n =
∑n+1

k=n−1 ψk. For n ∈ N, we let An = {k ∈ N :

2n−1 ≤ k ≤ 2n−1}, A−n = −An and A0 = {0}. Further we let Ãn = An−1∪An∪An+1. Then⋃
n∈ZAn = Z as a disjoint union,

∑
k∈Ãn φkψn = ψn and for k ∈ Ãn, 〈k〉 ∼= 2|n|. Therefore,

‖f‖Bα∞,1 =
∑
n∈Z

2|n|α‖f ∗ ψ̌n‖∞ ≤
∑
n∈Z

2|n|α
∑
k∈Ãn

‖f ∗ ψ̌n ∗ φ̌k‖∞

.
∑
k∈Z

〈k〉α‖f ∗ φ̌k‖∞‖ψ̌n‖1 . ‖f‖Eα∞ .

In the other direction, as cardAn . 2|n| and for k ∈ An, ψ̃nφk = φk,

‖f‖Eα∞ =
∑
n∈Z

∑
k∈An

〈k〉α‖f ∗ φ̌k ∗ ψ̃n ‖̌∞ .
∑
n∈Z

2|n|α2|n|‖f ∗ ψ̃n ‖̌∞ . ‖f‖Bα+1
∞,1

.

(2): Since Jα in Proposition 3.2 (6) is an isomorphism B0
∞,1 → Bα∞,1 and E0

∞ → Eα
∞ simul-

taneously, it suffices to consider the case α = 0, β < 1. Let

fN(t) =
∑
〈n〉−1eintφ̌0(t− πn),
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where the sum ranges over all even n ∈ N such that 1 ≤ n ≤ N. For such an n fixed, we
have in turn

‖fN ∗ φ̌n‖∞ = ‖
∑

k≤N even

〈k〉−1(φkφne
iπn(·))̌ ‖∞ = 〈n〉−1‖(φ2

n)̌ (t− πn)‖∞,

and the last factor is a constant. Thus, ‖fN‖E0
∞ ≥

∑N
n=1 ‖fN ∗ φ̌n‖∞ &

∑
n≤N even〈n〉−1 →∞

for N →∞. On the other hand, fN is bounded in Bβ∞,1. Indeed, ‖fN‖Bβ∞,1 . ‖fN‖∞+‖f ′N‖∞
by [25]. But

‖fN‖∞ ≤ sup
t∈R
|
N∑
n=1

〈n〉−1eintφ̌0(t− πn)| ≤ sup
t∈R

∞∑
n=1

|φ̌0(t− πn)| <∞, and

‖f ′N‖∞ ≤ sup
t∈R
|
N∑
n=1

〈n〉−1neintφ̌0(t− πn)|+ sup
t∈R
|
N∑
n=1

〈n〉−1eint(φ̌0)′(t− πn)|

≤ sup
t∈R

∞∑
n=1

|φ̌0(t− πn)|+ |(φ̌0)′(t− πn)| <∞.

(3): Since Jα maps periodic functions to periodic functions, we can again assume α = 0. By

[25], any f ∈ Bβ∞,1 is β′-Hölder continuous with β′ ∈ (1
2
, β). Then by [15, p. 34], the Fourier

coefficients an of f are absolutely summable. By Proposition 3.2 (5), we can assume that f
is π-periodic, and by Proposition 3.3, ‖f‖E0

∼=
∑

n∈Z |an| <∞.
If f has compact support, say [N π

2
, (N+1)π

2
] for some N ∈ Z, then g =

∑
m∈Z f(·−mπ) is

periodic, and by [25, p. 110], ‖g‖Bβ∞,1
∼= ‖f‖Bβ∞,1 . Thus, the first part yields g ∈ Eα

∞, and con-

sequently ‖f‖Eα∞ = ‖gϕ‖Eα∞ . ‖g‖Eα∞‖ϕ‖Eα∞ <∞, where ϕ ∈ C∞c (R) is chosen appropriately.

(4): Again we can assume α = 0. Choose a periodic 1
2
-Hölder continuous function f whose

Fourier coefficients are not absolutely summable [15, p. 36]. By [25], f ∈ Bβ∞,1, and by
Proposition 3.3 (2), f 6∈ E0

∞. �

4. The Eα
∞ calculus

Throughout the section, we let iB be a generator of a C0-group U(t) = eitB on some space
X not containing c0 isomorphically. Then B is a strip-type operator and we can consider
its extended holomorphic calculus from Section 2.2. Boyadzhiev and deLaubenfels [2], see
also [4, Theorem 2.4], have shown that if X is a Hilbert space, then an exponential growth
‖U(t)‖ . eω|t| can be characterized by the strip height ω of the bounded H∞ functional
calculus of B (up to ω ± ε). This result has been extended by Kalton and Weis to spaces
X with property (α), where the boundedness of e−ω|t|U(t) is replaced by γ-boundedness [13,
Theorem 6.8].

We will show in this section that there is an analogous characterization of polynomial
group growth

(4.1) ‖U(t)‖ ≤ C(1 + |t|)α
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for some C, α > 0, in terms of a Eα
∞ functional calculus. In fact, we shall construct this

calculus for one distinguished group W (t), which will be a shift group satisfying (4.1), on a
space `∞γ (L2, X) defined in terms of a Gaussian function space. The Eα

∞ functional calculus
for a general group U(t) is then obtained by a dilation to that case, in the sense that there
exists an injection I from X to `∞γ (L2, X) and a surjection P from `∞γ (L2, X) back to X
such that the groups U(t) and W (t) are linked by the equation U(t) = PW (t)I. Dilations
are a classical tool in the study of (semi)groups, see e.g. the book of Davies [5, Chapter 6]
for a survey.

Heuristically, we want to define f(B) by making sense of the “windowed Fourier inversion
formula”

(4.2) f(B)x =
1

2π

∫
R
f̂(t)U(t)xdt =

1

2π

∑
n∈Z

∫
R
f̂(t)φn(t)U(t)xdt,

where f̂ is partitioned by some equidistant Fourier partition of unity (φn)n∈Z. We shall see
that f ∈ Eα

∞ is a natural condition in order that the above sum converge.
In Definition 4.1 through Proposition 4.7, we assume that U(t) satisfies the polynomial

bound (4.1) for some α ≥ 0, and that {U(t) : t ∈ [0, 1]} is γ-bounded. Recall the Gaussian
function spaces and γ-boundedness from Section 2.

Definition 4.1. Let (φn)n be an equidistant partition of unity. We set `1(L2) = {f : R →
C : ‖f‖`1(L2) =

∑
n∈Z ‖φnf‖L2(〈t〉−2αdt) < ∞} which is a Banach space with respect to

‖f‖`1(L2). For an element u ∈ B(`1(L2), X), we have φnu ∈ B(L2(〈t〉−2αdt), X) where we put
[φnu](f) = u(φnf). Then we let

`∞γ (L2, X) = {u ∈ B(`1(L2), X) : ‖u‖`∞γ (L2,X) = sup
n∈Z
‖φnu‖γ(L2(〈t〉−2αdt),X) <∞}.

We let ˜̀∞γ be the subspace of `∞γ (L2, X) consisting of elements of the form f : R→ X such

that φnf ∈ P2(R, X), so a g ∈ `1(L2) is mapped to
∫
R g(t)f(t)〈t〉−2αdt.

Lemma 4.2.

