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Introduction

It is well known that the Cayley transform A → T = (A -1)(A + 1) -1 provides, in a Hilbert space, a one-to-one correspondence between accretive operators A (i.e. negative generators of contractive semigroups) and bounded contractive operators T which do not have 1 as an eigenvalue (cf. [NF] theorem 4.1 in IV.4). If θ > π 2 , then this, combined with von Neumann's inequality for contractions, can be used to construct a contractive H ∞ (Σ θ )-calculus (see section 2 for the definition) for any accretive operator A (cf. [ADM]).

In a Banach space setting, this correspondence between accretive operators and contractions breaks down and von Neumann's inequality does not necessarily hold [Foi]. Thus in order to construct a contractive H ∞ -calculus for Banach space operators we need stronger assumptions than accretivity. In this note we take a hint from one of the many known proofs of von Neumann's inequality (see [Dru]) and use classical approximations of bounded analytic functions on Σ π 2 or D by Blaschke products. This enables us to connect the holomorphic functional calculus of a negative generator A of a semigroup and its Cayley transform T, thereby proving its contractivity.

In section 4 we show that a sectorial operator A of type π 2 on a Banach space X has a contractive H ∞ (Σ θ )-calculus for all θ > π 2 if and only if for all λ ∈ Σ π 2 and x ∈ D(A) (A -λ)x ≤ (A + λ)x .

(1.1)

Condition (1.1) is stronger than accretivity in a general Banach space X but it is easily seen that it is equivalent to accretivity if X is a Hilbert space. Hence our result extends the Hilbert space result quoted earlier and provides a relatively short proof for it. In theorem 4.4, we extend this functional calculus to functions in H ∞ (Σ π 2 ) with a continuous boundary function on iR ∪ {∞}, in the case that A is only a π 2 -sectorial operator. In general, (1.1) does not guarantee a bounded H ∞ (Σ π 2 )-calculus, even in a Hilbert space. However, in section 5, we show that if we assume in addition that there exists a dense subset D of X such that

∞ 0 | e -tA x, x | 2 dt ≤ C x x 2 for x ∈ D, x ∈ X , (1.2) then A has a contractive H ∞ (Σ π 2 )-calculus. Condition (1.
2) is of importance in scattering theory and, in the Hilbert space setting, was studied by E.B. Davies in [START_REF] Davies | One parameter semigroups[END_REF] and [START_REF] Davies | Non-unitary scattering and capture. I: Hilbert space theory[END_REF]. He shows in [START_REF] Davies | One parameter semigroups[END_REF], theorem 6.26, that a completely non-unitary semigroup on a Hilbert space satisfies (1.2). Therefore our result generalizes the known fact that a completely non-unitary semigroup has an H ∞ (Σ π 2 ) functional calculus, which can be derived from [NF], section III.8. We derive our Banach space result via the Cayley transform from a corresponding result for contractions T on X (see corollary 5.3) where we assume that

∞ n=0 | T n x, x | 2 ≤ C x x 2 for x ∈ D, x ∈ X .
(1.3)

Clearly, every sectorial operator A on a Banach space X with a bounded H ∞ (Σ θ )calculus has a contractive functional calculus in the equivalent norm

|||x||| = sup{ φ(A)x : φ ∈ H ∞ (Σ θ ), |φ(λ)| ≤ 1 for λ ∈ Σ θ }.
However, in section 6 we show that for many common examples of semigroup generators, ||| • ||| is not the natural norm of X.

In section 2 and 3, we recall some facts on the H ∞ -calculus and Blaschke products that are essential for our argument.

