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Contractivity of the H∞-calculus and Blaschke
products

Christoph Kriegler and Lutz Weis

Abstract. It is well known that a densely defined operator A on a Hilbert
space is accretive if and only if A has a contractive H∞-calculus for any angle
bigger than π

2
. A third equivalent condition is that ‖(A− w)(A + w)−1‖ ≤ 1

for all Re w ≥ 0. In the Banach space setting, accretivity does not imply
the boundedness of the H∞-calculus any more. However, we show in this
note that the last condition is still equivalent to the contractivity of the H∞-
calculus in all Banach spaces. Furthermore, we give a sufficient condition for
the contractivity of the H∞-calculus on C+, thereby extending a Hilbert space
result of Sz.-Nagy and Foiaş to the Banach space setting.

Mathematics Subject Classification (2000). 47A60, 47B44, 30D50.
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1. Introduction

It is well known that the Cayley transform A 7→ T = (A−1)(A+1)−1 provides, in
a Hilbert space, a one-to-one correspondence between accretive operators A (i.e.
negative generators of contractive semigroups) and bounded contractive operators
T which do not have 1 as an eigenvalue (cf. [NF] theorem 4.1 in IV.4). If θ > π

2 ,
then this, combined with von Neumann’s inequality for contractions, can be used
to construct a contractive H∞(Σθ)-calculus (see section 2 for the definition) for
any accretive operator A (cf. [ADM]).

In a Banach space setting, this correspondence between accretive operators
and contractions breaks down and von Neumann’s inequality does not necessarily
hold [Foi]. Thus in order to construct a contractive H∞-calculus for Banach space
operators we need stronger assumptions than accretivity. In this note we take a
hint from one of the many known proofs of von Neumann’s inequality (see [Dru])
and use classical approximations of bounded analytic functions on Σπ

2
or D by

Blaschke products. This enables us to connect the holomorphic functional calculus
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of a negative generator A of a semigroup and its Cayley transform T, thereby
proving its contractivity.

In section 4 we show that a sectorial operator A of type π
2 on a Banach space

X has a contractive H∞(Σθ)-calculus for all θ > π
2 if and only if for all λ ∈ Σπ

2

and x ∈ D(A)
‖(A− λ)x‖ ≤ ‖(A+ λ)x‖. (1.1)

Condition (1.1) is stronger than accretivity in a general Banach space X but it
is easily seen that it is equivalent to accretivity if X is a Hilbert space. Hence
our result extends the Hilbert space result quoted earlier and provides a relatively
short proof for it. In theorem 4.4, we extend this functional calculus to functions
in H∞(Σπ

2
) with a continuous boundary function on iR ∪ {∞}, in the case that

A is only a π
2 -sectorial operator.

In general, (1.1) does not guarantee a bounded H∞(Σπ
2
)-calculus, even in a

Hilbert space. However, in section 5, we show that if we assume in addition that
there exists a dense subset D of X such that∫ ∞

0

|〈e−tAx, x′〉|2dt ≤ Cx‖x′‖2 for x ∈ D, x′ ∈ X ′, (1.2)

then A has a contractive H∞(Σπ
2
)-calculus. Condition (1.2) is of importance in

scattering theory and, in the Hilbert space setting, was studied by E.B. Davies in
[Da1] and [Da2]. He shows in [Da1], theorem 6.26, that a completely non-unitary
semigroup on a Hilbert space satisfies (1.2). Therefore our result generalizes the
known fact that a completely non-unitary semigroup has an H∞(Σπ

2
) functional

calculus, which can be derived from [NF], section III.8. We derive our Banach
space result via the Cayley transform from a corresponding result for contractions
T on X (see corollary 5.3) where we assume that

∞∑
n=0

|〈Tnx, x′〉|2 ≤ Cx‖x′‖2 for x ∈ D, x′ ∈ X ′. (1.3)

Clearly, every sectorial operator A on a Banach space X with a bounded H∞(Σθ)-
calculus has a contractive functional calculus in the equivalent norm

|||x||| = sup{‖φ(A)x‖ : φ ∈ H∞(Σθ), |φ(λ)| ≤ 1 for λ ∈ Σθ}.

However, in section 6 we show that for many common examples of semigroup
generators, ||| · ||| is not the natural norm of X.

In section 2 and 3, we recall some facts on the H∞-calculus and Blaschke
products that are essential for our argument.

2. Preliminaries on the H∞-calculus

Notation. Let θ ∈ (0, π). As usual we shall set

Σθ = {reiφ : r > 0, |φ| < θ}
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and
H∞(Σθ) = {f : Σθ → C : f is analytic and bounded}.

This space is complete when equipped with the norm ‖f‖∞,θ = supλ∈Σθ
|f(λ)|.

