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ANALYTICITY ANGLE FOR NON-COMMUTATIVE DIFFUSION
SEMIGROUPS

CHRISTOPH KRIEGLER

Abstract. Under certain hypotheses, diffusion semigroups on commutative Lp-spaces are
known to have an analytic extension for | arg z| < π

2 −arctan |p−2|
2
√

p−1
. In this paper it is shown

that semigroups on non-commutative Lp-spaces have the same extension under suitable
conditions. These conditions even lead to a new result in the commutative case. Further,
some examples are considered.

2000 Mathematics Subject Classification : 47D07, 46L52.

1. Introduction

The spectral theory of (generators of) diffusion semigroups (Tt) on commutative (i.e.
classical) Lp-spaces has been studied in a series of articles [1, 23, 22, 31, 17, 18]. Here
we follow Stein’s classical work [28] and mean by the term diffusion the fact that Tt is
contractive as an operator Lp → Lp for all p ∈ [1,∞] and self-adjoint on L2 (see 4.1 for the
exact definition). Such a semigroup has an analytic extension on L2 to the right half plane.
Then it follows from a version of Stein’s complex interpolation [32] that there is an analytic
extension on Lp to a sector in the complex plane, symmetric to the real axis and with half
opening angle

π

2
− π|1

p
− 1

2
|.

In [22], it is shown with a different method that this angle can be enlarged.

Theorem 1.1. [22, cor 3.2] Let (Tt)t≥0 be a diffusion semigroup on some σ-finite measure
space, i.e.

(1) ‖Tt : Lp → Lp‖ ≤ 1 for all t ≥ 0 and 1 ≤ p ≤ ∞,
(2) Tt is self-adjoint on L2.
(3) t 7→ Tt is strongly continuous on Lp for p < ∞ and w∗-continuous for p = ∞.

Assume further that Ttf ≥ 0 for any f ∈ L∞, f ≥ 0. Then Tt has an analytic contractive
extension on Lp to the sector

(1.1)

{
z ∈ C∗ : | arg z| < π

2
− arctan

|p− 2|
2
√

p− 1

}
.
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This result is optimal. In fact, there is already a strikingly simple example on a two-
dimensional space with this angle (see example 4.3).
Generators of diffusion semigroups have a bounded H∞ functional calculus on Lp for any
1 < p < ∞. This follows from [7]. In [19] the H∞ calculus angle of these operators was
improved, using theorem 1.1. In the more recent past, besides vector valued spaces Lp(Ω, X)
(see for example [11]), the attention turned to diffusion semigroups on non-commutative
spaces Lp(M) associated to a von Neumann algebra ([16], see also [14, 15]).

In this article, we consider non-commutative semigroups which are families (Tt) of opera-
tors acting on Lp(M, τ) for all 1 ≤ p ≤ ∞. Under reasonable hypotheses, we obtain the same
sector (1.1) as in the commutative case. Our method works for hyperfinite von Neumann
algebras M and for semi-commutative semigroups on L∞(Ω)⊗N, where N is a QWEP von
Neumann algebra.

Our assumptions are as follows. The operators Tt are completely contractive. In the
commutative case, an operator T : L∞ → L∞ is completely contractive iff it is contractive,
so that our assumption then reduces to the classical setting. The positivity assumption
in theorem 1.1 is replaced by a certain property (P), see definition 5.1. If for example
the semigroup consists of complete positive operators, this property is satisfied. In the
commutative case, an operator T : L∞ → L∞ satisfies (P) if and only if T is contractive and
extends to a self-adjoint operator on L2 (proposition 6.1). In particular, we get theorem 1.1
without the positivity assumption, see corollary 6.2.

Note that our method (and also that of [22]) does not use the semigroup property in
an extensive way. Theorem 5.6 gives a result on the numerical range for a single operator
T instead of a semigroup. Furthermore, one could state theorem 5.6 for an operator act-
ing on Lp for a single value of p, by replacing (P) by some condition for an operator Lp → Lp.

In section 2, we introduce non-commutative Lp-spaces and mention their properties that
we need and give some examples. In section 3, completely positive and completely bounded
maps are developed as far as needed in the article. The diffusion semigroups are then defined
in section 4 and a basic guiding example is discussed. Section 5 contains the main theorems,
and sections 6 and 7 are devoted to examples of diffusion semigroups to which our method
applies.

2. Background on von Neumann algebras and non-commutative Lp-spaces

Throughout the paper, we denote M a von Neumann algebra (see e.g. [29] for the def-
inition) and assume that there is a semifinite, normal, faithful (s.n.f.) trace τ on M. The
following examples for (M, τ) will frequently occur.

Examples of von Neumann algebras and definitions .
1. For every n ∈ N, we have the algebra of matrices Mn = B(l2n) = Cn×n, equipped with
the common trace τ = tr . Note that every finite dimensional von Neumann algebra has a
representation as a direct sum

M = Mn1 ⊕ . . .⊕MnK
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with τ(x1 ⊕ . . .⊕ xK) =
∑K

k=1 λk tr(xk) for some K ∈ N and λj > 0. Further,

‖x1 ⊕ . . .⊕ xK‖M =
K

sup
k=1

‖xk‖Mnk
.

2. M is called hyperfinite if there exists a net of finite dimensional ∗-subalgebras Aα which
are directed by inclusion, such that

⋃
Aα is w∗-dense in M. If τ is a s.n.f. trace then one

can always choose Aα such that τ |Aα is finite [25, chap 3].
Let us show this under the additional assumption that the net can be chosen as a sequence

(An)n. This is the case in most examples. Let (qk)k be a sequence of orthogonal projections
in M such that τ(qk) < ∞, Im(qk) ⊆ Im(qk+1) and qk → 1 in the strong operator topology.
Such a sequence exists since τ is semifinite. Put now pk = qk− qk−1 and A′

n =
⊕

k≤n pkAnpk.
Then (A′

n)n has the desired properties, i.e. τ |A′
n

is finite.
3. Let (Ω, µ) be a σ-finite measure space. Then M = L∞(Ω) = L∞(Ω, µ) is a von Neumann
algebra with the s.n.f. trace τ(f) =

∫
fdµ. M is hyperfinite: Indeed, we explicitly give a

net of finite dimensional ∗-subalgebras. We call a finite collection {A1, . . . , An} of pairwise
disjoint measurable subsets of Ω such that 0 < µ(Ak) < ∞ a semi-partition. Let A be the set
of all semi-partitions. A is directed by {A1, . . . , An} ≺ {B1, . . . , Bm} iff any Ak is the union
of some of the B′

ks. For α = {A1, . . . , An} ∈ A, put Mα := {
∑n

k=1 ckχAk
: ck ∈ C} ⊂ M.