Preliminaries on the H ∞ -calculus

Notation. Let θ ∈ (0, π). As usual we shall set

Σ θ = {re iφ : r > 0, |φ| < θ} and H ∞ (Σ θ ) = {f : Σ θ → C : f is analytic and bounded}.
This space is complete when equipped with the norm f ∞,θ = sup λ∈Σ θ |f (λ)|. Put

H ∞ 0 (Σ θ ) = {f ∈ H ∞ (Σ θ ) : ∃ , C > 0 s.th. |f (λ)| ≤ C min(|λ| , |λ| -)} and R(Σ θ ) = span(H ∞ 0 (Σ θ ) ∪ {1, (1 + (•)) -1 }). Note that R(Σ θ ) is a subalgebra of H ∞ (Σ θ
) which contains all rational functions of non-positive degree and poles outside Σ θ . Let X be a Banach space and θ ∈ (0, π). An operator

A : D(A) ⊆ X → X is called θ-sectorial, if 1. D(A) is dense in X. 2. The spectrum σ(A) is contained in Σ θ . 3. For all ω > θ there is a C ω > 0 such that λR(λ, A) ≤ C ω for all λ ∈ Σ ω c .
For such an operator, one can construct for every ω > θ a linear and multiplicative mapping Φ ω : R(

Σ ω ) -→ B(X) such that for µ ∈ C\Σ ω and f ∈ H ∞ 0 (Σ ω ) Φ ω (1) = Id X , Φ ω ((µ -(•)) -1 ) = (µ -A) -1 and Φ ω (f ) = 1 2πi ∂Σ (ω+θ)/2 f (λ)R(λ, A)dλ.
We call Φ ω the H ∞ (Σ ω )-calculus of A. For ω 1 > ω 2 , Φ ω1 and Φ ω2 coincide on R(Σ ω1 ). If in addition A has dense range then Φ ω can be extended to

H ∞ A (Σ ω ) = {f ∈ H ∞ (Σ ω ) : ∃ (f n ) n ⊆ R(Σ ω ) s.th. f n → f pointwise and sup n f n (A) + f n ∞,ω < ∞}. For f ∈ H ∞ A (Σ ω ) and associated (f n ) n ⊆ R(Σ ω ), Φ ω (f )x = lim n Φ ω (f n )x for all x ∈ X. This implies clearly that Φ ω (f ) ≤ lim inf n Φ ω (f n ) . The map Φ ω : H ∞ A (Σ ω ) -→ B(X) is still linear and multiplicative. Further, H ∞ A (Σ ω ) equals H ∞ (Σ ω ) iff there exists C > 0 such that for all f ∈ H ∞ 0 (Σ ω ) one has f (A) ≤ C f ∞,ω .
In this case, we say that A has a bounded H ∞ (Σ ω )-calculus. For more information on the H ∞ -calculus, see for example [CDMY], especially section 2 and [KW], especially chapter 9. We denote Φ ω (f ) by f (A).

Preliminaries on Blaschke products

In this section, we develop the necessary background on Blaschke products (see also [Gar] for more information on this topic). 

f µ (z) = z -µ 1 -µz .
This function is called a Blaschke factor on D and is clearly analytic on the neighborhood

1 µ D of D . For µ ∈ D, f µ (∂ D) ⊆ ∂ D, since for θ ∈ R |f µ (e iθ )| = e iθ -µ 1 -µe iθ = e iθ 1 -µe -iθ 1 -µe -iθ = 1.
Thus by the maximum principle,

f µ ∞ = 1. A function f ∈ A(D) is called a (finite) Blaschke product on D if it is of the form f (z) ≡ e iθ or f (z) = e iθ n k=1 f µ k (z) for some n ∈ N, µ k ∈ D and θ ∈ R. A function f ∈ H ∞ (D) is a finite Blaschke product if and only if 1. f is analytic on some a D with a > 1. 2. f (∂ D) ⊆ ∂ D .
Indeed, a finite Blaschke product clearly has the two properties. Suppose now that f satisfies 1. and 2. If f had infinitely many zeros in D then there would exist an accumulation point of them in D. By 1. and the identity theorem, f ≡ 0, which contradicts 2. Hence f has only finitely many zeros and there exists a finite Blaschke product b which has the same zeros counted with their multiplicity. Then f /b and b/f also satisfy 1. and 2. Therefore, for

z ∈ D, |f (z)/b(z)| ≤ 1 and |b(z)/f (z)| ≤ 1, and thus |f (z)/b(z)| = 1, which implies that f (z)/b(z) is constant. Hence f (z) = e iθ b(z) for some θ ∈ R. If T ∈ B(X) with spectrum σ(T ) ⊆ D, then for f (z) = a n z n holomorphic in a D for some a > 1, we define f (T ) = a n T n , which is the Dunford calculus of T. In particular, f µ (T ) = (T -µ)(1 -µT ) -1 .
We also need the Blaschke factors on Σ π 2 . We define the conformal mappings