(1) The space `∞γ (L2, X) is complete, and ˜̀∞γ is a dense subspace of `∞γ (L2, X).

(2) The norm of `∞γ (L2, X) is independent of the choice of (φn) and moreover, one has
the norm equivalence

‖u‖`∞γ (L2,X)
∼= sup

n∈Z
〈n〉−α‖φnu‖γ(L2(dt),X).

Proof. We show the completeness of `∞γ (L2, X). Let (uk)k∈N be a sequence in `∞γ (L2, X) such
that

∑
k ‖uk‖`∞γ (L2,X) is finite. It is easy to check that ‖u‖B(`1(L2),X) . ‖u‖`∞γ (L2,X) (see also

[27, p. 12]). Thus, there exists u ∈ B(`1(L2), X) such that
∑

k uk converges to u in the latter
space. We show that u belongs to `∞γ (L2, X) and that the convergence holds in `∞γ (L2, X).

It is easy to check that we have φn
∑N

k=1 uk → φnu in γ(L2(〈t〉−2αdt), X). Thus,

sup
n∈Z
‖φnu‖γ(L2(〈t〉−2αdt),X) = sup

n
‖
∑
k

φnuk‖γ

≤ sup
n

∑
k

‖φnuk‖γ
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≤
∑
k

sup
n
‖φnuk‖γ

=
∑
k

‖uk‖`∞γ (L2,X) <∞,

and therefore, u ∈ `∞γ (L2, X). Now replacing in the above argument u by u−
∑N

n=1 uk, which

equals
∑∞

N+1 uk in B(`1(L2), X), shows the convergence u =
∑

k uk in `∞γ (L2, X). We have

shown that `∞γ (L2, X) is complete and turn to the density statement.

Let u ∈ `∞γ (L2, X) arbitrarily. Decomposing u =
∑2

k=0

∑
n≡k (3) φnu =: u0 + u1 + u2,

one sees that it is enough to show that u0, u1, u2 can be approximated by elements in ˜̀∞γ .
We consider only u0 in the sequel, as u1 and u2 can be treated similarly. Fix ε > 0. For
n ≡ 0 (3), let vn ∈ L2(〈t〉−2αdt) ⊗ X with ‖vn − φ̃nu0‖γ(L2(〈t〉−2αdt),X) < ε. Such a vn exists,
as L2(〈t〉−2αdt) ⊗ X is dense in γ(L2(〈t〉−2αdt), X). Let v =

∑
n≡0 (3) vn. We claim that

v ∈ `∞γ (L2, X). For f ∈ `1(L2) with compact support, one has

‖v(f)‖X = ‖
∑

n≡0 (3)

vn(f)‖ = ‖
∑

n≡0 (3)

vn(
n+1∑

k=n−1

φkf)‖,

where the sum is finite if we assume that φ · vn = 0 for suppφ ∩ [n− 2, n+ 2] = ∅, which is
obviously possible. Thus

‖v(f)‖X ≤ sup
n
‖vn‖L2(〈t〉−2αdt)→X

∑
n

‖φnf‖L2(〈t〉−2αdt)

≤
(

sup
n∈Z
‖φ̃nu0‖γ(L2(〈t〉−2αdt),X) + ε

)
‖f‖`1(L2) ≤

(
2‖u0‖`∞γ (L2,X) + ε

)
‖f‖`1(L2).

As such f form a dense subset of `1(L2), v belongs to B(`1(L2), X). Moreover, putting vn = 0
for n 6≡ 0 (3), we have

‖v‖`∞γ (L2,X) = sup
n
‖φnv‖γ = sup

n
‖φn(vn−1 + vn + vn+1)‖γ ≤ sup

n≡0 (3)

‖vn‖γ ≤ 3‖u0‖`∞γ (L2,X) + ε.

Thus v belongs to `∞γ (L2, X). Also

‖v−u0‖ ˜̀∞
γ

= sup
n
‖φnv−φnu0‖γ = sup

n∈Z
‖φn(vn−1+vn+vn+1)−φnφ̃nu0‖γ ≤

(
sup
n∈Z
‖φn‖∞

)
ε . ε.

Part (2) of the lemma is left to the reader. �

We define the operators

I = I(U) : X −→ `∞γ (L2, X), x 7→ U(−t)x
and

P = P (U) : `∞γ (L2, X) −→ X, f 7→
∫
R
χ[0,1](t)U(t)[f(t)]dt,

where f ∈ ˜̀∞γ . Then P extends boundedly to `∞γ (L2, X), by density ˜̀∞γ ⊂ `∞γ (L2, X) and the
next lemma.
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Lemma 4.3. The operators I and P are bounded.

Proof. Since U(t) is a group, {U(t) : t ∈ [n, n+1]} = U(n)◦{U(t) : t ∈ [0, 1]}, and therefore,

γ({U(t) : t ∈ [n, n+ 1]}) ≤ ‖U(n)‖γ({U(t) : t ∈ [0, 1]}) . 〈n〉α.

Thus, for n ∈ Z, by Lemma 2.1 (3), φnU(−·)x belongs to γ(L2(dt), X) and satisfies

‖φn(t)U(−t)x‖γ(L2(dt),X) ≤ ‖φn‖L2(dt)γ({U(−t) : t ∈ [n− 1, n+ 1]})‖x‖ . 〈n〉α‖x‖.

Thus, I is bounded. Now let f ∈ ˜̀∞γ and x′ ∈ X ′. We have by Lemma 2.1

|〈Py, x′〉| = |
∫
R
χ[0,1](t)〈U(t)f(t), x′〉|

≤
∫
R
|〈χ[0,1](t)U(t)f(t), χ[0,1](t)x

′〉|dt

≤ ‖χ[0,1]U(·)f‖γ(L2(dt),X)‖χ[0,1]x
′‖γ(L2(dt),X′)

≤ γ({U(t) : t ∈ [0, 1]})‖χ[0,1] (φ−1 + φ0 + φ1) f‖γ(L2(dt),X)‖χ[0,1]‖L2(dt)‖x′‖X′

.
1∑

n=−1

‖φnf‖γ(L2(dt),X)‖x′‖X′

. ‖f‖`∞γ (L2,X)‖x′‖X′ .

Taking the supremum over ‖x′‖ ≤ 1 shows the boundedness of P. �

For t ∈ R, let

W (t) : `∞γ (L2, X)→ `∞γ (L2, X), f 7→ f(· − t)

be the shift operator, where the definition extends boundedly to `∞γ (L2, X), by the next
proposition.

Proposition 4.4. The group t 7→ W (t) just defined satisfies ‖W (t)‖ ≤ C(1 + |t|)α.

Proof. Let n ∈ Z and t ∈ R, and put m0 = bn − tc the rounded down. Then
∑m0+2

m=m0−1 φm

equals 1 on suppφn(· + t) ⊂ [(n − t) − 1, (n − t) + 1]. Let y ∈ ˜̀∞γ . Note that the shift

f 7→ f(· − t) is an isometry on L2(dt). Thus, by Lemma 2.1, y 7→ y(· − t) also defines an
isometry on γ(L2(dt), X). Therefore,

‖φnW (t)y‖γ(L2(dt),X) = ‖φny(· − t)‖γ
= ‖φn(·+ t)y‖γ

= ‖
m0+2∑

m=m0−1

φmφn(·+ t)y‖γ

≤ ‖φn(·+ t)‖∞
m0+2∑

m=m0−1

‖φmy‖γ.
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Note that sup

{
〈m〉
〈n〉

: n ∈ Z, m− bn− tc ∈ {−1, 0, 1, 2}
}
∼= 〈t〉. Then

‖W (t)y‖`∞γ (L2,X) . sup
n∈Z
〈n〉−α

m0+2∑
m=m0−1

‖φmy‖γ

= sup
n∈Z
〈n〉−α

m0+2∑
m=m0−1

〈m〉α
(
〈m〉−α‖φmy‖γ

)
≤ sup

n∈Z
〈n〉−α

m0+2∑
m=m0−1

〈m〉α‖y‖`∞γ (L2,X)

. 〈t〉α‖y‖`∞γ (L2,X).