Clearly, τ |Mα is finite and for any x ∈ L∞(Ω) and y ∈ L1(Ω),
∫

xαydµ →
∫

xydµ, which is
the w∗-density.
4. If M ⊂ B(H) and N ⊂ B(K) is a further von Neumann algebra with s.n.f. trace σ, then
N⊗M defined as the w∗-closure of N ⊗M in B(K ⊗2 H) is again a von Neumann algebra.
(σ ⊗ τ)(x⊗ y) := σ(x)τ(y) can be extended to a s.n.f. trace on N⊗M. We will use this fact
for the cases N = Mn as in 1 and N = L∞(Ω) as in 3. L∞(Ω)⊗M can be naturally identified
with the space of w∗-measurable, essentially bounded functions Ω → M, see [3, p. 40-41].

For 1 ≤ p < ∞, the non-commutative Lp-spaces Lp(M) = Lp(M, τ) are defined as follows.
If S+ is the set of all positive x ∈ M (i.e. x = x∗ and σ(x) ⊂ [0,∞)) such that τ(x) < ∞
and S is its linear span, then Lp(M) is the completion of S with respect to the norm
‖x‖p = τ(|x|p)1/p. It can also be described as a space of unbounded operators x affiliated
to M in a certain sense such that τ(|x|p)1/p < ∞, where the domain of τ is extended to
all of L1(M). One sets L∞(M) = M. As for the commutative (i.e. usual) Lp-spaces, one
has: Lp(M)′ = Lq(M) via the duality (x, y) 7→ τ(xy), for 1 ≤ p < ∞ and 1

p
+ 1

q
= 1.

We denote this duality from now on by 〈x, y〉. The Hölder inequality holds in the form
‖x‖Lp(M) = sup{|〈x, y〉| : ‖y‖Lq(M) ≤ 1}. The space L2(M) is a Hilbert space with respect
to the scalar product (x, y) 7→ 〈x, y∗〉. For 1 ≤ p, q ≤ ∞, (Lp(M), Lq(M)) is, in the sense of
complex interpolation [2], a compatible couple of spaces such that (Lp(M), Lq(M))θ = Lr(M)
with 1

r
= θ

q
+ 1−θ

p
.

See [30, 27] for further reference on non-commutative Lp-spaces. Examples which will
appear are:

Examples of non-commutative Lp-spaces .
1. For (M, τ) = (Mn, tr), we write Sp

n = Lp(Mn). More generally, if H is a Hilbert space
and tr the usual trace on B(H), then Sp(H) = Lp(B(H), tr). If H = l2, then we write



4 CHRISTOPH KRIEGLER

Sp = Sp(H).
2. If M is finite dimensional and (M, τ) = (Mn1 , λ1 tr) ⊕ . . . ⊕ (MnK

, λK tr), then for x =
x1 ⊕ . . .⊕ xK , ‖x‖p

Lp(M) =
∑

k λk‖xk‖p
Sp

n
.

3. If (Ω, µ) is a σ-finite measure space and M = L∞(Ω), then Lp(Ω) = Lp(M), 1 ≤ p ≤ ∞.
4. If M = L∞(Ω) and N is a further von Neumann algebra with s.n.f. trace σ, then
Lp(M⊗N) is naturally isometric to the Bochner space Lp(Ω, Lp(N)) for 1 ≤ p < ∞.

Finally, the following notion of a dual element will play an eminent role.

Definition 2.1. Let 1 < p < ∞ and q = p
p−1

the conjugate number. Let x ∈ Lp(M). Then

x has a polar decomposition x = u|x| with u ∈ M unitary and |x| = (x∗x)1/2. The dual
element of x is defined as x̂ = |x|p−1u∗.

Lemma 2.2. The above defined x̂ is the unique element in Lq(M) with:

(1) 〈x, x̂〉 = ‖x‖p
p.

(2) ‖x‖p
p = ‖x̂‖q

q.

Further, the (in non trivial cases nonlinear) mapping

̂: {Lp(M) −→ Lq(M)

x 7−→ x̂

is norm-continuous.

Proof. It is plain that x̂ satisfies the claimed properties. On the other hand, it is well known
that Lp(M) is uniformly smooth, which implies uniqueness. To see the continuity of x 7→ x̂,
let x, x1, x2, . . . ∈ Lp(M) such that xn → x. We can exclude the trivial case x = 0. Since

‖x̂n‖q = ‖xn‖p/q
p is bounded, the Banach-Alaoglu theorem gives a weak limit point of (x̂n)n.

We show that any such limit point y equals x̂, which implies that x̂ is the weak limit of x̂n.
Since Lp(M) is uniformly convex and ‖x̂n‖q → ‖x̂‖q, it will follow that ‖x̂n − x̂‖q → 0.

Let y = w- limk x̂nk
. We have

〈x, y〉 = lim
k
〈x, x̂nk

〉 = lim
k
〈xnk

, x̂nk
〉+ 〈x− xnk

, x̂nk
〉 = ‖x‖p

p + 0.

This shows that y satisfies (1) of the lemma, and that ‖y‖q ≥ ‖x‖p−1
p . On the other hand,

‖y‖q ≤ lim supk ‖x̂nk
‖q = ‖x̂‖q = ‖x‖p−1

p , so that y satisfies (2). By uniqueness of x̂, y =
x̂. �

3. Operators between non-commutative Lp-spaces

For n ∈ N and 1 ≤ p ≤ ∞, we denote by Sp
n(Lp(M)) the space Sp

n ⊗ Lp(M) = {(xij)ij :
i, j = 1, . . . , n, xij ∈ Lp(M)} equipped with the norm of Lp(Mn ⊗ M, tr⊗τ) [25, chap 1].
Let T : Lp(M) → Lp(N) be a linear mapping, where N is a further von Neumann algebra
with s.n.f. trace σ. Following [25, lem 1.7], we call T completely bounded if

(3.1) ‖T‖cb := sup
n
‖ISp

n
⊗ T : (xij)ij 7→ (Txij)ij‖B(Sp

n(Lp(M)),Sp
n(Lp(N))) < ∞,

and completely contractive if this quantity is less than 1. Clearly, ‖T‖ ≤ ‖T‖cb. If T :
Lp(M) → Lp(N) is completely bounded for p = 1 and p = ∞, then by complex interpolation,

‖T : Lq(M) → Lq(N)‖cb ≤ ‖T : L1(M) → L1(N)‖1/q
cb ‖T : M → N‖1−1/q

cb
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for any 1 < q < ∞. T : Lp(M) → Lp(N) is called positive if Tx ≥ 0 for all x ≥ 0. T is called
completely positive, if ISp

n
⊗T ∈ B(Sp

n(Lp(M)), Sp
n(Lp(N))) = B(Lp(Mn⊗M), Lp(Mn⊗N))

is positive for all n ∈ N. In the case M = N = Mn, Choi showed in [4] the following
characterization:

(3.2) T : Mn → Mn completely positive ⇐⇒ ∃ a1, . . . , aN ∈ Mn : Tx =
N∑

k=1

a∗kxak.