Put

H∞
0 (Σθ) = {f ∈ H∞(Σθ) : ∃ ε, C > 0 s.th. |f(λ)| ≤ Cmin(|λ|ε, |λ|−ε)}

and
R(Σθ) = span(H∞

0 (Σθ) ∪ {1, (1 + (·))−1}).

Note that R(Σθ) is a subalgebra of H∞(Σθ) which contains all rational functions
of non-positive degree and poles outside Σθ.
Let X be a Banach space and θ ∈ (0, π). An operator A : D(A) ⊆ X → X is called
θ-sectorial, if

1. D(A) is dense in X.
2. The spectrum σ(A) is contained in Σθ.

3. For all ω > θ there is a Cω > 0 such that ‖λR(λ,A)‖ ≤ Cω for all λ ∈ Σω
c
.

For such an operator, one can construct for every ω > θ a linear and multiplicative
mapping Φω : R(Σω) −→ B(X) such that for µ ∈ C\Σω and f ∈ H∞

0 (Σω)

Φω(1) = IdX , Φω((µ− (·))−1) = (µ−A)−1 and Φω(f) =
1

2πi

∫
∂Σ(ω+θ)/2

f(λ)R(λ,A)dλ.

We call Φω the H∞(Σω)-calculus of A. For ω1 > ω2, Φω1 and Φω2 coincide on
R(Σω1). If in addition A has dense range then Φω can be extended to

H∞
A (Σω) = {f ∈ H∞(Σω) : ∃ (fn)n ⊆ R(Σω) s.th.

fn → f pointwise and sup
n
‖fn(A)‖+ ‖fn‖∞,ω <∞}.

For f ∈ H∞
A (Σω) and associated (fn)n ⊆ R(Σω), Φω(f)x = limn Φω(fn)x for all

x ∈ X. This implies clearly that ‖Φω(f)‖ ≤ lim infn ‖Φω(fn)‖. The map

Φω : H∞
A (Σω) −→ B(X)

is still linear and multiplicative. Further, H∞
A (Σω) equals H∞(Σω) iff there exists

C > 0 such that for all f ∈ H∞
0 (Σω) one has ‖f(A)‖ ≤ C‖f‖∞,ω. In this case,

we say that A has a bounded H∞(Σω)-calculus. For more information on the
H∞-calculus, see for example [CDMY], especially section 2 and [KW], especially
chapter 9. We denote Φω(f) by f(A).

3. Preliminaries on Blaschke products

In this section, we develop the necessary background on Blaschke products (see
also [Gar] for more information on this topic).
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Notation. We put D = {z ∈ C : |z| < 1} and consider the two spaces

H∞(D) = {f : D → C analytic and bounded}

and
A(D) = {f ∈ H∞(D) : f has a continuous extension to D}.

They are equipped with the norm ‖f‖∞,D = ‖f‖∞ = supz∈D |f(z)|, for which they
are complete. For µ ∈ D, we define

fµ(z) =
z − µ

1− µz
.

This function is called a Blaschke factor on D and is clearly analytic on the neigh-
borhood 1

µ D of D . For µ ∈ D, fµ(∂ D) ⊆ ∂ D, since for θ ∈ R

|fµ(eiθ)| =
∣∣∣∣ eiθ − µ

1− µeiθ

∣∣∣∣ =
∣∣∣∣eiθ 1− µe−iθ

1− µe−iθ

∣∣∣∣ = 1.

Thus by the maximum principle, ‖fµ‖∞ = 1.
A function f ∈ A(D) is called a (finite) Blaschke product on D if it is of the form

f(z) ≡ eiθ or f(z) = eiθ
n∏

k=1

fµk
(z)

for some n ∈ N, µk ∈ D and θ ∈ R. A function f ∈ H∞(D) is a finite Blaschke
product if and only if

1. f is analytic on some aD with a > 1.
2. f(∂ D) ⊆ ∂ D .

Indeed, a finite Blaschke product clearly has the two properties. Suppose now
that f satisfies 1. and 2. If f had infinitely many zeros in D then there would
exist an accumulation point of them in D. By 1. and the identity theorem, f ≡ 0,
which contradicts 2. Hence f has only finitely many zeros and there exists a finite
Blaschke product b which has the same zeros counted with their multiplicity. Then
f/b and b/f also satisfy 1. and 2. Therefore, for z ∈ D, |f(z)/b(z)| ≤ 1 and
|b(z)/f(z)| ≤ 1, and thus |f(z)/b(z)| = 1, which implies that f(z)/b(z) is constant.
Hence f(z) = eiθb(z) for some θ ∈ R.
If T ∈ B(X) with spectrum σ(T ) ⊆ D, then for f(z) =

∑
anz

n holomorphic in
aD for some a > 1, we define f(T ) =

∑
anT

n, which is the Dunford calculus of
T. In particular, fµ(T ) = (T − µ)(1− µT )−1.
We also need the Blaschke factors on Σπ

2
. We define the conformal mappings

ζ : D → Σπ
2
, z 7→ −z + 1

z − 1
and τ = ζ−1 : Σπ

2
→ D, λ 7→ λ− 1

λ+ 1
.