�

As W (t) might not be strongly continuous on `∞γ (L2, X), we consider the subspace

Z = {u ∈ `∞γ (L2, X) : W (t)u→ u in `∞γ (L2, X) as t→ 0}.
It is easy to check that Z is closed and W (t)-invariant for any t ∈ R. By construction, W (t)
is strongly continuous on Z. Furthermore, Im(I) ⊂ Z, since

‖W (t)U(−·)x− U(−·)x‖`∞γ (L2,X) = sup
n∈Z
〈n〉−α‖φn (U(t− ·)x− U(−·)x) ‖γ(L2(dt),X)

≤ sup
n∈Z

γ ({U(s) : s ∈ [n− 1, n+ 1]}) 〈n〉−α‖U(t)x− x‖X

→ 0 (t→ 0).

Also Z ∩ ˜̀∞γ is dense in Z, the verification is left to the reader.
In the sequel, the shift group W (t) will serve as a universal model in the class of polyno-

mially bounded, γ-bounded groups. The reason is that it dilates the original group U(t) in
the sense of the following proposition.

Proposition 4.5. Let I, P and W (t) be defined as above. Then for any t ∈ R, the following
diagram commutes:

X
U(t)

//

I
��

X

`∞γ (L2, X)
W (t)

// `∞γ (L2, X)

P

OO

Proof. For x ∈ X and t ∈ R, we have

PW (t)I(x) = PW (t)U(−·)x = PU(t− ·)x =

∫
R
χ[0,1](s)U(s)U(t− s)xds

=

∫
R
χ[0,1](s)U(t)xds = U(t)x.

�
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Let us now investigate the functional calculus of the strongly continuous part of W (t) on

Z ⊂ `∞γ (L2, X) (or its generator B̃, where W (t) = exp(itB̃)).

Proposition 4.6. Let ω > 0.

(1) For any f ∈ H∞0 (Strω), the following representation formula holds

(4.3) f(B̃)y =
1

2π

∫
R
f̂(t)W (t)ydt (y ∈ ˜̀∞γ ∩ Z).

(2) There exists some C > 0 such that for any f ∈ H∞(Strω), we have ‖f(B̃)‖ ≤
C‖f‖Eα∞ . In particular, B̃ has a bounded H∞ calculus.

(3) Moreover, this calculus extends continuously to a mapping Ψ : Eα
∞ → B(Z), and

Ψ(f) =
∞∑

n=−∞

(
f ∗ φ̌n

)
(B̃) (f ∈ Eα

∞).

Proof. (1): We let f ∈ H∞0 (Strω). By the Cauchy integral formula, also f (k) ∈ H∞0 (Strω)

for any k ∈ N, so |f(z)|, |f ′(z)|, . . . , |f (k)(z)| . e−ε|Re z|. This implies 〈t〉kf̂(t) ∈ C0(R), so

choosing k > α+ 1, this shows that f̂ belongs to L1(〈t〉αdt). It is easy to check that for such
functions, the holomorphic functional calculus coincides with the Philipps calculus, which
are the left hand resp. right hand side of (4.3).

(2): Let n ∈ Z and y ∈ ˜̀∞γ ∩ Z. First assume f ∈ H∞0 (Strω). In the following calculation,
we use that φn · (ψ ∗ ρ) = 0 as soon as suppψ ⊂ [m− 1,m+ 1], supp ρ ⊂ [k − 1, k + 1] and
|k − (n−m)| > 3.

‖φn
∫
R
f̂(t)W (t)ydt‖γ(L2(dt),X) = ‖φn

∫
R
f̂(t)y(· − t)dt‖γ

= ‖φn

(∑
m∈Z

φmf̂

)
∗

 ∑
|k−(n−m)|≤3

φky

 ‖γ
≤
∑
m,k

‖φn
(
φmf̂

)
∗ (φky)‖γ

≤
∑
m,k

‖φn‖∞‖φmf̂ ∗ (·)‖γ(L2(dt),X)→γ(L2(dt),X)‖φky‖γ.

The above norm of a convolution transfers from the scalar valued L2 space to the Gauss-
ian function space in the following sense: Let T : L2(R, dt) → L2(R, dt) be the con-

volution operator g 7→ (φmf̂) ∗ g. We have 2π‖T‖ = ‖(φmf̂ )̌ ‖∞ = ‖φ̌m ∗ f‖∞, since

2πTg = F (φmf̂ )̌ F−1g, where F is the Fourier transform. It is easy to check that for

g ∈ γ(R, dt,X), we have T⊗g = (φmf̂) ∗ g, where T⊗ is defined in Lemma 2.1. Thus, we

have ‖φmf̂ ∗ (·)‖γ(L2(dt),X)→γ(L2(dt),X) = 2π‖φ̌m ∗ f‖∞. Consequently,

‖f(B̃)y‖`∞γ (L2,X) ≤ sup
n∈Z
〈n〉−α

∑
m,k

‖φ̌m ∗ f‖∞‖φky‖γ(L2(dt),X)



24 CH. KRIEGLER

= sup
n∈Z
〈n〉−α

∑
m,k

‖φ̌m ∗ f‖∞〈m〉α〈m〉−α‖φky‖γ(L2(dt),X)

. ‖f‖Eα∞ sup
k∈Z
〈k〉−α‖φky‖γ(L2(dt),X)

= ‖f‖Eα∞‖y‖`∞γ (L2,X),

where we have used that 〈k〉 . 〈n〉·〈m〉 for the above summing rangem ∈ Z, |k−(n−m)| ≤ 3.

Now let f ∈ H∞(Strω). Recall the functions ψk from (2.2) and that y = limk ψk(B̃)y by
Proposition 2.2. We have fψk ∈ H∞0 (Strω), and thus by the above, for any y ∈ Z,

‖f(B̃)y‖ = lim
k
‖f(B̃)ψk(B̃)y‖ . lim inf

k
‖fψk‖Eα∞‖y‖ . ‖f‖Eα∞ lim inf

k
‖ψk‖Eα∞‖y‖

. ‖f‖Eα∞ lim inf
k
‖ψk‖H∞(Strω)‖y‖ . ‖f‖Eα∞‖y‖.

(3): This follows from Proposition 3.2 (2). �

Then the functional calculus Ψ of W (t) has the following convergence property.

Proposition 4.7. If (fk)k ⊂ Eα
∞ with

(1)
∑

n∈Z〈n〉α supk ‖fk ∗ φ̌n‖∞ <∞,
(2) fk(t)→ f(t) for all t ∈ R for some function f,

then f ∈ Eα
∞ and

(4.4) Ψ(fk)y → Ψ(f)y (y ∈ Z).