Assume that T ∈ B(Lp(M), Lp(N))) for some 1 ≤ p ≤ ∞ and that T is w∗-continuous
if p = ∞. In view of the duality Lp(M)′ = Lq(M) for 1 ≤ p < ∞, q = p

p−1
, the operator

T ′ : Lq(N) → Lq(M) is defined. If p = ∞, we denote T ′ : L1(M) → L1(M) the pre-adjoint
operator.

Lemma 3.1. Let N, σ, p, q, T be as above.

(1) If T : Lp(M) → Lp(N) is (completely) positive, then T ′ : Lq(N) → Lq(M) is
(completely) positive also.

(2) If T is completely bounded, then T ′ is also completely bounded, with the same cb-
norm.

Proof. T is positive if and only if σ((Ta)b) ≥ 0 for all positive a ∈ Lp(M) and b ∈ Lq(N).
On the other hand, σ((Ta)b) = τ(a(T ′b)), so that the positivity part follows. The complete
positivity part is then a consequence of (ISp

n
⊗ T )′ = ISq

n
⊗ T ′. This also gives the complete

boundedness statement, in view of (3.1). �

4. Non-commutative diffusion semigroups

Let T : M → M be a w∗-continuous operator with ‖T‖M→M ≤ 1. Assume that

(4.1) for x, y ∈ M ∩ L1(M), 〈Tx, y∗〉 = 〈x, (Ty)∗〉.

We call a T with this property self-adjoint. Then by the Hölder inequality, T |M∩L1(M) extends
to a contraction T1 : L1(M) → L1(M) and by complex interpolation, also to Tp with

‖Tp : Lp(M) → Lp(M)‖ ≤ 1 (1 ≤ p ≤ ∞).

Since T is w∗-continuous, (4.1) yields that T1 = T ′(·∗)∗. Clearly, T2 : L2(M) → L2(M) is
self-adjoint in the classical sense. If T : M → M is in addition completely contractive, then
by lemma 3.1, T1 = T ′(·∗)∗ : L1(M) → L1(M) is also completely contractive, and hence Tp

also.
The following notion of a (non-commutative) diffusion semigroup has been defined in [16]

and generalizes Stein’s setting in [28].

Definition 4.1. Let (Tt)t≥0 be a family of completely contractive operators of the above
type. (Tt) is called a diffusion semigroup (on M) if

T0 = IM and TtTs = Tt+s for t, s ≥ 0.(4.2)

Ttx → x as t → 0 in the w∗ topology.(4.3)
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Clearly, for 1 ≤ p < ∞, (Tt,p) is a semigroup on Lp(M) and by [8, prop 1.23], (4.3) implies
that (Tt,p) is strongly continuous. Examples of such diffusion semigroups are given in [16,
chap 8,9,10] and will be discussed in section 6.

It is shown in [16, chap 5] - using the functional calculus for self-adjoint operators and
a version of Stein’s complex interpolation - that for (Tt,p), there exists an analytic and
contractive extension to a sector S(π

2
− π|1

p
− 1

2
|), where we put

S(ω) = {z ∈ C\{0} : | arg z| < ω}.
This means that there exists an analytic function S(π

2
− π|1

p
− 1

2
|) → B(Lp(M)), z 7→ Sz

such that St = Tt,p for t > 0 and ‖Sz‖B(Lp(M)) ≤ 1. The major question of this article is:

Given a diffusion semigroup (Tt) on M and 1 < p < ∞, what is the optimal ωp > 0 such
that Tt,p has an analytic and contractive extension to S(ωp)?

This question and related ones have been studied in the commutative case in [1, 22, 23,
31, 17, 18, 5, 6].
In the rest of this section, let us work out the candidate for ωp. First recall the following
characterization.

Proposition 4.2. Let (Tt,p) be a c0-semigroup on Lp(M) for some 1 < p < ∞. Denote Ap

its generator. Fix some ω ∈ (0, π
2
). Then the following are equivalent.

(1) −〈Apx, x̂〉 ∈ S(π
2
− ω) for all x ∈ D(Ap).

(2) (Tt,p) has an analytic and contractive extension to S(ω).

The first condition is obviously verified if

〈(I − Tt,p)x, x̂〉 ∈ S(
π

2
− ω) for all x ∈ Lp(M) and t > 0.

Proof. See for example [10, thm 5.9] �

The following easy example already gives a good insight into what we can expect.

Example 4.3. Let M be the commutative 2-dimensional von Neumann algebra l∞2 with
trace τ((a, b)) = a + b. We consider Tt = etA with

A =

(
−1 1
1 −1

)
= −e⊗ e,

where e = (1,−1). Then An = −2An−1 = (−2)n−1A for n ≥ 2. Hence

Tt = IM − 1

2

∞∑
n=1

(−2t)n

n!
A =

1

2

(
1 + e−2t 1− e−2t

1− e−2t 1 + e−2t

)
.

Since this matrix is self-adjoint and |1 + 1
2
e−2t| + |1 − 1

2
e−2t| = 1 for all t ≥ 0, (Tt) is

indeed a diffusion semigroup. Now fix some 1 < p < ∞ and let x = (a, b) ∈ lp2. Then

x̂ = (â, b̂) = (a|a|p−2, b|b|p−2) and

−〈Ax, x̂〉 = (a− b)(â− b̂).
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To answer our angle question, in view of the preceding proposition, we are supposed to
determine the smallest sector containing this quantity for arbitrary a, b ∈ C. The solution is
the following proposition which appears in [22, lem 2.2].

Proposition 4.4. Let 1 < p < ∞, a, b ∈ C. Then for ωp = arctan |p−2|
2
√

p−1
,

(a− b)(â− b̂) = |a|p + |b|p − ab|b|p−2 − ba|a|p−2 ∈ S(ωp).

Further, this result is optimal, i.e. the statement is false for any ω < ωp.

Proof. The fact that z = (a − b)(â − b̂) ∈ Σ(ωp) has been shown in [22, lem 2.2]. We show
the optimality for the convenience of the reader. Let b = 1 and a = reiφ with r 6= 1. Then
z = rp + 1− reiφ − rp−1e−iφ, so that

Im z = −r sin φ + rp−1 sin φ,

Re z = rp + 1− r cos φ− rp−1 cos φ,

whence (
Im z

Re z

)2

=
(rp−1 − r)2(1− cos2 φ)

(rp + 1− r cos φ− rp−1 cos φ)2
.

Maximizing this expression in φ, i.e. choosing cos φ = r(rp−2+1)
(rp+1)2

< 1 gives(
Im z

Re z

)2

=
r2(rp−2 − 1)

(r2 − 1)(r2p−2 − 1)
.

The limit for r → 1 of this expression is (p−2)2

4(p−1)
, so that | arg z| → |p−2|

2
√

p−1
. �

From now on, write

Σp = S(arctan |p−2|
2
√

p−1
), Σ′

p = S(π
2
− arctan |p−2|

2
√

p−1
).

In view of the above, Σp is our candidate for the sector which supports the numerical
range of −Ap, and we are looking for diffusion semigroups (Tt) such that:

(4.4)
For every 1 < p < ∞, Tt,p has an analytic and contractive extension Σ′

p → B(Lp(M)).