ζ : D → Σ π 2 , z → - z + 1 z -1 and τ = ζ -1 : Σ π 2 → D, λ → λ -1 λ + 1 . Then H ∞ (Σ π 2 ) = {f •τ : f ∈ H ∞ (D)}. We put A(Σ π 2 ) = {f •τ : f ∈ A(D)} = {f ∈ H ∞ (Σ π 2 ) : f has a continuous extension to Σ π 2 and at ∞}. The spaces H ∞ (Σ π 2 )
and A(Σ π 2 ) are again equipped with the infinity norm. Note that for θ

> π 2 , H ∞ (Σ θ ) ⊂ A(Σ π 2 ), but R(Σ θ ) ⊂ A(Σ π 2 ). For w ∈ Σ π 2 , we define b w (λ) = λ -w λ + w , λ ∈ Σ π 2
which we call a Blaschke factor on Σ π 2 . For µ ∈ D, the Blaschke factor f µ on D is related to the Blaschke factor b ζ(µ) on Σ π 2 by the identity

f µ • τ = f µ (1) • b ζ(µ) .

As above we call

f ∈ A(Σ π 2 ) a (finite) Blaschke product on Σ π 2 , if it is of the form f (λ) ≡ e iθ or f (λ) = e iθ n k=1 b w k (λ) for some n ∈ N, w k ∈ Σ π 2 and θ ∈ R. We denote by B D (resp. B Σ π 2
) the set of finite Blaschke products, which is contained in the unit ball of A(D) (resp. A(Σ π 2 )). The next lemma and its proof is essentially taken from [Gar]. Since these results are essential for us we include a proof for the convenience of the reader.

Lemma 3.1.

1. (Carathéodory). For every f in the unit ball of

H ∞ (D) (resp. H ∞ (Σ π 2 )), there exists a sequence in B D (resp. B Σ π 2 ) which converges pointwise on D (resp. Σ π 2 ) to f. 2. (Bernard). co B D , the convex hull of B D , is norm dense in the unit ball of A(D). Hence also co B Σ π 2 is norm dense in the unit ball of A(Σ π 2 ). Proof. 1. It clearly suffices to prove the statement for D . Write f (z) = ∞ k=0 c k z k . It suffices to find for every n ∈ N a finite Blaschke product B n,f (z) = ∞ k=0 d k z k such that d k = c k for k ≤ n-1. Indeed, by the Cauchy integral formula, |c k |, |d k | ≤ 1 for all k ∈ N. Then for |z| < 1 fixed, |f (z) -B n,f (z)| ≤ ∞ k=n (|c k | + |d k |)|z| k ≤ 2|z| n (1 -|z|) -1 → 0.
If |c 0 | = 1, then by the maximum principle, f is constant and B n,f (z) ≡ c 0 suffices. So suppose from now on that |c 0 | < 1. We proceed by induction. For

n = 1, B 1,f (z) = f -c0 (z) = z+c0
1+c0z suffices. Suppose that for a given n ∈ N and all h in the unit ball of H ∞ (D), there exists B n-1,h such that B n-1,h -h has a zero of multiplicity n -1 at 0. Let

h(z) = 1 z f (z) -c 0 1 -c 0 f (z) = 1 z f c0 (f (z)). If |z| < 1 then for all r ∈ (|z|, 1) we have |h(z)| ≤ 1 r |f c0 (f (z))| ≤ 1 r and hence h is in the unit ball of H ∞ (D). We will construct B n = B n,f by means of B n-1 = B n-1,h . Put B n (z) = zB n-1 (z) + c 0 1 + c 0 zB n-1 (z) = f -c0 (zB n-1 (z)).
Then B n is analytic on a D for some a > 1 and satisfies

B n (∂ D) ⊆ ∂ D . Hence B n is a finite Blaschke product. f (z) -B n (z) = f -c0 (zh(z)) -f -c0 (zB n-1 (z)) = (1 -|c 0 | 2 )z(h(z) -B n-1 (z)) (1 + c 0 zh(z))(1 + c 0 zB n-1 (z)
) .