Note that H∞(Strω) ⊂ Eα
∞, and that the above extends the H∞ calculus convergence lemma:

If (fk)k ⊂ H∞(Strω) is a bounded sequence for some ω > 0, and fk(z)→ f(z) pointwise on
Strω, then (1) and (2) above are satisfied for any α ≥ 0.

Proof. We have f ∗ φ̌n(t) = limk fk ∗ φ̌n(t) for any t ∈ R by dominated convergence. In
particular, |f ∗ φ̌n(t)| ≤ supk |fk ∗ φ̌n(t)| ≤ supk ‖fk ∗ φ̌n‖∞. Thus, f ∈ Eα

∞. As the sequence

(fk)k is bounded in Eα
∞ by condition (1), it suffices to check (4.4) on the dense subset ˜̀∞γ ∩Z.

If y ∈ ˜̀∞γ ∩ Z and N ∈ N, then

‖Ψ(f)y −Ψ(fk)y‖ ≤ ‖
∑
|n|≤N

(f − fk) ∗ φ̌n(B̃)y‖+
∑
|n|>N

‖(f − fk) ∗ φ̌n(B̃)y‖.

For the first sum, note that (f−fk)∗φ̌n
k→ 0 pointwise on R and that supk ‖(f−fk)∗φ̌n‖∞ <

∞. Thus, for any g ∈ L2(dt),
[
(f − fk) ∗ φ̌n

]
g → 0 in L2(dt). This carries over to

2π
[
(f − fk) ∗ φ̌n

]
(B̃)(φjy) =

(
(f − fk) ∗ φ̌n

)
ˆ∗ (φjy)→ 0 in γ(L2(dt), X),

for j, n ∈ Z, where we use once again Lemma 2.1 and the fact that pointwise multiplication
and convolution are conjugated by the Fourier transform. One now easily deduces that

(f − fk) ∗ φ̌n(B̃)y
k→ 0 in Z.

The second sum, we simply estimate by 2C
∑

n≥|N |〈n〉α supk ‖fk ∗ φ̌n‖∞‖y‖, which con-

verges to 0 for N →∞. We have proved the convergence property (4.4).
It remains to show that this entails the H∞ calculus convergence property. Let f ∈

H∞(Strω) and |θ| < ω. By the Cauchy integral formula, f ∗ φ̌n(t) = f(· − iθ) ∗ φ̌n(· − iθ)(t),
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so that ‖f ∗ φ̌n‖L∞(R) ≤ ‖f‖∞,θ‖φ̌n(· − iθ)‖L1(R). But |φ̌n(t+ iθ)| = |φ̌0(t+ iθ)|enθ. Choosing

nθ < 0, we get ‖f ∗ φ̌n‖L∞(R) . e−|n|θ‖f‖∞,θ. Now consider the sequence (fk)k ⊂ H∞(Strω).
Applying the above to f = fk gives

(4.5)
∑
n∈Z

〈n〉α sup
k
‖fk ∗ φ̌n‖∞ ≤

(∑
n∈Z

e−n|θ|〈n〉α
)

sup
k
‖fk‖∞,ω,

and the last sum is finite for any α ≥ 0. �

Definition 4.8. Let U(t) be a C0-group and B its generator. Let ω > 0. Then B is said to
have a bounded Eα

∞ calculus if there exists C > 0 such that

‖f(B)‖ ≤ C‖f‖Eα∞ (f ∈ H∞(Strω)).

By density of H∞(Strω) in Eα
∞ for any ω, this definition is independent of ω.

The main theorem of this section reads as follows.

Theorem 4.9. Let B be a 0-strip-type operator on some space X not containing c0 iso-
morphically such that iB generates a strongly continuous group U(t) = eitB, and let further
α ≥ 0. Assume that {U(t) : t ∈ [0, 1]} is γ-bounded. Let `∞γ (L2, X) be as in Definition 4.1
and W (t) as before. Then the following are equivalent.

(1) ‖U(t)‖ . 〈t〉α and B has a bounded H∞(Strω) calculus for some ω > 0.
(2) B has a bounded Eα

∞ calculus.
(3) U(t) has a dilation to the shift group W (t) on `∞γ (L2, X), i.e. there exist some

bounded operators I : X → `∞γ (L2, X) and P : `∞γ (L2, X)→ X such that

X
U(t)

//

I
��

X

`∞γ (L2, X)
W (t)

// `∞γ (L2, X)

P

OO

Proof. (1) =⇒ (3): This is the content of Proposition 4.5.

(3) =⇒ (2): By Proposition 4.6, the generator B̃ of W (t) on Z ⊆ ˜̀∞γ has a bounded Eα
∞ cal-

culus. Let f ∈ H∞0 (Strω) for some ω > 0. As in the proof of Proposition 4.6 (1), one can show

that for arbitrary x ∈ X, f(B)x = 1
2π

∫
R f̂(t)U(t)xdt. Thus, f(B)x = 1

2π

∫
R f̂(t)PW (t)Ixdt =

Pf(B̃)Ix. From this, we immediately deduce that ‖f(B)‖ ≤ ‖P‖ ‖f(B̃)‖ ‖I‖ . ‖f‖Eα∞ . As
H∞(Strω) ↪→ Eα

∞, this entails that B has a bounded H∞ calculus. It is easy to check now
that Definition 4.8 is satisfied.
(2) =⇒ (1): If B has a bounded Eα

∞ calculus, then it has also a bounded H∞(Strω)
calculus for any ω > 0, since H∞(Strω) ⊂ Eα

∞. Further, we have U(t) = ft(B) with
ft(s) = eits, so it only remains to estimate ‖ft‖Eα∞ . But ft ∗ φ̌n(s) = eitsφn(t), whence
‖ft‖Eα∞ =

∑
n: |n−t|≤1〈n〉α|φn(t)| ∼= 〈t〉α. �

Remark 4.10.
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(1) Note that if the underlying Banach space X has in addition property (α), then the
above theorem can be stated without the assumption that {U(t) : t ∈ [0, 1]} is γ-
bounded. Indeed, condition (2) and thus also (3) still implies that B has a bounded
H∞(Strω) calculus, which yields by property (α) that {U(t) : t ∈ [0, 1]} is γ-bounded
[13, Corollary 6.6].

(2) The polynomial growth in condition (1) of the theorem does not guarantee the bound-
edness of the H∞ calculus. A counterexample is the shift group U(t)f(x) = f(x− t)
on Lp(R), which is even uniformly bounded. In [4, Lemma 5.3], it is shown that its
generator does not have a bounded H∞ calculus unless p = 2.

(3) Compare Theorem 4.9 to [4, Theorem 4.10]. The latter tells that B has a bounded
Bα∞,1 calculus for some α > 0, if and only if B has a bounded H∞ calculus Ψω :
H∞(Strω)→ B(X) for any ω > 0 and

‖Ψω‖ . ω−α.

Let BIP = {eit(·) : t ∈ R} ⊂ H∞(Strω). Theorem 4.9 shows that replacing Bα∞,1 by
the smaller class Eα

∞ is equivalent to the restricted condition

‖Ψω|BIP‖ . ω−α.

(4) Assume that the equivalent conditions of the theorem hold. Then it is easy to see

that the dilation can be transferred to the functional calculus by f(B) = Pf(B̃)I for
any f ∈ Eα

∞. We immediately deduce the following properties of that calculus.
(a) The windowed Fourier inversion formula (4.2) holds, where the right hand side

converges in X for any x ∈ X and any f ∈ Eα
∞.