ThenH∞(Σπ
2
) = {f◦τ : f ∈ H∞(D)}.We put A(Σπ

2
) = {f◦τ : f ∈ A(D)} = {f ∈

H∞(Σπ
2
) : f has a continuous extension to Σπ

2
and at ∞}. The spaces H∞(Σπ

2
)
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and A(Σπ
2
) are again equipped with the infinity norm. Note that for θ > π

2 ,
H∞(Σθ) 6⊂ A(Σπ

2
), but R(Σθ) ⊂ A(Σπ

2
). For w ∈ Σπ

2
, we define

bw(λ) =
λ− w

λ+ w
, λ ∈ Σπ

2

which we call a Blaschke factor on Σπ
2
. For µ ∈ D, the Blaschke factor fµ on D is

related to the Blaschke factor bζ(µ) on Σπ
2

by the identity

fµ ◦ τ = fµ(1) · bζ(µ).

As above we call f ∈ A(Σπ
2
) a (finite) Blaschke product on Σπ

2
, if it is of the form

f(λ) ≡ eiθ or f(λ) = eiθ
n∏

k=1

bwk
(λ)

for some n ∈ N, wk ∈ Σπ
2

and θ ∈ R. We denote by BD (resp. BΣ π
2
) the set of finite

Blaschke products, which is contained in the unit ball of A(D) (resp. A(Σπ
2
)).

The next lemma and its proof is essentially taken from [Gar]. Since these
results are essential for us we include a proof for the convenience of the reader.

Lemma 3.1.

1. (Carathéodory). For every f in the unit ball of H∞(D) (resp. H∞(Σπ
2
)),

there exists a sequence in BD (resp. BΣ π
2
) which converges pointwise on D

(resp. Σπ
2
) to f.

2. (Bernard). coBD, the convex hull of BD, is norm dense in the unit ball of
A(D). Hence also coBΣ π

2
is norm dense in the unit ball of A(Σπ

2
).

Proof. 1. It clearly suffices to prove the statement for D . Write f(z) =
∑∞

k=0 ckz
k.

It suffices to find for every n ∈ N a finite Blaschke product Bn,f (z) =
∑∞

k=0 dkz
k

such that dk = ck for k ≤ n−1. Indeed, by the Cauchy integral formula, |ck|, |dk| ≤
1 for all k ∈ N. Then for |z| < 1 fixed,

|f(z)−Bn,f (z)| ≤
∞∑

k=n

(|ck|+ |dk|)|z|k ≤ 2|z|n(1− |z|)−1 → 0.

If |c0| = 1, then by the maximum principle, f is constant and Bn,f (z) ≡ c0
suffices. So suppose from now on that |c0| < 1. We proceed by induction. For
n = 1, B1,f (z) = f−c0(z) = z+c0

1+c0z suffices. Suppose that for a given n ∈ N and all
h in the unit ball of H∞(D), there exists Bn−1,h such that Bn−1,h − h has a zero
of multiplicity n− 1 at 0. Let

h(z) =
1
z

f(z)− c0
1− c0f(z)

=
1
z
fc0(f(z)).

If |z| < 1 then for all r ∈ (|z|, 1) we have |h(z)| ≤ 1
r |fc0(f(z))| ≤ 1

r and hence h is in
the unit ball of H∞(D). We will construct Bn = Bn,f by means of Bn−1 = Bn−1,h.
Put

Bn(z) =
zBn−1(z) + c0
1 + c0zBn−1(z)

= f−c0(zBn−1(z)).
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Then Bn is analytic on aD for some a > 1 and satisfies Bn(∂ D) ⊆ ∂ D . Hence Bn

is a finite Blaschke product.

f(z)−Bn(z) = f−c0(zh(z))− f−c0(zBn−1(z)) =
(1− |c0|2)z(h(z)−Bn−1(z))

(1 + c0zh(z))(1 + c0zBn−1(z))
.

Here we see that f−Bn has a zero of multiplicity n at 0. The induction is complete.
2. Let p =

∑N
n=0 anz

n be a polynomial in A(D) with ‖p‖∞ < 1. It clearly suffices to
show that such a p can be uniformly approximated by a finite convex combination
of finite Blaschke products. Let q(z) =

∑N
n=0 anz

N−n = zNp(z), so that q ∈ A(D)
and |q(z)| < 1 on D. For z, ξ ∈ D put

r(z, ξ) =
p(z) + ξzN

1 + ξq(z)
= f−p(z)(ξzN ).