Here we see that f -B n has a zero of multiplicity n at 0. The induction is complete. 2. Let p = N n=0 a n z n be a polynomial in A(D) with p ∞ < 1. It clearly suffices to show that such a p can be uniformly approximated by a finite convex combination of finite Blaschke products. Let q(z)

= N n=0 a n z N -n = z N p(z), so that q ∈ A(D) and |q(z)| < 1 on D. For z, ξ ∈ D put r(z, ξ) = p(z) + ξz N 1 + ξq(z) = f -p(z) (ξz N ).
For every ξ ∈ D, r(•, ξ) can be analytically continued on a D for some a > 1. Also for every z ∈ D, r(z, •) can be analytically continued on

q -1 ∞ D . Since |r(z, e it )| = |f -p(z) (e it z N )| = 1 for all z ∈ ∂ D, r(•, e it
) is a finite Blaschke product. By the mean value property for r(z, •),

p(z) = r(z, 0) = 2π 0 r(z, e it ) dt 2π ,
where [0, 2π] t → r(z, e it ) ∈ A(D) is continuous. So p can be approximated in A(D) by a sequence of finite convex combinations of finite Blaschke products.

Contractivity of the H ∞ -calculus

Our result is motivated by the following observation about Hilbert space operators.

Lemma 4.1. Let H be a Hilbert space and let A : D(A) ⊆ H → H be an operator.

The following are equivalent:

1. A is accretive, i.e. for all x ∈ D(A) we have Re Ax, x ≥ 0. 2. For all w ∈ C with Re w > 0 and all x ∈ D(A), (A -w)x ≤ (A + w)x .

3. There exists a w ∈ C with Re w > 0 such that for all x ∈ D(A), (A-w)x ≤ (A + w)x .

For every finite Blaschke product

b ∈ B Σ π 2 , b(A) ≤ 1.
Proof. The following inequalities are equivalent for x ∈ D(A) :

(A -w)x ≤ (A + w)x (A -w)x, (A -w)x ≤ (A + w)x, (A + w)x Ax, Ax -2 Re [w Ax, x ] + |w| 2 x, x ≤ Ax, Ax + 2 Re [w Ax, x ] + |w| 2 x, x 0 ≤ Re [(w + w) Ax, x ] 0 ≤ Re Ax, x .
So if 3. holds for some w ∈ Σ π 2 , then 1. holds, which in turn implies that 2. holds. That 2. implies 3. is evident and the equivalence of 2. and 4. holds since for every w ∈ Σ π 2 , A + w is a bijection D(A) → X. In a general Banach space, the equivalence of 1. and 4. above breaks down. As was shown in [KW, section 10], there exist accretive operators without a bounded H ∞ -calculus. Condition 2. above is however still equivalent to the boundedness of the H ∞ -calculus in the Banach space context. Theorem 4.2. Let X be a Banach space, θ < π 2 and A : D(A) ⊆ X → X be θ-sectorial with dense range. Then A satisfies

(A -w)x ≤ (A + w)x for all Re w > 0, x ∈ D(A) (4.1) if and only if A has a bounded H ∞ (Σ π 2 )-calculus and f (A) ≤ f ∞, π 2 (f ∈ H ∞ (Σ π 2 )). Proof. The condition (4.1) implies that b w (A) = (A-w)(A+w) -1 is a contraction. Thus, b(A) is a contraction for every finite Blaschke product b. Suppose now that f ∈ H ∞ (Σ π 2 ) with f ∞, π 2 ≤ 1.
Then by lemma 3.1, there exists a sequence f n of finite Blaschke products converging to f pointwise on Σ