(b) The convergence property, Proposition 4.7, holds literally with U(t) in place of
W (t) and X in place of Z.

5. Operator valued and γ-bounded functional calculus

In this section, we let again X be a space not containing c0 isomorphically and fix some
α ≥ 0. In [19, Theorem 12.7], it is shown that if a sectorial operator A has a bounded
H∞ calculus, then this calculus extends boundedly to a certain class of operator valued
holomorphic functions.

We will show a similar result for 0-strip-type operators B and the Eα
∞ calculus. As for

the H∞ calculus, if the space X has property (α), this procedure can be used to obtain
γ-bounded families of the type {f(B) : f ∈ τ} with convenient τ ⊂ Eα

∞.

Let [B]′ = {T ∈ B(X) : TR(λ,B) = R(λ,B)T ∀ λ ∈ C\R} denote the commutant set of
B. Let further H∞(Strω) = H∞(Strω, [B]′)

= {F : Strω → [B]′ : F analytic and γ({F (z) : z ∈ Strω}) <∞}

and H∞0 (Strω) = H∞0 (Strω, [B]′) =
{
F ∈ H∞(Strω) : ‖F (z)‖ . e−ε|Re z| for some ε > 0

}
.

We define an operator valued calculus by

(5.1) H∞0 (Strω)→ B(X), F 7→ F (B) =
1

2πi

∫
Γ

F (λ)(λ−B)−1dλ
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for the usual contour Γ. Here the restriction of functions with values in [B]′ rather than
B(X) ensures the multiplicativity of the calculus. As in [19, Theorem 12.7], one can show
that if B has a bounded H∞ calculus to some strip height θ < ω, then the calculus in (5.1)
extends boundedly to H∞(Strω). We will not make use of this fact, but rather show that
under polynomial growth of the group U(t) = eitB, there is an extension to an operator
valued variant Eα of the space Eα

∞. We define

Eα = {F : R→ [B]′ strongly cont. and bdd, ‖F‖Eα =
∑
n∈Z

〈n〉αγ({F ∗ φ̌n(t) : t ∈ R}) <∞}

and equip it with the norm ‖F‖Eα . At first, we record the following properties of Eα.

Proposition 5.1. (1) Eα is a Banach algebra.
(2) Eα contains H∞0 (Strω).

(3) For any F ∈ Eα, n ∈ Z and ω > 0, F ∗ φ̌n belongs to H∞(Strω), and
∑M

n=−N F ∗ φ̌n
converges to F in Eα (N,M →∞).

(4) Different choices of the partition (φn)n give the same space Eα with equivalent norms.

The proof is mostly a copy of that of Proposition 3.2, replacing L∞(R) norms by γ-bounds,
and is outlined in [16, Proposition 5.12]. For F : R → B(X) such that {F (t) : t ∈ R} is
γ-bounded, we put

MF : γ(R, X)→ γ(R, X), g(t) 7→ F (t)g(t).

By Lemma 2.1 (3), ‖MFg‖ ≤ γ({F (t) : t ∈ R})‖g‖. Since γ(R, X) is dense in γ(L2(R), X),
MF extends uniquely to a bounded operator

MF : γ(L2(R), X)→ γ(L2(R), X).

Let F be the Fourier transform on L2(R) and denote F⊗ the extension to γ(L2(R), X) given
as in Lemma 2.1 (4). Further let

SF = (F⊗)−1MFF⊗ : γ(L2(R), X)→ γ(L2(R), X)

and

TFg(t) =
1

2π

∫
R
F̂ (t− s)g(s)ds (g ∈ γ(R, X) ∩ L1(R, X), g compact support).

The remaining technicalities for the construction of the calculus are collected in the next
lemma.

Lemma 5.2.

(1) Assume that F ∈ L1(R, B(X)) and F̂ (t) =
∫
R e
−itsF (s)ds has compact support.

Then for any g ∈ γ(R, X) ∩ L1(R, X) with compact support, we have

(5.2) TFg belongs to γ(R, X) and uTF g = SFug.

(2) Let (Fk)k be a sequence of functions R → B(X) such that supk γ({Fk(t) : t ∈
R}) < ∞ and Fk(t) → 0 strongly for almost all t ∈ R. Then for any ψ ∈ L1(R) ∩
L∞(R) and any R > 0, γ({Fk ∗ ψ(t) : |t| ≤ R}) → 0. Consequently, for any g ∈
γ(R, X), ‖MFk∗ψg‖γ(R,X) → 0 as k →∞.
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Proof. (1): First note that {F̂ (t) : t ∈ R} is γ-bounded by the convex hull lemma of γ-
bounded sets, see [3, Lemma 3.2] or [21, Lemma 2.2]. Then by Lemma 2.1 (5) and the
estimate ∫

R
‖F̂ (s)g(t− s)‖γ(R,X)ds ≤ Cγ({F̂ (s) : s ∈ supp F̂})‖g‖γ(R,X) <∞,

we deduce immediately that TFg belongs to γ(R, X). If we let FX : L1(R, X) → C0(R, X)
be the vector valued Fourier transform, i.e. FXg(t) =

∫
R e
−itsg(s)ds, then we can express

FXTFg(t) =
1

2π

∫
R

∫
R
e−itrF̂ (r − s)g(s)drds =

∫
R
e−itsF (t)g(s)ds = F (t)FXg(t).

It is easy to check (see also [13, Example 4.9 b)]) that

uFXf = F⊗uf
as soon as f ∈ γ(R, X) ∩ L1(R, X). Applying this to both f = TFg and f = g, we deduce

F⊗uTF g = uFXTF g = uF (·)FXg(·) = MFuFXg = MFF⊗ug.
Now the claim follows by applying (F⊗)−1 to both sides.

(2): Write Fk ∗ ψ(t) =
∫
|s|≤C Fk(s)ψ(t− s)ds +

∫
|s|≥C Fk(s)ψ(t− s)ds. For the first integral,

note that for any x ∈ X, χ[−C,C](·)Fk(·)x → 0 in L1(R, X) by assumption and dominated
convergence. Since ψ ∈ L∞(R), by [19, Corollary 2.17],

γ({(χ[−C,C]Fk) ∗ ψ(t) : |t| ≤ R})→ 0 for k →∞.
For the second integral, we appeal again to [3, Lemma 3.2], noting that

sup
|t|≤R
‖ψ(t− ·)(1− χ[−C,C])‖1 → 0 for C →∞,

and thus supk, |t|≤R γ({(1 − χ[C,C])Fk ∗ ψ(t) : |t| ≤ R}) → 0. Then the rest follows from
Lemma 2.1. �

Recall `∞γ (L2, X) from Definition 4.1 and its dense subspace ˜̀∞γ of elements that allow

a representation as a function f : R → X. We also let W (t) = eitB̃ be the shift group on
Z ⊂ `∞γ (L2, X), where it is strongly continuous.

Proposition 5.3. Let ω > 0.

(1) For F ∈ H∞0 (Strω) and y ∈ Z ∩ ˜̀∞γ , we have

F (B̃)y =
1

2π

∫
R
F̂ (t)W (t)ydt,

where F (B̃) is defined in (5.1).