For every ξ ∈ D, r(·, ξ) can be analytically continued on aD for some a > 1.
Also for every z ∈ D, r(z, ·) can be analytically continued on ‖q‖−1

∞ D . Since
|r(z, eit)| = |f−p(z)(eitzN )| = 1 for all z ∈ ∂ D, r(·, eit) is a finite Blaschke product.
By the mean value property for r(z, ·),

p(z) = r(z, 0) =
∫ 2π

0

r(z, eit)
dt

2π
,

where [0, 2π] 3 t 7→ r(z, eit) ∈ A(D) is continuous. So p can be approximated in
A(D) by a sequence of finite convex combinations of finite Blaschke products. �

4. Contractivity of the H∞-calculus

Our result is motivated by the following observation about Hilbert space operators.

Lemma 4.1. Let H be a Hilbert space and let A : D(A) ⊆ H → H be an operator.
The following are equivalent:

1. A is accretive, i.e. for all x ∈ D(A) we have Re 〈Ax, x〉 ≥ 0.
2. For all w ∈ C with Rew > 0 and all x ∈ D(A), ‖(A− w)x‖ ≤ ‖(A+ w)x‖.
3. There exists a w ∈ C with Rew > 0 such that for all x ∈ D(A), ‖(A−w)x‖ ≤

‖(A+ w)x‖.
4. For every finite Blaschke product b ∈ BΣ π

2
, ‖b(A)‖ ≤ 1.

Proof. The following inequalities are equivalent for x ∈ D(A) :

‖(A− w)x‖ ≤ ‖(A+ w)x‖
〈(A− w)x, (A− w)x〉 ≤ 〈(A+ w)x, (A+ w)x〉

〈Ax,Ax〉 − 2 Re [w〈Ax, x〉] + |w|2〈x, x〉 ≤ 〈Ax,Ax〉 + 2 Re [w〈Ax, x〉] + |w|2〈x, x〉
0 ≤ Re [(w + w)〈Ax, x〉]
0 ≤ Re 〈Ax, x〉.
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So if 3. holds for some w ∈ Σπ
2
, then 1. holds, which in turn implies that 2. holds.

That 2. implies 3. is evident and the equivalence of 2. and 4. holds since for every
w ∈ Σπ

2
, A+ w is a bijection D(A) → X. �

In a general Banach space, the equivalence of 1. and 4. above breaks down. As
was shown in [KW, section 10], there exist accretive operators without a bounded
H∞-calculus. Condition 2. above is however still equivalent to the boundedness of
the H∞-calculus in the Banach space context.

Theorem 4.2. Let X be a Banach space, θ < π
2 and A : D(A) ⊆ X → X be

θ-sectorial with dense range. Then A satisfies

‖(A− w)x‖ ≤ ‖(A+ w)x‖ for all Rew > 0, x ∈ D(A) (4.1)

if and only if A has a bounded H∞(Σπ
2
)-calculus and

‖f(A)‖ ≤ ‖f‖∞, π
2

(f ∈ H∞(Σπ
2
)).

Proof. The condition (4.1) implies that bw(A) = (A−w)(A+w)−1 is a contraction.
Thus, b(A) is a contraction for every finite Blaschke product b. Suppose now that
f ∈ H∞(Σπ

2
) with ‖f‖∞, π

2
≤ 1. Then by lemma 3.1, there exists a sequence fn of

finite Blaschke products converging to f pointwise on Σπ
2
. Since ‖fn‖, ‖fn(A)‖ ≤ 1

for all n ∈ N, f belongs to H∞
A (Σπ

2
) and ‖f(A)‖ ≤ lim infn ‖fn(A)‖ ≤ 1. The

necessity of (4.1) is clear, since it is equivalent to ‖bw(A)‖ ≤ ‖bw‖∞, π
2

= 1 for all
Rew > 0. �

Of course, the last proof also shows that the boundedness of the H∞(Σπ
2
)-

calculus in the situation of theorem 4.2 can be characterized by the uniform bound-
edness of the Blaschke products:

‖b(A)‖ ≤ C for some C <∞ and every finite Blaschke product b on Σπ
2
. (4.2)

If one compares the boundedness of the H∞-calculus to the boundedness of the
semigroup, then (4.2) corresponds to the Hille-Yosida condition ‖λn(λ+A)n‖ ≤ C
for all λ > 0 and (4.1) corresponds to the accretivity of the operator A. Note
that if the H∞(Σπ

2
)-calculus of A is bounded, then it is always contractive in an

equivalent norm on X, given for example by

|||x||| = sup{‖f(A)x‖ : f ∈ H∞(Σπ
2
) : ‖f‖∞, π

2
≤ 1}.

Since θ-sectoriality for θ < π
2 already implies that −A generates an analytic

semigroup, it is worthwhile to state in addition a somewhat weaker result for π
2 -

sectorial operators which covers all negative generators of a bounded semigroup.
To this end we need the following lemma.