5. The angle Theorem

We begin with some notation. If A, B, C,D ∈ B(Lp(M)), we denote(
A B
C D

)
: Lp(M2 ⊗M) → Lp(M2 ⊗M),

(
a b
c d

)
7→
(

A(a) B(b)
C(c) D(d)

)
.

For p = 2, this operator is self-adjoint if and only if A, B, C,D are all self-adjoint.
The key notion to establish the theorem for the analytic extension of a diffusion semigroup

is the following one.
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Definition 5.1. Let T : M → M be a w∗-continuous operator. Denote T∗ : M →
M, T∗(x) = T (x∗)∗. Then we say that T satisfies (P) if there exist S1, S2 : M → M such that

W :=

(
S1 T
T∗ S2

)
: M2 ⊗M → M2 ⊗M

is completely positive, completely contractive and self-adjoint.

Note that a completely positive linear mapping between von Neumann algebras is com-
pletely contractive iff the image of the unity has norm less than 1 [24, prop 3.6].

Hence we can replace the complete contractivity in definition 5.1 by the assumption

(5.1)

∥∥∥∥W (
1 0
0 1

)∥∥∥∥ ≤ 1.

Remark 5.2. 1. A T satisfying (P) is necessarily completely contractive and self-adjoint.
Indeed, W is self-adjoint iff S1, S2 and T are. Further, it is well-known that the complete
positivity of W implies that T is completely contractive.

2. On the other hand, if T is completely contractive, self-adjoint and in addition com-
pletely positive, then it satisfies (P). Just take S1 = S2 = T, and note that T∗ = T. Then

W =

(
T T
T T

)
is again completely positive, completely contractive on M2(M) and self-

adjoint.

3. Assume that (M, τ) = (Mn, tr). It is well-known that T : Mn → Mn is completely

contractive if and only if there exist a1, . . . , aN and b1, . . . , bN such that Tx =
∑N

k=1 akxbk

and

‖
N∑

k=1

aka
∗
k‖ ≤ 1, ‖

N∑
k=1

b∗kbk‖ ≤ 1.

T : x 7→
∑

k akxbk is self-adjoint if and only if
∑

k akxbk =
∑

k a∗kxb∗k for all x. On the other
hand, T satisfies (P) if and only if

(5.2) ∃ a1, . . . , aN , b1, . . . , bN ∈ Mn self-adjoint : Tx =
N∑

k=1

akxbk,
∑

k

a2
k ≤ 1,

∑
k

b2
k ≤ 1.

Indeed, if (5.2) is satisfied, then put S1x =
∑

k akxak and S2x =
∑

k bkxbk. Then(
S1 T
T∗ S2

)
x =

∑
k

ckxck

with ck =

(
ak 0
0 bk

)
. Property (P) follows, since ck is self-adjoint and

∑
c2
k ≤ 1.

Conversely, if (P) is satisfied, then by the complete positivity of W and (3.2), there exist
c1, . . . , cN ∈ M2n such that Wx =

∑
k c∗kxck. Since W is self-adjoint,

∑
k c∗kxck =

∑
k ckxc∗k
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and consequently,

Wx =
∑

k

(
ck + c∗k

2

)
x

(
ck + c∗k

2

)
+
∑

k

(
ck − c∗k

2i

)
x

(
ck − c∗k

2i

)
.

We have ‖W (1)‖ ≤ 1, so replacing (c1, . . . , cN) by ((c1 + c∗1)/2, . . . , (cN + c∗N)/2, (c1 −
c∗1)/(2i), . . . , (cN − c∗N)/(2i)), one can assume that the c′ks are self-adjoint and ‖

∑
k c2

k‖ ≤ 1.

Write ck =

(
ak dk

d∗k bk

)
. By definition of W, Tx =

∑
k akxbk. Further, ‖

∑
k a2

k‖, ‖
∑

k b2
k‖ ≤

‖
∑

k c2
k‖, so that ak, bk match (5.2).

4. The property (P) is connected to the definition of decomposable maps. T : M → M

is by definition decomposable (‖T‖dec ≤ 1) if S1 and S2 exist such that W =

(
S1 T
T∗ S2

)
is completely positive (and contractive) [26, p. 130]. One has ‖T‖dec ≤ 1 for all complete
contractions T : M → M iff M is hyperfinite [12]. In general, the assumptions ‖T‖dec ≤ 1
and T self-adjoint do not imply (P), see the example below. However, we will see in section
6 that this holds true in some special cases.

Example 5.3. Parts 1 and 2 of the preceding remark lead to the question if the property (P)
is equivalent to complete contractivity and self-adjointness. But in general, (P) is strictly
stronger. Indeed, there is a self-adjoint and complete contractive T which does not satisfy
(P). The author is grateful to Éric Ricard for showing him the following example. The
operator space theory used here goes beyond what is explained in section 2, see for example
[26, 9].

Let n ∈ N and (Eij)0≤i,j≤n be the canonical basis of Mn+1. Define T : Mn+1 → Mn+1 by

Tx =
n∑

i=1

Ei0xEi0 +
n∑

i=1

E0ixE0i.

Then T is self-adjoint and by writing

Tx =
n∑

i=1

(n1/4Ei0)x(n−1/4Ei0) +
n∑

i=1

(n−1/4E0i)x(n1/4E0i),

one sees that ‖T‖cb ≤
√

n (cf. 5.2.3 above). Now assume that a1, . . . , aN , b1, . . . , bN ∈ Mn+1

are self-adjoint such that Tx =
∑N

k=1 akxbk. We will show that

(5.3) ‖
∑

k

a2
k‖1/2‖

∑
k

b2
k‖1/2 ≥ n,

so that for n ≥ 2, the self-adjoint completely contractive operator 1√
n
T does not satisfy (P).

We denote RN and CN the row and column operator space of dimension N [26, p. 21].
Further, RN ∩ CN is equipped with the operator space structure

‖(xij)‖ = max{‖(xij)‖Mn(RN ), ‖(xij)‖Mn(CN )}
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and RN + CN is the operator space dual of RN ∩CN [26, p. 55,194]. Then for any operator
space X and any x1, . . . , xN ∈ X,

‖
N∑

k=1

ek ⊗ xk : X∗ → RN ∩ CN‖cb = max

{
‖
∑

k

xkx
∗
k‖1/2, ‖

∑
k

x∗kxk‖1/2

}
.

Let

α =
N∑

k=1

ak ⊗ ek : l2N → Mn+1, β =
N∑

k=1

ek ⊗ bk : S1
n+1 → l2N .

Here, (ek)1≤k≤N is the canonical basis of l2N , ak ⊗ ek maps x to 〈x, ek〉l2N ak and ek ⊗ bk maps

x to tr(xbk)ek. Then

‖α : RN + CN → Mn+1‖cb = ‖
∑

k

a2
k‖1/2,

‖β : S1
n+1 → RN ∩ CN‖cb = ‖

∑
k

b2
k‖1/2 and

αβx = Tx for any x ∈ Mn+1.