(2) There exists a C > 0 such that for any F ∈ H∞0 (Strω), we have ‖F (B̃)‖ ≤ C‖F‖Eα .
(3) Recall the functions ψk(z) = (ez/(1 + ez)2)1/k ∈ H∞(Strω) from (2.2). For any F ∈
H∞(Strω), the strong limit Ψ(F ) = limk(ψkF )(B̃) exists, and extends continuously
to a mapping Ψ : Eα → B(Z) such that

(5.3) Ψ(F ) = F (B̃) (F ∈ H∞0 (Strω)).
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(4) Convergence Property. If (Fk)k ⊂ Eα with
∑

n∈Z〈n〉α supk γ({Fk∗φ̌n(t) : t ∈ R}) <∞
and Fk(t)y → F (t)y for any y ∈ Z and any t ∈ R, then F ∈ Eα and Ψ(Fk)y → Ψ(F )y
for any y ∈ Z.

Proof. (1): This can be shown exactly as in the scalar case, cf. Proposition 4.6.

(2): Let n ∈ Z and y ∈ Z ∩ ˜̀∞γ . As in the scalar case in the proof of Proposition 4.6, we get

‖φn
∫
R
F̂ (t)W (t)ydt‖γ(L2(dt),X) ≤

∑
‖φn‖∞‖φmF̂ ∗ (·)‖γ(L2(dt),X)→γ(L2(dt),X)‖φky‖γ(L2(dt),X),

where the sum is over m ∈ Z and k ∈ Z such that |k − (n−m)| ≤ 3. Lemma 5.2 (1) shows

that ‖φmF̂ ∗ (·)‖γ(L2(dt),X)→γ(L2(dt),X) = 2πγ({(φmF̂ )̌ (t) : t ∈ R}). As in the scalar case, we
conclude that ‖Ψ(F )y‖ . ‖F‖Eα‖y‖.

(3): Recall that limk ψk(B̃) = IdZ strongly. Thus, for F ∈ H∞0 (Strω), we have by the

multiplicativity of the H∞0 calculus Ψ(F ) = limk(ψkF )(B̃) = limk F (B̃)ψk(B̃) = F (B̃).

Let now F ∈ H∞(Strω). Then by Proposition 5.1, we have ‖(ψkF )(B̃)‖ . ‖ψkF‖Eα .
‖ψk‖Eα∞‖F‖Eα . ‖F‖Eα , so that (ψkF )(B̃) is a uniformly bounded sequence. For y = ψl(B̃)z
for some z ∈ Z and l ∈ N,

(ψkF )(B̃)y = (ψkF )(B̃)ψl(B̃)z = (ψkψlF )(B̃)z = (ψlF )(B̃)ψk(B̃)z → (ψlF )(B̃)z (k →∞).

As moreover, such y form a dense subset of Z, we can easily conclude with Proposition 5.1.

(4): We have F ∗φ̌n(t)y = limk Fk∗φ̌n(t)y for any y ∈ Z and t ∈ R by dominated convergence.
It is easy from the definition of γ-boundedness to check that this implies γ({F ∗ φ̌n(t) : t ∈
R}) ≤ supk γ({Fk ∗ φ̌n(t) : t ∈ R}). Now argue as in the proof of Proposition 4.7, using
Lemma 5.2 (2) instead of Lemma 2.1. �

Remark 5.4. The bounded homomorphism Ψ : Eα → B(Z) is uniquely determined by (5.3)
and the Convergence Property (4) in the above proposition, and we shall call such a Ψ the

Eα calculus of the group generator B̃. We write henceforth F (B̃) instead of Ψ(F ).
Indeed, if F ∈ H∞(Strω), then Fk(z) = ψk(z)F (z) defines a sequence in H∞0 (Strω) which

approximates F in the sense of (4) in the above proposition: Argue as in the proof of
Proposition 4.7 to show that∑

n∈Z

〈n〉α sup
k
γ({Fk ∗ φ̌n(t) : t ∈ R}) ≤

(∑
n∈Z

e−n|ω−ε|〈n〉α
)

sup
k
γ({Fk(z) : z ∈ Strω}).

This determines Ψ|H∞(Strω). By Proposition 5.1 (3), a bounded extension to Eα is unique.

In the main theorem of this section below, we now are able to produce γ-bounded operators
by means of the Eα calculus.

Theorem 5.5. Let U(t) = eitB be a C0-group on some space X not containing c0 iso-
morphically such that {U(t) : t ∈ [0, 1]} is γ-bounded. Then the following conditions are
equivalent:
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(1) ‖U(t)‖ . 〈t〉α.
(2) B has a bounded Eα

∞ calculus.
(3) B has a bounded Eα calculus.

If in addition, X has property (α), then the following conditions are also equivalent to (1)-(3).

(4) B has a bounded Eα
∞ calculus and moreover, for any G ⊂ Eα

∞ with∑
n∈Z

〈n〉α sup
f∈G
‖f ∗ φ̌n‖∞ = CG <∞,

{f(B) : f ⊂ G} is γ-bounded with constant . CG.
(5) B has a bounded Eα calculus and moreover, for any G ⊂ Eα with∑

n∈Z

〈n〉αγ({F ∗ φ̌n(t) : t ∈ R, F ∈ G}) = CG <∞,

{F (B) : F ⊂ G} is γ-bounded with constant . CG.

Proof. (1) =⇒ (3): Denote as before space and operators of the dilation of U(t) by Z, P, I

and W (t) = eitB̃. By Proposition 5.3, the generator B̃ of W (t) has a Ẽα calculus, where

Ẽα is the operator valued space associated with B̃. Let J : B(X) → B(Z) be defined

first for u ∈ Z ∩ ˜̀∞γ by J(T )[u] = T ◦ u. It is easy to check with Lemma 2.1 (4) that

‖J(T )[u]‖`∞γ (L2,X) ≤ ‖T‖B(X)‖u‖`∞γ (L2,X). Thus J(T ) extends by density of Z ∩ ˜̀∞γ to Z, and

J is contractive. Further J(B(X)) ⊂ [B̃]′. For F ∈ Eα, put FJ(t) = J(F (t)) which belongs

to Ẽα. It is a simple matter to check that Ψ(F ) = PFJ(B)I defines the Eα calculus for B.
Then by Theorem 4.9, (1) - (3) are equivalent. Assume now in addition that X has prop-

erty (α). We clearly have the implications (5) =⇒ (4) =⇒ (2), so that it remains to show

(1) =⇒ (5) : Write Gauss(X) = γ(`2, X). Clearly, the span of elements of the form en ⊗
xn, n ∈ N, xn ∈ X form a dense subset. For t ∈ R, let V (t) ∈ B(Gauss(X)) be defined by
V (t)(en⊗ xn) = en⊗U(t)xn. By Lemma 2.1 (4), V (t) is a C0-group and ‖V (t)‖ = ‖U(t)‖ .
〈t〉α. It is immediately checked that γ({V (t) : t ∈ [0, 1]}) = γ({U(t) : t ∈ [0, 1]}) < ∞.
By the first part of the proof, the generator C of V (t) = eitC has a bounded EαC calculus,
where EαC is the operator valued space associated with C. We consider F1, . . . , FN ∈ G, where
G ⊂ Eα is given in (5). For t ∈ R and n = 1, . . . , N, put

F (t)(en ⊗ xn) = en ⊗ Fn(t)xn

and F (t)(en ⊗ xn) = 0 (n > N). Clearly, F (t) extens linearly to `2 ⊗X and then boundedly
to Gauss(X), and moreover, belongs to [C]′. Also F ∈ EαC , since