π 2 . Since f n , f n (A) ≤ 1 for all n ∈ N, f belongs to H ∞ A (Σ π 2 ) and f (A) ≤ lim inf n f n (A) ≤ 1. The necessity of (4.1) is clear, since it is equivalent to b w (A) ≤ b w ∞, π 2 = 1 for all Re w > 0.
Of course, the last proof also shows that the boundedness of the H ∞ (Σ π 2 )calculus in the situation of theorem 4.2 can be characterized by the uniform boundedness of the Blaschke products: b(A) ≤ C for some C < ∞ and every finite Blaschke product b on Σ π 2 . (4.2) If one compares the boundedness of the H ∞ -calculus to the boundedness of the semigroup, then (4.2) corresponds to the Hille-Yosida condition λ n (λ + A) n ≤ C for all λ > 0 and (4.1) corresponds to the accretivity of the operator A. Note that if the H ∞ (Σ π

2 )-calculus of A is bounded, then it is always contractive in an equivalent norm on X, given for example by

|||x||| = sup{ f (A)x : f ∈ H ∞ (Σ π 2 ) : f ∞, π 2 ≤ 1}. Since θ-sectoriality for θ < π
2 already implies that -A generates an analytic semigroup, it is worthwhile to state in addition a somewhat weaker result for π 2sectorial operators which covers all negative generators of a bounded semigroup. To this end we need the following lemma.

Lemma 4.3. Let A : D(A) ⊆ X → X be π 2 -sectorial. Suppose that (4.1) holds. For r ∈ (0, 1), let

A r = (1 -r + A(1 + r))(1 + r + A(1 -r)) -1 = ζ • ψ r • τ (A) ∈ B(X),
where ζ and τ are the conformal mappings as in section 3 and ψ r :

D → D, z → rz. Then 1. σ(A r ) ⊂ Σ π 2 . 2. A r is again π
2 -sectorial, and this uniformly in r, in the sense that for all ω ∈ ( π 2 , π) there exists C ω > 0 such that for all r ∈ (0, 1) and λ ∈ C\Σ ω we have λR(λ, A r ) ≤ C ω . 3. For Re λ < 0, R(λ, A r ) → R(λ, A) in B(X) as r → 1. 4. (4.1) holds for A r in place of A.

Proof. 1. By (4.1), τ (A) is a contraction, and hence σ(ψ r • τ (A)) ⊂ D . By the spectral mapping theorem, σ(

A r ) = σ(ζ • ψ r • τ (A)) ⊂ Σ π 2 . 2. Fix some ω ∈ ( π 2 , π). Let λ ∈ C\Σ ω . Then λ(λ -A r ) -1 = {λ(1 + r) + Aλ(1 -r)} [A(λ(1 -r) -(1 + r)) + λ(1 + r) -(1 -r)] -1 . (4.3)
We split this expression into two summands (I) and (II).

(I) = λ(1 + r)[. . .] -1 = λ(1 + r) λ(1 -r) -(1 + r) A + λ(1 + r) -(1 -r) λ(1 -r) -(1 + r) -1 = λ(1 + r) λ(1 + r) -(1 -r) µ(A + µ) -1 , with µ = λ(1+r)-(1-r) λ(1-r)-(1+r) . Note that λ(1+r) λ(1+r)-(1-r) ≤ 1. Further, µ = λ-a -1 λ-a a with a = 1+r 1-r > 1, so | arg µ| = | arg(λ -a -1 ) -arg(λ -a)| ≤ | arg(λ -a -1 )| < π -ω, and thus µ(A + µ) -1 ≤ C ω = sup{ νR(ν, A) : ν ∈ C\Σ ω }. (II) = Aλ(1 -r)[. . .] -1 = λ(1 -r) λ(1 -r) -(1 + r) A[A + µ] -1 . Now λ(1-r) λ(1-r)-(1+r) ≤ 1. Further, A(A + µ) -1 ≤ 1 + µ(A + µ) -1 ≤ 1 + C ω , since µ ∈ Σ π-ω .
3. This can be deduced using (4.3) and the continuity of the map λ → AR(λ, A)