Lemma 4.3. Let A : D(A) ⊆ X → X be π
2 -sectorial. Suppose that (4.1) holds. For

r ∈ (0, 1), let

Ar = (1− r +A(1 + r))(1 + r +A(1− r))−1 = ζ ◦ ψr ◦ τ(A) ∈ B(X),

where ζ and τ are the conformal mappings as in section 3 and ψr : D → D, z 7→ rz.
Then
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1. σ(Ar) ⊂ Σπ
2
.

2. Ar is again π
2 -sectorial, and this uniformly in r, in the sense that for all

ω ∈ (π
2 , π) there exists Cω > 0 such that for all r ∈ (0, 1) and λ ∈ C\Σω we

have ‖λR(λ,Ar)‖ ≤ Cω.
3. For Reλ < 0, R(λ,Ar) → R(λ,A) in B(X) as r → 1.
4. (4.1) holds for Ar in place of A.

Proof. 1. By (4.1), τ(A) is a contraction, and hence σ(ψr ◦ τ(A)) ⊂ D . By the
spectral mapping theorem, σ(Ar) = σ(ζ ◦ ψr ◦ τ(A)) ⊂ Σπ

2
.

2. Fix some ω ∈ (π
2 , π). Let λ ∈ C\Σω. Then λ(λ−Ar)−1

= {λ(1 + r) +Aλ(1− r)} [A(λ(1− r)− (1 + r)) + λ(1 + r)− (1− r)]−1
. (4.3)

We split this expression into two summands (I) and (II).

(I) = λ(1 + r)[. . .]−1

=
λ(1 + r)

λ(1− r)− (1 + r)

[
A+

λ(1 + r)− (1− r)
λ(1− r)− (1 + r)

]−1

=
λ(1 + r)

λ(1 + r)− (1− r)
µ(A+ µ)−1,

with µ = λ(1+r)−(1−r)
λ(1−r)−(1+r) . Note that

∣∣∣ λ(1+r)
λ(1+r)−(1−r)

∣∣∣ ≤ 1. Further, µ = λ−a−1

λ−a a with

a = 1+r
1−r > 1, so | argµ| = | arg(λ− a−1)− arg(λ− a)| ≤ | arg(λ− a−1)| < π − ω,

and thus ‖µ(A+ µ)−1‖ ≤ Cω = sup{‖νR(ν,A)‖ : ν ∈ C\Σω}.

(II) = Aλ(1− r)[. . .]−1 =
λ(1− r)

λ(1− r)− (1 + r)
A[A+ µ]−1.

Now
∣∣∣ λ(1−r)
λ(1−r)−(1+r)

∣∣∣ ≤ 1. Further, ‖A(A + µ)−1‖ ≤ 1 + ‖µ(A + µ)−1‖ ≤ 1 + Cω,

since µ ∈ Σπ−ω.
3. This can be deduced using (4.3) and the continuity of the map λ 7→ AR(λ,A)
from C\Σω to B(X).
4. Let Rew > 0, put µ = τ(w) ∈ D and T = τ(A). bw(Ar) = bw ◦ ζ ◦ ψr ◦ τ(A) =
fµ(1)−1fµ(rT ). We show that fµ(rT ) = (rT − µ)(1 − µrT )−1 is a contraction,
which implies that bw(Ar) is one.

fµ(z) =
z − µ

1− µz
= −µ+

1− |µ|2

µ

µz

1− µz
.

This shows that fµ(rz) = αfrµ(z) + β with α = (1−|µ|2)r
1−|rµ|2 and β = µr (1−|µ|2)r

1−|rµ|2 −µ.
So, fµ(rT ) = αfrµ(T ) + β IdX . Now frµ(T ) = frµ(1)bζ(rµ)(A) is a contraction, so
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that it suffices to show that |α|+ |β| ≤ 1.

|α|+ |β| = (1− |µ|2)r
1− |rµ|2

+ |µ|
∣∣∣∣r2(1− |µ|2)

1− |rµ|2
− 1

∣∣∣∣
=

(1− |µ|2)r
1− |rµ|2

+ |µ| r2 − 1
1− |rµ|2

=
(1− a2)r + a(1− r2)

1− a2r2
,

where a = |µ| ∈ (0, 1). So |α| + |β| ≤ 1 iff r2(a − a2) + r(a2 − 1) + 1 − a ≥ 0.
The left hand side of the last inequality equals 0 for r = 1, and its derivative with
respect to r is 2r(a− a2) + a2 − 1 = 2(a− a2)(r − 1)− (a− 1)2 ≤ 0 for r ≤ 1. So
the inequality is indeed fulfilled. �

Theorem 4.4. Let A : D(A) ⊆ X → X be π
2 -sectorial. Suppose that

‖(A− w)x‖ ≤ ‖(A+ w)x‖ for all w ∈ Σπ
2

and x ∈ D(A).

Then for all θ > π
2 and all f ∈ H∞

0 (Σθ),

‖f(A)‖ ≤ ‖f‖∞, π
2
,

and if A has dense range, this holds for all f ∈ H∞(Σθ). Further, there exists a
unique contractive algebra homomorphism Φ : A(Σπ

2
) → B(X), which coincides

with the H∞-calculus for A on
⋃

θ> π
2
R(Σθ).