γ
(
{(F ∗ φ̌m)(t) : t ∈ R}

)
= sup ‖

∑
k

γk ⊗ (F ∗ φ̌m)(tk)yk‖Gauss(Gauss(X))

= sup ‖
∑
k,n

γk ⊗ γn ⊗ (Fn ∗ φ̌m)(tk)xn,k‖Gauss(Gauss(X))

. γ
(
{(F̃ ∗ φ̌m)(t) : t ∈ R, F̃ ∈ G}

)
,
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and the last quantity is in `1(Z, 〈m〉α) by assumption. Here, the supremum runs over all
finite sums in k, tk ∈ R,

∑
k ek ⊗ yk =

∑
k ek ⊗ en ⊗ xn,k in Gauss(Gauss(X)) of norm less

than 1. The last estimate above follows from property (α). Using Remark 5.4, it is easy to

check that F (C)(
∑

n γn ⊗ xn) =
∑N

n=1 γn ⊗ Fn(B)xn. Now

γ({F1(B), . . . , FN(B)}) = ‖F (C)‖B(Gauss(X)) . ‖F‖EαC
≤
∑
n

〈n〉αγ
(
{(F̃ ∗ φ̌n)(t) : t ∈ R, F̃ ∈ G}

)
.

Since γ({F (B) : F ∈ G}) equals the supremum of γ({F1(B), . . . , FN(B)}) for all choices of
N and Fn, (5) follows. �

The following γ-boundedness result is shown for the H∞ calculus in [14] (see also [19,
Theorem 12.8]).

Theorem 5.6. Let A be a sectorial operator on a Banach space with property (α). Assume
that for some angle ω ∈ (0, π), A has an H∞(Σω) calculus. Then for any θ ∈ (ω, π), we have

γ({f(A) : ‖f‖∞,θ ≤ 1}) <∞.

In view of Theorem 5.5, we have the following partial extension to 0-sectorial operators
with polynomially bounded imaginary powers.

Corollary 5.7. Let A be a sectorial operator on a Banach space with property (α). Assume
that for some angle ω ∈ (0, π), A has an H∞(Σω) calculus and that ‖Ait‖ . 〈t〉α. Then there
is a constant C > 0 such that for any f : (0,∞)→ C with f ◦ exp ∈ Eα

∞, we have

γ({f(tA) : t > 0}) ≤ C‖f ◦ exp ‖Eα∞ .

Proof. Clearly, B = log(A) and U(t) = Ait satisfy the assumptions of Theorem 5.5. For
t > 0, let ft(s) = f(tes). By the implication (1)⇒ (4), it only remains to show that

(5.4)
∑
n∈Z

〈n〉α sup
t>0
‖ft ∗ φ̌n‖∞ . ‖f1‖Eα∞ .

But ft ∗ φ̌n(s) = f1 ∗ φ̌n(s+ log(t)), so that clearly, for any t > 0, ‖ft ∗ φ̌n‖∞ = ‖f1 ∗ φ̌n‖∞,
and thus, the left hand side of (5.4) in fact equals ‖f1‖Eα∞ . �

6. Eα
∞ norms of particular functions and Besov calculus

In this section, we show how the functional calculus obtained in Sections 4 and 5 can be
applied to classical operators and functional calculi. Firstly, we deduce optimal bounds for
semigroup and resolvents if the operator A is of the type considered so far. Secondly, we
compare the Eα

∞ calculus with Besov functional calculus in several situations.

We start with calculating the Eα
∞ norms for some special functions. They correspond to

semigroup operators generated by A = eB, resolvents of A and variants of these. By Corollary
5.7, we will deduce γ-boundedness results for semigroup and resolvent operators under the
condition that A has (norm) polynomially bounded imaginary powers and a bounded H∞

calculus. The Eα
∞ norm estimates are obtained by elementary calculus, yet they are sharp.



32 CH. KRIEGLER

We will repeatedly make use of the following lemma whose proof is elementary [16, Lemma
5.20].

Lemma 6.1. Let g : R→ C be integrable. Assume that there exists an interval I of length
strictly less than π such that for any t ∈ R with g(t) 6= 0 we have arg(g(t)) ∈ I. Then
‖ǧ‖∞ ∼= ‖g‖1, where the equivalence constants only depend on the length |I| < π.

Consider the operator

(rA)β exp(−aA),

where A is 0-sectorial, a = reiθ such that r > 0 and |θ| < π
2
, and β ≥ 0. We have

(rA)β exp(−aA) = fa(B), where B = log(A), and

fa(t) = (aet)β exp(−aet).

Proposition 6.2. ‖fa‖Eα∞ ∼= (π
2
− |θ|)−(α+β+ 1

2
).

Proof. We have ‖f‖Eα∞ =
∑

n∈Z〈n〉α
∥∥∥[f̂a · φn]ˇ

∥∥∥
∞
. The proof consists now in determining

f̂a and using Lemma 6.1. This is outlined in [16, Proposition 5.19]. �

Combining the above proposition with Corollary 5.7, we get

Corollary 6.3. Let A be a 0-sectorial operator on a space X with property (α). Assume
that A has a bounded H∞(Σω) calculus for some ω ∈ (0, π) and ‖Ait‖ . 〈t〉α for some α ≥ 0.
Then for any β ≥ 0, there exists C > 0 such that

γ
(
{(tA)β exp(−teiθA) : t > 0}

)
≤ C

(π
2
− |θ|

)−(α+β+ 1
2

)

.

Next consider the operators

λ1−γAγ(λ+ A)−1 and λ(λ+ Aδ)−1

where λ = reiθ with r > 0 and |θ| < π, γ ∈ [0, 1] and δ ≥ 1. We have λ1−γAγ(λ + A)−1 =
fγ(B) and λ(λ+ Aδ)−1 = gδ(B) with fγ(t) = λ1−γeγt(λ+ et)−1 and gδ(t) = λ(λ+ eδt)−1.

Proposition 6.4.

(1) For any γ ∈ [0, 1] and θ ∈ (−π, π), we have ‖fγ‖Eα∞ ∼= (π−|θ|)−(α+1) with equivalence
constants independent of γ.

(2) For any θ ∈ (−π, π) and δ ≥ 1, we have

‖gδ‖Eα∞ ∼=

{
δα(π − |θ|)−(α+1) for α > 0

log(δ) + (π − |θ|)−1 (| log(π − |θ|)|+ 1) for α = 0
.

The proof follows the same idea as the one of Proposition 6.2 and is outlined in [16,
Proposition 5.22]. The immediate consequence of Corollary 5.7 and Proposition 6.4 for
0-sectorial operators is the following.

Corollary 6.5. Let A be a 0-sectorial operator on a space X with property (α). Assume
that A has a bounded H∞ calculus and ‖Ait‖ . 〈t〉α for some α ≥ 0.
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(1) There exists C > 0 such that for any γ ∈ [0, 1] and θ ∈ [0, π), we have

γ
(
{λ1−γAγ(λ+ A)−1 : | arg λ| = θ}

)
≤ C (π − θ)−(α+1) .

(2) There exists C > 0 such that for any δ ≥ 1 and θ ∈ [0, π), we have

γ
(
{λ(λ+ Aδ)−1 : | arg λ| = θ}

)
≤ C

{
δα(π − θ)−(α+1) for α > 0

log(δ) + (π − θ)−1(| log(π − θ)|+ 1) for α = 0.