Let us denote Cn ⊕∞ Rn ⊂ Mn+1 the subspace spanned by {Ei0, E0i : 1 ≤ i ≤ n}. In the
same manner, we regard this space as Rn ⊕1 Cn ⊂ S1

n+1. If J : Rn ⊕1 Cn → Cn ⊕∞ Rn is
the identity, then αβ is obtained by projecting canonically S1

n+1 to Rn ⊕1 Cn, then applying

J and finally injecting Cn ⊕∞ Rn into Mn+1. Denote α̂ = pα and β̂ = βj, where p is
the natural projection of Mn+1 onto Cn ⊂ Cn ⊕∞ Rn ⊂ Mn+1 and j is the embedding of
Rn ⊂ Rn ⊕1 Cn ⊂ S1

n+1 into S1
n+1. Then one obtains the following commuting diagram

RN ∩ CN
Id // RN + CN

α̂
��

Rn
Id

//

β̂

OO

Cn

with

‖α̂ : RN + CN → Cn‖cb ≤ ‖
∑

k

a2
k‖1/2,

‖β̂ : Rn → RN ∩ CN‖cb ≤ ‖
∑

k

b2
k‖1/2.

According to the factorization Il2N
= α̂β̂ we have n ≤ ‖β̂‖HS‖α̂‖HS. But the Hilbert-Schmidt

norm of any γ : l2m1
→ l2m2

equals the cb-norm of γ : Rm1 → Cm2 [26, p. 21], so

n ≤ ‖β̂ : Rn → CN‖cb ‖α̂ : RN → Cn‖cb

≤ ‖β̂ : Rn → CN ∩RN‖cb ‖α̂ : RN + CN → Cn‖cb

≤ ‖
∑

k

b2
k‖1/2 ‖

∑
k

a2
k‖1/2.

This shows (5.3).
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Now the matrix version of the main theorem reads as follows.

Theorem 5.4. Let n ∈ N and T : Mn → Mn satisfy (P). Fix some p ∈ (1,∞). Then for
any x ∈ Sp

n,

〈(I − T )x, x̂〉 ∈ Σp.

Proof. Use remark 5.2 and write Tx =
∑m

k=1 akxbk with ak, bk as in (5.2). Decompose

x = udv,

with u, v ∈ Mn unitaries and d a diagonal matrix with non-negative diagonal entries d1, . . . , dn.
Then x̂ = v∗dp−1u∗. For simplifying the calculation, we write gk = u∗aku and hk = vbkv

∗.

〈(I − T )x, x̂〉 = tr(dp −
∑

k

gkdhkd
p−1)

=
n∑

r=1

dp
r −

∑
k,r,s

gk,rsdshk,srd
p−1
r .

Write crs :=
∑

k gk,rshk,sr. Since gk and hk are self-adjoint, crs = csr. Thus, the above
expression equals∑

r

dp
r −

1

2

∑
r,s

crsdsd
p−1
r − 1

2

∑
r,s

crsdrd
p−1
s

=
1

2

{∑
r

dp
r(1−

∑
s

|crs|) +
∑

s

dp
s(1−

∑
r

|crs|) +
∑
r,s

(
dp

r|crs|+ dp
s|crs| − crsdsd

p−1
r − crsdrd

p−1
s

)}
.

The expression in round brackets of the last double sum is a term (a − b)(â − b̂) as in
proposition 4.4, putting

a = dr|crs|1/p and b = ds|crs|1/p crs

|crs|
.

Since Σp is closed under addition,∑
r,s

dp
r|crs|+ dp

s|crs| − crsdsd
p−1
r − crsdrd

p−1
s ∈ Σp.

Moreover, it now suffices to show that

(5.4) 1−
∑

s

|crs| ≥ 0, 1−
∑

r

|crs| ≥ 0.

First we use Cauchy-Schwarz:(∑
s

|crs|

)2

=

(∑
s

|
∑

k

gk,rshk,sr|

)2

≤

(∑
s

∑
k

|gk,rs|2
)(∑

s

∑
k

|hk,sr|2
)

.

We estimate the first factor:∑
s

∑
k

|(u∗aku)rs|2 =
∑

s

∑
k

(u∗aku)sr(u
∗aku)rs =

∑
k

(u∗a2
ku)rr ≤ 1,
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where we use the assumption
∑

k a2
k ≤ 1 in the last inequality. In the same way, one estimates

the second factor, which gives the first estimate in (5.4). The second estimate in (5.4) follows
at once, since |crs| = |csr|. �

Our next goal is to extend the theorem to hyperfinite von Neumann algebras instead of Mn

by a limit process. The following lemma contains the necessary information how the property
(P) and the dual element behave when passing from a “small” von Neumann algebra N to
a “big” von Neumann algebra N and vice versa.

Lemma 5.5. Let (N, σ) and (N , σ̃) be two von Neumann algebras with s.n.f. trace. Assume
that there exist J : N → N and Q : N → N with the following properties:

(1) J and Q are completely positive,
(2) J and Q are (completely) contractive,
(3) QJ = IN ,
(4) 〈Jx, y〉 = 〈x, Qy〉 for all x ∈ L1(N) ∩N and y ∈ L1(N ) ∩N .

Then J and Q extend to complete contractions Jp : Lp(N) → Lp(N ) and Qp : Lp(N ) →
Lp(N) for any 1 ≤ p ≤ ∞. Furthermore, the following holds.

(1) If T : N → N satisfies (P), then also QTJ : N → N does. For all 1 < p < ∞ and

x ∈ Lp(N), 〈(ILp(N ) − Tp)Jp(x), Ĵp(x)〉 = 〈(ILp(N) −QpTpJp)x, x̂〉.
(2) If T : N → N satisfies (P), then also JTQ : N → N does. For all 1 < p < ∞ and

x ∈ Lp(N), 〈(ILp(N) − Tp)x, x̂〉 = 〈(ILp(N ) − JpTpQp)Jp(x), Ĵp(x)〉.

Proof. The completely contractive extensions Jp and Qp follow from assumption 4 by Hölder’s
inequality and complex interpolation, as in the beginning of section 4.

(1) Let W be an extension of T according to the definition of (P). Then W̃ = Q̃WJ̃ is

an appropriate extension of QTJ, where Q̃ = IM2 ⊗ Q and J̃ = IM2 ⊗ J. Indeed, since

J and Q are completely positive, also J̃ and Q̃ are, and therefore W̃ is. As J and Q

are completely contractive, J̃ , Q̃, and thus W̃ are contractive. By (5.1), W̃ is completely

contractive. It is plain to check the self-adjointness of W̃ . Just note that by the positivity

of Q̃, Q̃(x∗) = [Q̃(x)]∗, so Q̃2 is the adjoint of J̃2 in the Hilbert space sense.
For the second part, note that by approximation, 〈Qpx, y〉 = 〈x, Jqy〉 for any x ∈ Lp(N ), y ∈

Lq(N) and 1 ≤ p, q ≤ ∞ conjugated exponents. Also assumption 3 extends to QpJp = ILp(N)

for all 1 ≤ p ≤ ∞. Now the assertion follows if we know that Ĵp(x) = Jq(x̂) for any x ∈ Lp(N).
We check the two determining properties of the dual element.