Proof. For r ∈ (0, 1), let Ar be as in lemma 4.3. By lemma 4.3 (4), ‖bw(Ar)‖ ≤ 1
for all w ∈ Σπ

2
. Therefore, f(Ar) is a contraction for all f ∈ BΣ π

2
and thus for

all f ∈ coBΣ π
2
. Let f ∈ A(Σπ

2
) such that ‖f‖∞, π

2
≤ 1. By lemma 3.1, there

exists a sequence (fn)n ⊂ coBΣ π
2

with ‖fn − f‖∞, π
2
→ 0. Since Ar ∈ B(X) with

σ(Ar) ⊂ Σπ
2
, by the Dunford calculus fn(Ar) → f(Ar) and hence ‖f(Ar)‖ ≤ 1.

(The a priori continuity of A(Σπ
2
) → B(X), f 7→ f(Ar) was the reason for the in-

troduction of the Ar.) If now f = f0+a+b(1+(·))−1 ∈ R(Σθ) for some θ > ω > π
2 ,

then for r → 1 : f(Ar) = (2πi)−1
∫

∂Σω
f(λ)R(λ,Ar)dλ + a IdX +b(1 + Ar)−1 →

(2πi)−1
∫

∂Σω
f(λ)R(λ,A)dλ+a IdX +b(1+A)−1 = f(A) by the convergence of the

resolvents (lemma 4.3 (3)), the uniform sectoriality (lemma 4.3 (2)) and Lebesgue’s
theorem. This shows ‖f(A)‖ ≤ ‖f‖∞, π

2
. Existence and uniqueness of Φ now follow

from the density of
⋃

θ> π
2
R(Σθ) in A(Σπ

2
).

If A has dense range, then for f ∈ H∞(Σθ), ‖f(A)‖ ≤ lim infn ‖fρn‖∞, π
2

=

‖f‖∞, π
2
, where ρn(λ) =

(
λ(1 + λ)−2

) 1
n . �

Combining theorems 4.2 and 4.4 with lemma 4.1 enables one to deduce the
following well-known Hilbert space result. However, our proof is different from the
ones given in [NF] or [ADM].

Corollary 4.5. Let H be a Hilbert space. Suppose that A is a θ-sectorial operator
on H with dense range such that A is accretive.
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1. If θ < π
2 , then A has a contractive H∞-calculus for the angle π

2 .
2. If θ = π

2 , then A has a contractive H∞-calculus for any angle > π
2 .

Remark 4.6. The key argument in both theorem 4.2 and 4.4 is to show first the
contractivity of Blaschke operators and then use a density argument. We point
out that in [vN], von Neumann uses a similar approach in the original proof of the
inequality named after him.

5. Square integrable vectors and the calculus on Σπ
2

It is not always possible to extend the holomorphic functional calculus for con-
tractions in Hilbert spaces as constructed in [NF] to all of H∞(D). Likewise, one
cannot expect an H∞(Σπ

2
)-calculus for all operators satisfying condition (4.1). In

the Hilbert space case, it can be derived from [NF], sections III.2 and III.8, that
an accretive operator A has an H∞(Σπ

2
)- calculus if the unitary part of A (in the

sense of [NF], III.8) has a uniformly continuous spectral measure. In particular,
A has an H∞(Σπ

2
)-calculus if it is completely non-unitary (see [NF] III.8). It is

also known that in these circumstances A has a dense set D of “square integrable
vectors” in the sense that∫ ∞

0

|〈e−tAx, x′〉|2dt < Cx‖x′‖2 for all x ∈ D and x′ ∈ X ′ (5.1)

(see [Da1] section 6.5). In the Banach space setting, one has to find a replacement
for the notions of “absolutely continuous spectral measure” and “completely non-
unitary operators”. Davies’ result convinced us that condition (5.1) may be a good
replacement for these notions. It also allows us to prove an extension of the Hilbert
space result quoted above in the Banach space setting. But first we connect square
integrable vectors of negative generators of semigroups to square summable vectors
of its Cayley transform.

Lemma 5.1. Let −A be the generator of a c0-semigroup e−tA on X. Let x′ ∈
X ′, x ∈ D(A) and y = 1

2 (1 + A)x. Suppose that
∫∞
0
|〈e−tAy, x′〉|2dt < ∞. Then

for T = (A− 1)(A+ 1)−1 ∈ B(X) :

∞∑
n=0

|〈Tnx, x′〉|2 = 2
∫ ∞

0

|〈e−tAy, x′〉|2dt.