Let us now have a look at Besov functional calculus. Let B be a 0-strip-type operator
generating the group U(t) = eitB. Up to now we know that the polynomial growth of U(t)
is equivalent to the Eα

∞ calculus of B (Theorem 4.9). We recall the classical definition of

a Besov space Bβp,1 which is given at the beginning of Section 3, and focus on the case
β > 0, p =∞. While Proposition 3.3 shows that the Eα

∞ norm is related to summability of
the Fourier coefficients representing the function f, it is well known that ‖f‖Bβ∞,1 satisfies

the almost norm equivalence

‖f‖Cα0 . ‖f‖Bβ∞,1 . ‖f‖Cα1

for α0 < β < α1, where Cα0 and Cα1 are spaces of Hölder continuous functions, see [25].

Therefore, the Bβ∞,1 norm is closely related to differentiability of functions, which in examples
is often easier to recognize than the summability of Fourier series. Thus, we shall investigate
the Bβ∞,1 functional calculus and compare it with the Eα

∞ calculus. Let us start with some
observations on the multiplication operator Bp, where Bpg(t) = tg(t) on X = Eα

p (X = Eα
0

for p =∞).

Proposition 6.6. Let 1 ≤ p ≤ ∞ and α ≥ 0. If p < ∞, we let X = Eα
p , and if p = ∞, we

let X = Eα
0 = Eα

∞ ∩ C0(R). Consider the group (Up(t))t∈R defined by

Up(t) : X → X, g 7→ eit(·)g.

Then (Up(t))t∈R is a C0-group with ‖Up(t)‖ ∼= 〈t〉α. The associated 0-strip-type operator Bp

has a Eα
∞ calculus which is given by

f(Bp)g = fg (f ∈ Eα
∞, g ∈ X).

Proof. Since eit(·) ∈ Eα
∞ with ‖eit(·)‖Eα∞ ∼= 〈t〉α according to the proof of Theorem 4.9,

Proposition 3.2 yields ‖Up(t)‖B(X) . 〈t〉α. This estimate is also optimal. Indeed, we have

(eit(·)g)∗ φ̌n(s) = e−its[g ∗φn(·− t)̌ ](s). Thus if ĝ has its support in [−1, 1], then ‖Up(t)g‖X ∼=
〈t〉α‖g‖X . It is clear that t 7→ Up(t) is a group. It is further strongly continuous. Indeed, for

any g ∈ X and n ∈ Z, ‖(eit(·)g−g)∗ φ̌n‖p ≤ ‖φ̌n‖1‖(eit(·)−1)g‖p → 0 as t→ 0 by dominated
convergence for p <∞, and by the fact that lim|t|→∞ g(t) = 0 for the case X = Eα

0 . Now the
strong continuity follows from∑

n∈Z

〈n〉α sup
|t|≤1

‖(Up(t)g) ∗ φ̌n‖p =
∑
n∈Z

〈n〉α sup
|t|≤1

‖g ∗ φn(·+ t)̌ ‖p <∞.

Denote iBp the generator of Up(t). For f ∈ H∞0 (Strω) for some ω > 0 and g ∈ X, we have

f(B)g =
1

2π

∫
R
f̂(t)Up(t)gdt
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=
1

2π

∫
R
f̂(t)eit(·)gdt

= fg.

In particular, ‖f(B)g‖ . ‖f‖Eα∞‖g‖X . ‖f‖∞,ω‖g‖X , so that B has a Eα
∞ calculus (in

particular, an H∞ calculus). Then by an approximation argument, using Proposition 4.7,
f(B)g = fg for any f ∈ Eα

∞ and g ∈ X. �

At first, we focus on the multiplication operator B∞ on Eα
0 . This is an extremal example

in the following sense.

Proposition 6.7. Let α ≥ 0. Let B∞ be the multiplication operator on X = Eα
0 as in

Proposition 6.6. Then

‖f(B∞)‖ ∼= ‖f‖Eα∞ (f ∈ Eα
∞).

In particular, if C is a further 0-strip-type operator on some Banach space Y also having a
bounded Eα

∞ calculus, then

‖f(C)‖B(Y ) . ‖f(B∞)‖B(X) (f ∈ Eα
∞).

Further, B∞ has a Bβ∞,1 calculus if and only if

β ≥ α + 1.

Proof. In view of Proposition 3.5, all we have to show is

‖f‖Eα∞ ∼= sup{‖fg‖Eα∞ : g ∈ Eα
0 , ‖g‖Eα0 ≤ 1}.

The inequality “&” follows from the fact that Eα
∞ is a Banach algebra. For the other

estimate, consider a sequence χk in Eα
0 with the properties χk(t) → 1 for any t ∈ R and

supk∈N ‖χk‖Eα∞ < ∞ (e.g. χk(t) = χ( t
k
) for some χ ∈ C∞0 (R) such that χ(0) = 1). Then

for any n ∈ Z and t ∈ R, by dominated convergence (fχk) ∗ φ̌n(t) → f ∗ φ̌n(t), so that
lim supk ‖(fχk) ∗ φ̌n‖∞ ≥ ‖f ∗ φ̌n‖∞. Thus,

sup
k
‖fχk‖Eα∞ = sup

k,N

∑
|n|≤N

〈n〉α‖(fχk) ∗ φ̌n‖∞ ≥ sup
N

∑
|n|≤N

〈n〉α‖f ∗ φ̌n‖∞ = ‖f‖Eα∞ .

�

Proposition 6.7 shows that in full generality, there is a gap of β − α = 1 between the
Besov functional calculus and polynomial group growth. This result can be refined in terms
of type and cotype of the underlying space X.

Theorem 6.8. Let X be a Banach space with property (α). Let further B be a 0-strip-type
operator on X having an H∞ calculus such that ‖eitB‖ . 〈t〉α for some α ≥ 0. Then B has

a Bβ∞,1 calculus for

β > α + max(
1

typeX
− 1

cotypeX
,
1

2
).
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On the other hand, for 2 ≤ p < ∞, the multiplication operator Bp on X = Eα
p from

Proposition 6.6 does not have a Bβ∞,1 calculus for any

β < α +
1

typeX
− 1

cotypeX
.

Theorem 6.8 will be shown in a forthcoming article.

Remark 6.9. (1) The second part of the theorem could also be stated as follows: The
pointwise multiplication Eα

∞ · Eα
p maps to Eα

p , whereas

Bβ∞,1 · Eα
p → Eα

p only if β ≥ α + 1− 1

p
.

(2) If the difference 1
typeX

− 1
cotypeX

is less than 1
2
, then it is not clear what the optimal

order β0 for the Besov calculus in Theorem 6.8 is. Theorem 6.8 only yields the range
β0 − α ∈ [0, 1

2
].

(3) If iB is the generator of a uniformly bounded C0-group on a Hilbert space, then by
the transference principle of Coifman and Weiss, B has a bounded H∞(Strω) calculus
for any ω > 0 and the norm of this calculus is independent of ω [19, Theorem 10.5].
Thus, β0 − α = 0 in this case (see [17, Lemma 3.2] for the sectorial counterpart of
that last conclusion).
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[7] A. Fröhlich. H∞-Kalkül und Dilatationen. PhD thesis, Universität Karlsruhe, 2003.
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Ch. Kriegler, Laboratoire de Mathématiques (CNRS UMR 6620), Université Blaise-
Pascal (Clermont-Ferrand 2), Campus des Cézeaux, 63177 Aubière Cedex, France
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