from C\Σ ω to B(X). 4. Let Re w > 0, put µ = τ (w) ∈ D and T = τ (A). b w (A r ) = b w • ζ • ψ r • τ (A) = f µ (1) -1 f µ (rT ). We show that f µ (rT ) = (rT -µ)(1 -µrT ) -1 is a contraction, which implies that b w (A r ) is one. f µ (z) = z -µ 1 -µz = -µ + 1 -|µ| 2 µ µz 1 -µz . This shows that f µ (rz) = αf rµ (z) + β with α = (1-|µ| 2 )r 1-|rµ| 2 and β = µr (1-|µ| 2 )r 1-|rµ| 2 -µ. So, f µ (rT ) = αf rµ (T ) + β Id X . Now f rµ (T ) = f rµ (1)b ζ(rµ) (A) is a contraction, so that it suffices to show that |α| + |β| ≤ 1. |α| + |β| = (1 -|µ| 2 )r 1 -|rµ| 2 + |µ| r 2 (1 -|µ| 2 ) 1 -|rµ| 2 -1 = (1 -|µ| 2 )r 1 -|rµ| 2 + |µ| r 2 -1 1 -|rµ| 2 = (1 -a 2 )r + a(1 -r 2 ) 1 -a 2 r 2 ,
where a = |µ| ∈ (0, 1). So |α|

+ |β| ≤ 1 iff r 2 (a -a 2 ) + r(a 2 -1) + 1 -a ≥ 0.
The left hand side of the last inequality equals 0 for r = 1, and its derivative with respect to r is 2r(a

-a 2 ) + a 2 -1 = 2(a -a 2 )(r -1) -(a -1) 2 ≤ 0 for r ≤ 1. So the inequality is indeed fulfilled. Theorem 4.4. Let A : D(A) ⊆ X → X be π 2 -sectorial. Suppose that (A -w)x ≤ (A + w)x for all w ∈ Σ π 2 and x ∈ D(A). Then for all θ > π 2 and all f ∈ H ∞ 0 (Σ θ ), f (A) ≤ f ∞, π 2 
, and if A has dense range, this holds for all f ∈ H ∞ (Σ θ ). Further, there exists a unique contractive algebra homomorphism Φ : A(Σ π 2 ) → B(X), which coincides with the H ∞ -calculus for A on θ> π 2 R(Σ θ ).

Proof. For r ∈ (0, 1), let A r be as in lemma 4.3. By lemma 4.3 ( 4

), b w (A r ) ≤ 1 for all w ∈ Σ π 2 . Therefore, f (A r ) is a contraction for all f ∈ B Σ π 2 and thus for all f ∈ co B Σ π 2 . Let f ∈ A(Σ π 2 ) such that f ∞, π 2 ≤ 1. By lemma 3.1, there exists a sequence (f n ) n ⊂ co B Σ π 2 with f n -f ∞, π 2 → 0. Since A r ∈ B(X) with σ(A r ) ⊂ Σ π
2 , by the Dunford calculus f n (A r ) → f (A r ) and hence f (A r ) ≤ 1. (The a priori continuity of A(Σ π 2 ) → B(X), f → f (A r ) was the reason for the introduction of the A r .)