Proof. Put f(λ) = 〈(λ + 1
2A)−1y, x′〉. Then f(λ) =

∫∞
0
e−λtg(t)dt with g(t) =

〈e− t
2 Ay, x′〉 and ‖g‖L2(0,∞) < ∞. Further, f (k)(λ) = k!(−1)k 〈(λ + 1

2A)−k−1y, x′〉
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for k ∈ N0. Now for n ∈ N0

〈Tnx, x′〉 = 〈[(A− 1)(A+ 1)−1]nx, x′〉 = 〈(IdX −2(A+ 1)−1)nx, x′〉

=
n∑

k=0

(
n

k

)
(−1)k 〈(1

2
+

1
2
A)−kx, x′〉

=
n∑

k=0

(
n

k

)
1
k!
k!(−1)k 〈(1

2
+

1
2
A)−k−1y, x′〉 =

n∑
k=0

(
n

k

)
1
k!
f (k)(

1
2
) =: qn.

By [Sho] (see also [Roo] theorem 1 for the case ν = 0), the fact that f is the
Laplace transform of a function in L2(0,∞) implies that

2
∫ ∞

0

|〈e−tAy, x′〉|2dt =
∫ ∞

0

|g(t)|2dt =
∞∑

n=0

|qn|2 =
∞∑

n=0

|〈Tnx, x′〉|2.

�

Theorem 5.2. Let X be a Banach space and D ⊂ X a dense subset. Let A be a
π
2 -sectorial operator on X satisfying (4.1) and (5.1), i.e.

1. ‖(A− w)x‖ ≤ ‖(A+ w)x‖ for all x ∈ D(A) and Rew > 0.
2. ∀x ∈ D ∃C > 0∀x′ ∈ X ′ :

∫∞
0
|〈e−tAx, x′〉|2dt ≤ C‖x′‖2.

Then there is a unique extension of the A(Σπ
2
)-calculus in theorem 4.4 to a linear,

multiplicative and contractive Φ : H∞(Σπ
2
) → B(X) with the following conver-

gence property:
If f, f1, f2, . . . ∈ H∞(Σπ

2
) with supn∈N ‖fn‖∞, π

2
< ∞ and fn(λ) → f(λ) for a.a.

λ ∈ iR, then Φ(fn)x→ Φ(f)x for all x ∈ X.

Proof. For r ∈ (0, 1) and f ∈ H∞(D), we put fr(λ) = f(rλ), so that fr ∈ A(D).
Let T = (A− 1)(A+ 1)−1. We claim:

For f(z) =
∞∑

n=0

anz
n ∈ H∞(D) and x ∈ X, fr(T )x converges in X for r → 1.

(5.2)
Let first x ∈ ( 1

2 + 1
2A)−1(D) and x′ ∈ X ′. By lemma 5.1, the sequence 〈Tnx, x′〉

is in l2 with ‖(〈Tnx, x′〉)n‖l2 ≤ C‖x′‖. So for r, s ∈ (0, 1), r > s,

|〈fr(T )x− fs(T )x, x′〉| ≤
∞∑

n=0

|an(rn − sn)〈Tnx, x′〉|

≤ (1− sN

rN
)

N∑
n=0

|an| |〈Tnx, x′〉|+ 2‖(an)n‖l2({N+1,N+2,...}) ‖ (〈Tnx, x′〉)n ‖l2 .

Since the an are the Fourier coefficients of f ∈ H∞(D) ⊂ L2(∂ D), we have (an)n ∈
l2. Now, for a given ε > 0, choose now firstN large, and then r, s sufficiently near to
1 in order to dominate the expression by ε, uniformly for ‖x′‖ ≤ 1. This gives (5.2)
for x ∈ ( 1

2 + 1
2A)−1(D). If x ∈ X is arbitrary, we can choose xε ∈ ( 1

2 + 1
2A)−1(D)

such that ‖x − xε‖ ≤ ε. Indeed, since D is dense in X and ( 1
2 + 1

2A)−1 is an
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isomorphism (X, ‖ · ‖X) → (D(A), ‖ · ‖X + ‖A · ‖X), ( 1
2 + 1

2A)−1(D) is dense in
D(A) with respect to ‖ · ‖X +‖A · ‖X , and thus also with respect to ‖ · ‖X . Finally,
D(A) is dense in X. Then

‖fr(T )x− fs(T )x‖ ≤ ‖fr(T )(x− xε)‖+ ‖fs(T )(x− xε)‖+ ‖fr(T )xε − fs(T )xε‖
≤ 2ε sup

t∈(0,1)

‖ft(T )‖+ ε

for r, s close to 1. Note that ‖ft(T )‖ ≤ ‖ft‖∞,D. Indeed, the assumption 1. implies
by theorem 4.4 that ‖p(T )‖ = ‖p◦τ(A)‖ ≤ ‖p◦τ‖∞, π

2
= ‖p‖∞,D for any polynomial

p. By means of the density of the polynomials in A(D), we conclude that ‖ft(T )‖ ≤
‖ft‖∞,D ≤ ‖f‖∞,D and finally get (5.2). Now define

for f ∈ H∞(D) : Ψ(f)x = lim
r→1

fr(T )x.