〈Jq(x̂), Jp(x)〉 = 〈QqJq(x̂), x〉 = 〈x̂, x〉 = ‖x‖p
p.

Further,

‖Jq(x̂)‖q
q = ‖x̂‖q

q = ‖x‖p
p = ‖Jp(x)‖p

p = ‖Ĵp(x)‖q
q.

Here, we have used that Jq (and Jp) is an isometry. This follows from QqJq = ILq(N) and the
contractivity of Jq.

(2) Put W̃ = J̃WQ̃. The rest of the proof is very similar to that of (1). �
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Theorem 5.6. Let M be a hyperfinite von Neumann algebra and T : M → M satisfy (P).
Then for all 1 < p < ∞ and x ∈ Lp(M),

〈(ILp(M) − Tp)x, x̂〉 ∈ Σp.

Proof. 1st case: M finite dimensional. Then there exist K ∈ N, λ1, . . . , λK > 0 and
n1, . . . , nK ∈ N such that (M, τ) has a representation as a direct sum

(M, τ) = (Mn1 , λ1 tr)⊕ . . .⊕ (MnK
, λK tr).

We want to apply (2) of lemma 5.5.

Assume for a moment that λ1, . . . , λK ∈ N. Take N = M andN = Mm with m =
∑K

k=1 λknk,
endowed with the standard trace tr . Put

J : M → Mm, J(x1 ⊕ x2 ⊕ . . .⊕ xK) =



x1 0
. . .

x1

. . .
xK

. . .
0 xK


.

Here, the multiplicity of the x′ks on the diagonal of the big matrix is λk. Let Q : Mm → M
be defined by 〈Jx, y〉 = 〈x, Qy〉. J is completely positive by its simple structure, and then Q
also is by lemma 3.1. J is a contraction, since ‖J(x)‖ = maxk ‖xk‖ = ‖x‖. Q is a contraction,
since ‖x‖L1(M) =

∑
k λk‖xk‖S1

nk
= ‖J(x)‖S1

m
. Finally, the identity QJ = IM is easy to check,

so that the assumptions of lemma 5.5 are satisfied, and

〈(ILp(M) − Tp)x, x̂〉 = 〈(IMm − JTQ)Jx, Ĵx〉
thm 5.4
∈ Σp.

Assume now that λk ∈ Q. Then let t ∈ N be the common denominator of the λ′ks. Put
m = t

∑
k λknk andN = Mm with the trace t−1·tr . Use the same J as before, the multiplicity

of the a′ks being now tλk. We appeal again to lemma 5.5 (2). Note that the theorem 5.4 is
also valid with the modified trace t−1 · tr .
The general case λk ∈ R∗

+ follows by rational approximation.
2nd case: M is hyperfinite. There exists a net Mα of finite dimensional subalgebras of the
kind as in the 1st case. Further, for every α, there exists Jα : Mα → M satisfying the
assumptions of lemma 5.5. For every 1 < p < ∞ and every x ∈ Lp(M), Jα,pQα,px

α→ x in
Lp(M) ([25, thm 3.4 and rem] and [29, p. 332]). Now (1) of lemma 5.5 yields that QαTJα

is an operator as in the 1st case of the proof. Therefore for any x ∈ Lp(M), by lemma 5.5

〈(ILp(M) − Tp)x, x̂〉 = lim
α
〈(I − Tp)Jα,pQα,px, ̂(Jα,pQα,px)〉

= lim
α
〈(I −Qα,pTpJα,p)Qα,px, ̂(Qα,px)〉

∈ Σp.

�
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The following theorem now answers our question in section 4. In addition, the contractivity
in (4.4) can be extended to complete contractivity.

Theorem 5.7. Let M be a hyperfinite von Neumann algebra with s.n.f. trace τ and (Tt) a
diffusion semigroup on (M, τ). Assume that for all t > 0, Tt satisfies (P) (for example, Tt is
completely positive). Then for all 1 < p < ∞, t 7→ Tt,p has an analytic extension

Σ′
p → B(Lp(M)), z 7→ Tz,p.

The operators Tz,p are in addition completely contractive.

Proof. Proposition 4.2 together with theorem 5.6 gives the analytic extension and the con-
tractivity. To show the complete contractivity, let n ∈ N and consider the space N = Mn⊗M
with trace tr⊗τ. Then T̃t := IMn ⊗ Tt gives a diffusion semigroup on N. Further, T̃t inherits
property (P) from Tt : Indeed, if W : M2 ⊗M → M2 ⊗M is an “extension” of Tt as in the
definition of (P), then IMn⊗W : Mn⊗(M2⊗M) ∼= M2⊗(Mn⊗M) → Mn⊗(M2⊗M) is one
of T̃t. Let Σ′

p → B(Lp(N)), z 7→ T̃z,p be the analytic contractive extension of T̃t,p. We claim

that T̃z,p = ISp
n
⊗ Tz,p, where Tz,p is the analytic extension of Tt,p. Indeed, by the equivalence

of the norms ‖(xij)ij‖Sp
n(Lp(M)) '

∑
ij ‖xij‖Lp(M), one sees that ISp

n
⊗ Tz is analytic. Since

T̃z,p = ISp
n
⊗Tz,p a priori for z > 0, the claim follows from the uniqueness theorem for analytic

functions. Now the theorem follows from (3.1). �

6. Specific Examples

We will now give some examples of diffusion semigroups (Tt) on hyperfinite von Neumann
algebras which match the conditions of theorem 5.7. Recall that if for any t > 0, Tt is
completely positive, then Tt satisfies (P) and theorem 5.7 can be applied. In two specific
cases to follow, the complete positivity is unnecessary.

6.1. Commutative case. We assume that (M, τ) = (L∞(Ω), µ) is a commutative von
Neumann algebra. Then our definition 4.1 of a diffusion semigroup reduces to the classical
one given in [28].
For any operator T : L∞(Ω) → L∞(Ω) or T : L1(Ω) → L1(Ω), ‖T‖ = ‖T‖cb. This is false
in general for operators T : Lp(Ω) → Lp(Ω) with 1 < p < ∞. The property (P) has now a
simple characterization.

Proposition 6.1. A w∗-continuous operator T : L∞(Ω) → L∞(Ω) satisfies (P) if and only
if T is contractive and self-adjoint.

Proof. The “only if” part follows from remark 5.2. For the “if” part, we assume that L∞(Ω) =
l∞n for some n ∈ N. The general case can be deduced by an approximation argument as in
theorem 5.6, using the semi-partitions of (Ω, µ) explained in section 2.