If now f = f 0 +a+b(1+(•)) -1 ∈ R(Σ θ ) for some θ > ω > π 2 , then for r → 1 : f (A r ) = (2πi) -1 ∂Σω f (λ)R(λ, A r )dλ + a Id X +b(1 + A r ) -1 → (2πi) -1 ∂Σω f (λ)R(λ, A)dλ + a Id X +b(1 + A) -1 = f (A)
by the convergence of the resolvents (lemma 4.3 (3)), the uniform sectoriality (lemma 4.3 (2)) and Lebesgue's theorem. This shows f (A) ≤ f ∞, π 2 . Existence and uniqueness of Φ now follow from the density of θ> π

2 R(Σ θ ) in A(Σ π 2 ). If A has dense range, then for f ∈ H ∞ (Σ θ ), f (A) ≤ lim inf n f ρ n ∞, π 2 = f ∞, π 2 , where ρ n (λ) = λ(1 + λ) -2 1 n .
Combining theorems 4.2 and 4.4 with lemma 4.1 enables one to deduce the following well-known Hilbert space result. However, our proof is different from the ones given in [NF] or [ADM].

Corollary 4.5. Let H be a Hilbert space. Suppose that A is a θ-sectorial operator on H with dense range such that A is accretive.

1. If θ < π 2 , then A has a contractive H ∞ -calculus for the angle π 2 . 2. If θ = π 2 , then A has a contractive H ∞ -calculus for any angle > π 2 .

Remark 4.6. The key argument in both theorem 4.2 and 4.4 is to show first the contractivity of Blaschke operators and then use a density argument. We point out that in [vN], von Neumann uses a similar approach in the original proof of the inequality named after him.

Square integrable vectors and the calculus on Σ π 2

It is not always possible to extend the holomorphic functional calculus for contractions in Hilbert spaces as constructed in [NF] to all of H ∞ (D). Likewise, one cannot expect an H ∞ (Σ π 2 )-calculus for all operators satisfying condition (4.1). In the Hilbert space case, it can be derived from [NF], sections III.2 and III.8, that an accretive operator A has an H ∞ (Σ π 2 )-calculus if the unitary part of A (in the sense of [NF], III.8) has a uniformly continuous spectral measure. In particular, A has an H ∞ (Σ π 2 )-calculus if it is completely non-unitary (see [NF] III.8). It is also known that in these circumstances A has a dense set D of "square integrable vectors" in the sense that

∞ 0 | e -tA x, x | 2 dt < C x x 2 for all x ∈ D and x ∈ X (5.1)
(see [START_REF] Davies | One parameter semigroups[END_REF] section 6.5). In the Banach space setting, one has to find a replacement for the notions of "absolutely continuous spectral measure" and "completely nonunitary operators". Davies' result convinced us that condition (5.1) may be a good replacement for these notions. It also allows us to prove an extension of the Hilbert space result quoted above in the Banach space setting. But first we connect square integrable vectors of negative generators of semigroups to square summable vectors of its Cayley transform.

Lemma 5.1. Let -A be the generator of a c 0 -semigroup e -tA on X. Let x ∈ X , x ∈ D(A) and y =

1 2 (1 + A)x. Suppose that ∞ 0 | e -tA y, x | 2 dt < ∞. Then for T = (A -1)(A + 1) -1 ∈ B(X) : ∞ n=0 | T n x, x | 2 = 2 ∞ 0 | e -tA y, x | 2 dt. Proof. Put f (λ) = (λ + 1 2 A) -1 y, x . Then f (λ) =
∞ 0 e -λt g(t)dt with g(t) = e -t 2 A y, x and g L 2 (0,∞) < ∞. Further, f (k) (λ) = k!(-1) k (λ + 1 2 A) -k-1 y, x

Then f (T )x = lim r→1 f r (T )x extends the A(D)-calculus to a contractive algebra homomorphism H ∞ (D) → B(X) which has the obvious analogue of the convergence property in theorem 5.2.

Remark 5.4. To define an H ∞ -calculus for a sectorial operator A on all of H ∞ (Σ π 2 ), one usually needs the assumption R(A) = X. In theorem 5.2, no such assumption is made explicitly. Nevertheless, any A satisfying (4.1) and (5.1) has dense image. Indeed, let f n (λ) = nλ 1+nλ and f (λ) ≡ 1. Then f n (λ) → f (λ) for λ ∈ iR\{0}, and therefore, by theorem 5.2, Φ(f n )x → Φ(f )x for every x ∈ X. Since f, f n ∈ R(Σ θ ) for any θ ∈ ( π 2 , π), we know from theorem 4.4 that Φ(f ), Φ(f n ) are given by the H ∞ -calculus. Thus, Φ(f n )x = -AR(-1 n , A)x ∈ R(A) and Φ(f )x = x. This shows R(A) = X.