Then Ψ(p) = p(T ) for any polynomial p, since ‖pr(T )− p(T )‖ ≤ ‖pr − p‖∞,D → 0
for r → 1. It is clear that Ψ : H∞(D) → B(X) is linear and contractive. To
show the multiplicativity, let f, g ∈ H∞(D). Then Ψ(fg)x = limr(fg)r(T )x =
limr fr(T )gr(T )x = limr fr(T ) (lims gs(T )x) = Ψ(f)Ψ(g)x, where the penultimate
equality follows from supr∈(0,1) ‖fr(T )‖ < ∞. Now we pull back Ψ to H∞(Σπ

2
)

and put
Φ : H∞(Σπ

2
) → B(X), Φ(f) = Ψ(f ◦ ζ),

with ζ(z) = − z+1
z−1 as in section 3. For a polynomial p, Φ(p◦τ) = Ψ(p) = p(T ) = p◦

τ(A), so that Φ coincides with Φ from theorem 4.4 on the set {p◦τ : p polynomial},
which is dense inA(Σπ

2
). Therefore, Φ coincides onA(Σπ

2
) with the Φ from theorem

4.4.
We now show the convergence property of the calculus. Let f, f1, f2, . . . be as in
the assumption. Put g = f ◦ζ and gn = fn ◦ζ and denote ak and a(n)

k their Fourier
coefficients. Then by Lebesgue’s theorem, gn → g in L2(∂ D). If x ∈ ( 1

2 + 1
2A)−1(D)

and x′ ∈ X ′,

|〈Φ(fn − f)x, x′〉| = |〈Ψ(gn − g)x, x′〉| = | lim
r

∑
(a(n)

k − ak)rk 〈T kx, x′〉|

= |
∑

(a(n)
k − ak)〈T kx, x′〉| ≤ ‖(a(n)

k − ak)k‖l2Cx‖x′‖ → 0.

The statement for arbitrary x ∈ X follows again from the density of ( 1
2 + 1

2A)−1(D)
and ‖Ψ(gn)‖ ≤ ‖gn‖∞ ≤ C.
The uniqueness of the constructed functional calculus follows from this convergence
property and another appeal to (4.1). �

The proof shows of course the following counterpart for contractions:

Corollary 5.3. Let T ∈ B(X) have a contractive A(D)-calculus and satisfy
∞∑

k=0

|〈T kx, x′〉|2 ≤ Cx‖x′‖2 for x′ ∈ X ′ and x in a dense subset of X.
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Then f(T )x = limr→1 fr(T )x extends the A(D)-calculus to a contractive algebra
homomorphism H∞(D) → B(X) which has the obvious analogue of the conver-
gence property in theorem 5.2.

Remark 5.4. To define anH∞-calculus for a sectorial operatorA on all ofH∞(Σπ
2
),

one usually needs the assumption R(A) = X. In theorem 5.2, no such assumption
is made explicitly. Nevertheless, any A satisfying (4.1) and (5.1) has dense image.
Indeed, let fn(λ) = nλ

1+nλ and f(λ) ≡ 1. Then fn(λ) → f(λ) for λ ∈ iR\{0}, and
therefore, by theorem 5.2, Φ(fn)x→ Φ(f)x for every x ∈ X. Since f, fn ∈ R(Σθ)
for any θ ∈ (π

2 , π), we know from theorem 4.4 that Φ(f),Φ(fn) are given by the
H∞-calculus. Thus, Φ(fn)x = −AR(− 1

n , A)x ∈ R(A) and Φ(f)x = x. This shows
R(A) = X.

6. An example

The proof of theorem 4.2 shows that a θ-sectorial operator A on a Banach space
X with θ < π

2 has a contractive H∞(Σπ
2
)-calculus if and only if for all Blaschke

factors bw(λ) = (λ − w)(λ + w)−1 with Rew > 0, we have ‖bw(A)‖ ≤ 1, or,
equivalently,

‖ IdX +2RewR(−w,A)‖ ≤ 1 for all Rew > 0. (6.1)

This condition allows one to show that many operators which are accretive in
a scale of Lp(K,µ)-spaces cannot have a contractive H∞-calculus on the whole
scale. Indeed if K is a compact metric space, we say that T ∈ B(C(K)) satisfies
the Daugavet equation (see for example [WW]), if

‖ IdX +T‖ = 1 + ‖T‖. (6.2)

Hence if X = C(K) and T = −2 ReλR(λ,A) satisfies (6.2) for some λ with
Reλ < 0, then (6.1) cannot hold. This is the case for a large class of operators A,
for example when R(λ,A) is weakly compact or an integral operator

Tf(y) =
∫

K

k(x, y)f(y)dy

with a measurable kernel. For these and weaker conditions for (6.2), see [WW].
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