We identify T and T∗ with matrices (tij) and (tij). Since (tij) is self-adjoint, (tij) and (|tij|)
are self-adjoint also. Hence

W =

(
(|tij|) (tij)
(tji) (|tij|)

)
: M2(l

∞
n ) → M2(l

∞
n )

is self-adjoint.
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We show that W is completely positive. Let J̃ : l∞n ↪→ Mn be the embedding into the
diagonal, J = IM2⊗ J̃ : M2(l

∞
n ) ↪→ M2(Mn) and P : M2(Mn) → M2(l

∞
n ) its adjoint. Further,

let φij ∈ C such that tij = |tij|φij. Denote aij =

( √
|tij|φijEij 0

0
√
|tij|Eij

)
∈ M2(Mn),

where (Eij)ij is the canonical basis in Mn. Then x 7→
∑

i,j aijxa∗ij is completely positive by

Choi’s theorem (3.2). On the other hand, this mapping equals JWP. Indeed,∑
i,j

( √
|tij|φijEij 0

0
√
|tij|Eij

)(
x(11) x(12)

x(21) x(22)

)(
φij

√
|tij|Eji 0

0
√
|tij|Eji

)
=
∑
i,j

(
|tij|Eijx

(11)Eji tijEijx
(12)Eji

tijEijx
(21)Eji |tij|Eijx

(22)Eji

)

=
∑
i,j

(
|tij|x(11)

jj Eii tijx
(12)
jj Eii

tijx
(21)
jj Eii |tij|x(22)

jj Eii

)
= JWPx.

Then W = P (JWP )J is also completely positive.
As ‖T‖ is given by supi

∑
j |tij|, which does only depend on the absolute values of tij, we

have ‖(|tij|)‖ = ‖T‖. This implies

∥∥∥∥W (
1 0
0 1

)∥∥∥∥ ≤ ‖(|tij|)‖ ≤ 1, and thus, W is completely

contractive. �

As a corollary, we obtain [22, cor 3.2], but without the assumption of positivity.

Corollary 6.2. Let (Tt) be a diffusion semigroup on L∞(Ω), i.e. the Tt,p form consistent
contractive c0-semigroups on Lp(Ω) for 1 ≤ p < ∞ (w∗-continuous on L∞(Ω)) such that Tt,2

are self-adjoint. Then for 1 < p < ∞, t 7→ Tt,p has an analytic and contractive extension to

Σ′
p =

{
z ∈ C\{0} : | arg z| < π

2
− arctan

|p− 2|
2
√

p− 1

}
.

Proof. Recall that L∞(Ω) is a hyperfinite von Neumann algebra. By proposition 6.1, Tt

satisfies (P) for all t > 0, so that we can appeal to theorem 5.7. �

Remark 6.3. In [19], [22, cor 3.2] is used to improve the angle of the H∞-calculus of
generators of commutative diffusion semigroups consisting of positive operators. With the
above corollary, [19] gives the same angle improvement without the positivity assumption.

6.2. Schur Multipliers. A further example of non-commutative diffusion semigroups are
the Schur multiplier semigroups, considered in [16, chap 8]. The underlying von Neumann
algebra is M = B(l2(N)) = B(l2), with the usual trace tr . We identify B(l2(N)) with some
subspace of CN×N in the usual way. Let (tij)ij ∈ CN×N. The Schur multiplier T associated
with (tij)ij is defined in the following way: If x = (xij)ij ∈ B(l2) then

(6.1) Tx = (tijxij)ij.

Of course, it is not sure that Tx ∈ B(l2) nor that T ∈ B(M). The following proposition
characterizes, when the latter is the case. For a proof, see [24, cor 8.8].
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Proposition 6.4. Let T be given by (6.1). The following are equivalent.

• There exists a Hilbert space H and sequences (xi)i, (yi)i ⊂ H such that supi ‖xi‖ ≤
1, supi ‖yi‖ ≤ 1 and tij = 〈xi, yj〉H .

• The Schur multiplier T is a bounded operator on M and ‖T‖ ≤ 1.
• The Schur multiplier T is a completely bounded operator on M and ‖T‖cb ≤ 1.

Assume now that the conditions of the above proposition are satisfied. Then for x, y ∈
S1 ∩ B(l2), 〈Tx, y∗〉 = tr(Txy∗) =

∑∞
i,j=1 tijxijyij. Therefore, T is self-adjoint if and only if

tij ∈ R for all i, j ∈ N.

Lemma 6.5. A Schur multiplier T : B(l2) → B(l2) satisfies (P) if and only if T is contractive
and self-adjoint.

Proof. Only the “if” part has to be shown. Let (xi)i, (yi)i ⊂ H be the sequences given as in
proposition 6.4. By the self-adjointness of T, we know that 〈xi, yj〉H ∈ R. We may suppose
that 〈xi, xj〉H , 〈yi, yj〉H ∈ R.

Indeed, if this is not the case, let (eγ)γ be an orthonormal basis of H and consider the
R-linear mapping

J :


H −→ H ⊕2 H

eγ 7−→ eγ ⊕ 0

ieγ 7−→ 0⊕ eγ

.

For x ∈ H, write x = xR + ixI , where xR and xI are in the real span of the e′γs. In the same
manner, write y = yR + iyI . Then

〈x, y〉H = 〈xR, yR〉H + 〈xI , yI〉H + i〈xI , yR〉H − i〈xR, yI〉H ,

so if 〈x, y〉H ∈ R, then 〈J(x), J(y)〉H⊕H = 〈x, y〉H . Replace now xi and yi by J(xi) and J(yi).
Then, we still have tij = 〈J(xi), J(yj)〉, and in addition 〈xi, xj〉H , 〈yi, yj〉H ∈ R.

The operator W as in definition 5.1 that we will give in a moment acts on the space
M2 ⊗ B(l2). We wish to consider Schur multipliers on this space and do this in virtue
of the natural identification M2 ⊗ B(l2) ∼= B(l2(N × {1, 2})). Note that T∗ is the Schur
multiplier associated with (〈yi, xj〉H)ij. Further, by proposition 6.4, the Schur multipliers
S1 and S2 associated with (〈xi, xj〉H)ij and (〈yi, yj〉)ij are completely contractive. We put

W =

(
S1 T
T∗ S2

)
. This is a Schur multiplier on M2 ⊗ B(l2) ∼= B(l2(N× {1, 2})) associated

with the matrix
(〈z(ik), z(jl)〉H)(ik),(jl)∈N×{1,2},

where z(ik) =

{
xi, k = 1

yi, k = 2
. Therefore, W is completely positive [24, ex 8.7]. The (complete)

contractivity of W is clear from proposition 6.4. Finally, as 〈z(ik), z(jl)〉H ∈ R, W is self-
adjoint. �

Now assume that (Tt) is a diffusion semigroup on M such that for any t > 0, Tt is a

Schur multiplier associated to some (t
(t)
ij )ij ∈ CN×N. For example, if H is a Hilbert space

and (αk)k∈N and (βk)k∈N are sequences in H, then the Schur multipliers Tt associated with
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(e−t‖αi−βj‖)ij form such a diffusion semigroup [16, prop 8.17]. Then the above lemma and
theorem 5.7 show that for any 1 < p < ∞, (Tt,p)t>0 admits an analytic extension

Σ′
p → B(Lp), z 7→ Tz,p.

Further, by the uniqueness of analytic vector valued functions, Tz,p is again a Schur multiplier
for any z ∈ Σ′

p.

7. Semi-commutative diffusion semigroups

At the end, we give an example of a diffusion semigroup on a von Neumann algebra without
the assumption of hyperfiniteness. Let (Ω, µ) be a measure space and (N, σ) a von Neumann
algebra with s.n.f. trace. Suppose we are given a diffusion semigroup (Tt) on L∞(Ω). By the
w∗-continuity of any Tt, we can define the contractions

TN
t := Tt⊗IN : L∞(Ω)⊗N → L∞(Ω)⊗N.

(TN
t ) is a diffusion semigroup on L∞(Ω)⊗N, and called semi-commutative diffusion semi-

group.

Now assume that N has the QWEP property. This means that N is the quotient of a C∗-
algebra having the weak expectation property (WEP) introduced in [20, 21]. It is unknown
whether every von Neumann algebra has this property.

Recall the following notion of an ultraproduct of Banach spaces. Let (Xα)α∈I be a family
of Banach spaces and U an ultrafilter on I. We will only need the case Xα = X, a fixed
Banach space. Consider the quotient space

l∞(I; Xα) = {(xα)α ∈
∏
α

Xα : sup
α
‖xα‖ < ∞}/{(xα)α : ∃F ∈ U : xα = 0 for all α ∈ F}

and the subspace

c0(U ; Xα) = {(xα)α ∈ l∞(I; Xα) : lim
U
‖xα‖ = 0}.

Then
∏
U Xα = l∞(I; Xα)/c0(U ; Xα) is called an ultraproduct, see also [26, p. 59].

We will need a property of Lp(N, σ) which appears in [13].

Proposition 7.1. Let N be a von Neumann algebra with QWEP having a s.n.f. trace σ.
Then there exists a Hilbert space H, an ultrafilter U on some index set I and an isometric
embedding J : Lp(N) →

∏
U Sp(H).

The following proposition follows from [13, thm 2.10]. We include a simple proof for the
convenience of the reader.

Proposition 7.2. Let 1 < p < ∞, Lp(Ω) be some commutative Lp-space and T ∈ B(Lp(Ω))
be completely bounded. Let N be a von Neumann algebra with QWEP with a s.n.f. trace
σ. Then T ⊗ ILp(N), initially defined on Lp(Ω)⊗ Lp(N), extends to Lp(Ω, Lp(N)) and

‖T⊗ILp(N) : Lp(Ω, Lp(N)) → Lp(Ω, Lp(N))‖ ≤ ‖T‖cb.
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Proof. By (3.1), for every n ∈ N,

‖T ⊗ ISp
n

: Lp(Ω, Sp
n) → Lp(Ω, Sp

n)‖ ≤ ‖T‖cb.

As in [25, prop 2.4], we deduce via a density argument that ‖T⊗ISp(H) : Lp(Ω, Sp(H)) →
Lp(Ω, Sp(H))‖ ≤ ‖T‖cb.

Let H,U , I, J be as in proposition 7.1. We denote (xα)α and (fα)α elements of the ultra-
product spaces

∏
U Sp(H) and

∏
U Lp(Ω, Sp(H)). Consider the ultraproduct mapping

S :
∏
U

Lp(Ω, Sp(H)) →
∏
U

Lp(Ω, Sp(H)), (fα)α 7→ ((T⊗ISp(H))(fα))α.

Note that the space Lp(Ω,
∏
U Sp(H)) is isometrically embedded in

∏
U Lp(Ω, Sp(H)), via a

mapping taking a step function
∑

k fk ⊗ (xk,α)α to the element (
∑

k fk ⊗ xk,α)α. With this

embedding, S(Lp(Ω,
∏
U Sp(H))) ⊂ Lp(Ω,

∏
U Sp(H)), and S̃ = S|Lp(Ω,

∏
U Sp(H)) is again a

contraction, since ‖T‖cb ≤ 1. Now use proposition 7.1 to restrict S̃ to Lp(Ω, Lp(N)). This
restriction equals T⊗ILp(N), which is thus a contraction, as desired. �

Corollary 7.3. Let (TN
t ) = (Tt⊗IN) be a semi-commutative diffusion semigroup as above.

Then for 1 < p < ∞, t 7→ TN
t,p has an analytic and completely contractive extension to Σ′

p.

Proof. By proposition 6.1, Tt satisfies (P) and theorem 5.7 gives the completely contractive
analytic extension z 7→ Tz,p on Σ′

p. Now appeal to proposition 7.2 to get the contractive

operators Tz,p⊗ILp(N). It is clear that the latter form an analytic extension of TN
t,p. Replacing

Tt by IMn ⊗ Tt in this argument gives the completely contractive result. �

Remark 7.4. There is even a more general version of proposition 7.2, [13, thm 2.10]. From
this, we deduce that if M is a hyperfinite von Neumann algebra with s.n.f. trace τ and
T : Lp(M) → Lp(M) is completely contractive, then T⊗ILp(N) : Lp(M⊗N) → Lp(M⊗N) is
completely contractive.

With this generalization, one also gets the following result: If (Tt) is a diffusion semigroup
on a hyperfinite von Neumann algebra such that Tt satisfies (P) for all t > 0, then TN

t =
Tt⊗IN forms a diffusion semigroup and has an analytic and completely contractive extension
to Σ′

p.

Corollary 7.3 allows us to generalize proposition 4.4, which was our starting observation,
to the non-commutative case.

Corollary 7.5. Let (N, σ) be a QWEP von Neumann algebra and a, b ∈ Lp(N). Then

〈a− b, â− b̂〉 = ‖a‖p
p + ‖b‖p

p − tr(b|a|p−1ua)− tr(a|b|p−1ub) ∈ Σp.

Here, a = ua|a| and b = ub|b| are the polar decompositions.

Proof. Let (Tt) be the diffusion semigroup on l∞2 as in example 4.3, i.e. Tt = etA with

A =

(
−1 1
1 −1

)
.

Consider the semi-commutative semigroup (Tt⊗IN) with (bounded) generator Ap = A ⊗
ILp(N) on Lp(l∞2 ⊗N) and define the element x in this space by x = (a, b). Its dual element
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is given by x̂ = (â, b̂). By corollary 7.3 and proposition 4.2,

〈a− b, â− b̂〉 = −〈Apx, x̂〉 ∈ Σp.

�
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170-22 (1985).

[13] M. Junge, Applications of the Fubini theorem for non-commutative Lp spaces, preprint.
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