An example

The proof of theorem 4.2 shows that a θ-sectorial operator A on a Banach space X with θ < π 2 has a contractive H ∞ (Σ π 2 )-calculus if and only if for all Blaschke factors b w (λ) = (λ -w)(λ + w) -1 with Re w > 0, we have b w (A) ≤ 1, or, equivalently, Id X +2 Re wR(-w, A) ≤ 1 for all Re w > 0. (6.1)

This condition allows one to show that many operators which are accretive in a scale of L p (K, µ)-spaces cannot have a contractive H ∞ -calculus on the whole scale. Indeed if K is a compact metric space, we say that T ∈ B(C(K)) satisfies the Daugavet equation (see for example [WW]), if

Id X +T = 1 + T . (6.2)

Hence if X = C(K) and T = -2 Re λR(λ, A) satisfies (6.2) for some λ with Re λ < 0, then (6.1) cannot hold. This is the case for a large class of operators A, for example when R(λ, A) is weakly compact or an integral operator T f (y) = K k(x, y)f (y)dy with a measurable kernel. For these and weaker conditions for (6.2), see [WW].

Notation.

  We put D = {z ∈ C : |z| < 1} and consider the two spaces H ∞ (D) = {f : D → C analytic and bounded} and A(D) = {f ∈ H ∞ (D) : f has a continuous extension to D}. They are equipped with the norm f ∞,D = f ∞ = sup z∈D |f (z)|, for which they are complete. For µ ∈ D, we define

for k ∈ N 0 . Now for n ∈ N 0 T n x, x = [(A -1)(A + 1) -1 ] n x, x = (Id X -2(A + 1) -1 ) n x, x

By [Sho] (see also [Roo] theorem 1 for the case ν = 0), the fact that f is the Laplace transform of a function in

Theorem 5.2. Let X be a Banach space and D ⊂ X a dense subset. Let A be a π 2 -sectorial operator on X satisfying (4.1) and (5.1), i.e.

Then there is a unique extension of the A(Σ π 2 )-calculus in theorem 4.4 to a linear, multiplicative and contractive Φ :

Since the a n are the Fourier

. Now, for a given > 0, choose now first N large, and then r, s sufficiently near to 1 in order to dominate the expression by , uniformly for x ≤ 1. This gives (5.2)

and thus also with respect to

f t (T ) + for r, s close to 1. Note that f t (T ) ≤ f t ∞,D . Indeed, the assumption 1. implies by theorem 4.4 that p(T ) = p•τ (A) ≤ p•τ ∞, π 2 = p ∞,D for any polynomial p. By means of the density of the polynomials in A(D), we conclude that f t (T ) ≤ f t ∞,D ≤ f ∞,D and finally get (5.2). Now define

Then Ψ(p) = p(T ) for any polynomial p, since p r (T )

where the penultimate equality follows from sup r∈(0,1) f r (T ) < ∞. Now we pull back Ψ to H ∞ (Σ π 2 ) and put Φ :

, so that Φ coincides with Φ from theorem 4.4 on the set {p•τ : p polynomial}, which is dense in A(Σ π 2 ). Therefore, Φ coincides on A(Σ π 2 ) with the Φ from theorem 4.4. We now show the convergence property of the calculus. Let f, f 1 , f 2 , . . . be as in the assumption. Put g = f • ζ and g n = f n • ζ and denote a k and a (n) k their Fourier coefficients. Then by Lebesgue's theorem,

The statement for arbitrary x ∈ X follows again from the density of ( 1 2 + 1 2 A) -1 (D) and Ψ(g n ) ≤ g n ∞ ≤ C. The uniqueness of the constructed functional calculus follows from this convergence property and another appeal to (4.1).

The proof shows of course the following counterpart for contractions: