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Abstract. We propose an uncertainty propagation study and a sensitivity analysis with the Ocular Mathematical Virtual
Simulator, a computational and mathematical model that predicts the hemodynamics and biomechanics within the human
eye. In this contribution, we focus on the effect of intraocular pressure, retrolaminar tissue pressure and systemic blood
pressure on the ocular posterior tissue vasculature. The combination of a physically-based model with experiments-based
stochastic input allows us to gain a better understanding of the physiological system, accounting both for the driving
mechanisms and the data variability.
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1 Introduction
The interest in patient-specific mathematical models applied to biomedical problems has greatly increased in the last years. In par-

ticular, the need for a better understanding and knowledge of quantities in the medical context has raised tremendously the complexity
of the mathematical models employed to describe such physical systems. However, a crucial aspect to guarantee that the model and its
numerical solutions are meaningful from the biomedical viewpoint is how inherent uncertainties are incorporated, as recently discussed
for instance in [34]. In this direction, several works that studied the impact of uncertainties in the domain of cardiovascular disease mod-
elling showed particular promise for elucidating the complex interplay between hemodynamics, biomechanics, and electrophysiology.
Examples include arterial hemodynamics [6, 8, 24, 2], cardiovascular simulations [48, 35, 32], electrophysiology [28], possibly coupled
with electromechanical simulations [20] and/or hemodynamics [3].

To the best of our knowledge, the eye’s mathematical and computational modelling is still at its early stages, as recently reviewed
in [14]. Biomechanical and fluid-dynamical aspects are of particular relevance for several clinical conditions [18], but numerous factors
influence their complex coupling, and the underlying mechanisms are still elusive. Also, there is an intrinsic difficulty of isolating these
factors in a clinical setting and measuring their contribution [55]. The present work focuses on the interaction between the main ocular
vessels’ hemodynamics, intraocular pressure and the retrolaminar tissue pressure, which is directly related to the cerebrospinal fluid
pressure. Among several interesting contributions in this area, we mention those closely related to our work. The first mathematical
model that simultaneously accounts for blood flow in the central retinal vessels, blood flow in the retinal microvasculature, retinal blood
flow autoregulation, biomechanical action of intraocular pressure on the retinal vasculature, and time-dependent arterial blood pressure
was introduced in [16]. A theoretical model to study the effects of intraocular pressure elevation on the central retinal artery hemo-
dynamics was proposed in [15] and extended to account for the central retinal venous hemodynamics and the retinal microcirculation
in [4]. However, none of them explicitly accounted for uncertainties and variabilities in the model parameters. Only a few modelling
works include a stochastic analysis framework and focused on the production and drainage of aqueous humour flow [53] and its coupling
with ocular hemodynamics in a simplified manner [41].

With these premises, we present in this contribution an uncertainty quantification and a global sensitivity analysis for the main
parameters involved in the mathematical and computational framework called the Ocular Mathematical Virtual Simulator (OMVS) that
we have developed [43, 42]. The clinical relevance of results provided by the OMVS is described in [45] or, more extensively, in [42,
Chapter 13], and it has been confirmed by an independent population-based study including nearly 10000 individuals [54]. The reduced
version of the OMVS model employed in the present study originates from [16] for the retinal circulation. It has been extended to
include a reduced model for blood flow perfusion in the lamina cribrosa. Preliminary findings from a simplified uncertain quantification
study were published as a peer-reviewed conference abstract in [22]. As a significant step forward, we present hereafter a detailed global
sensitivity analysis, using the Sobol’ sensitivity indices.
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The paper is organized as follows. The mathematical and computational model is described in Section 2.1, the uncertainty quan-
tification and sensitivity analysis approach is presented in Section 2.2 and the input data in Section 2.3. The results of our study are
depicted in Section 3 and discussed in Section 4. Finally, conclusions and future perspectives are outlined in Section 5.

2 Methodology
In the next two sections we describe the deterministic mathematical and computational foundations of our study, as well as the

uncertainty quantification (UQ) and sensitivity analysis (SA) methods we incorporated in the OMVS framework to account for the
stochastic features of the system.

2.1 Mathematical and computational model
The OMVS is a complex modelling framework that couples hemodynamics, biomechanics, and fluid dynamics in the eye to vi-

sualize and estimate in a non-invasive way ocular biofluids and tissues characteristics that are difficult or not accessible with standard
investigation methods. The contributions developed within this framework can be subsequently utilized to isolate single risk factors and
quantify their influence on the multi-factorial disease process.

To achieve this goal, the full OMVS is designed with a multiscale architecture, that aims at preserving the natural systemic features
of blood circulation, while providing detailed views on sites of particular interest from the clinical viewpoint, such as the lamina cribrosa.
The lamina cribrosa is a sponge tissue in the back of the eye that has a crucial role from the hemodynamical and neurological viewpoints.
Specifically, this membrane is thought to help maintain the balance between the pressure inside the eye (intraocular pressure, hereafter
denoted IOP) and behind the eye (the retrolaminar tissue pressure directly influenced by the intracranial pressure, denoted RLTp), which
may influence the ocular blood flow. In addition, the lamina cribrosa acts as a scaffold for the retinal ganglion cell axons and the central
retinal vessels and feeds RGC axons through its vascular network. The IOP is easily measurable with a Goldmann applanation tonometer.
This instrument is based on the Imbert–Fick principle, which affirms that the pressure inside a dry thin-walled sphere corresponds to the
force required to flatten the sphere surface divided by the flattening area.

In practice, we developed three model formulations of increasing complexity: we started from a 0-dimensional reduced-order
description of the system, progressively adding the coupling with a porous media model for the lamina cribrosa and finally incorporating
the effects of the deformation of the ocular tissues. More precisely, the OMVS combines (see Fig. 1):

1. System I (Fig. 1a): a circuit-based (0D) model for blood flow in the retinal vasculature, central retinal artery (CRA), and central
retinal vein (CRV);

2. System II (Fig. 1b): a three-dimensional (3D) porous media model for the perfusion of the lamina cribrosa;

3. System III (Fig. 1c): a 3D isotropic elastic model for the biomechanics of the lamina cribrosa, retina, choroid, sclera, and cornea.

In the present contribution, UQ and SA analyses require intensive evaluations of the physical-based model. Therefore, we have
employed a reduced version of the OMVS, accounting for the hemodynamical description provided by System I (Fig. 1a), coupled to a
0D adaptation of System II (Fig. 1b). For the proposed study, System III (Fig. 1c) has not been considered. In this manner, the model (i)
provides a multiscale hemodynamics overview of the overall system, while maintaining a relatively accessible mathematical complexity
and low computational costs; and (ii) combines information on ocular sites for which quantitative data are available - e.g. blood flow in
the central retinal artery - and crucial ocular areas that are not accessible with clinical images - e.g. lamina cribrosa perfusion.

The 0D reduced version of the OMVS, see Fig. 2, exploits the electric analogy to fluid flow in complex vascular network [10]. In this
context, electric potentials correspond to fluid pressure, electric charges correspond to fluid volumes, and electric currents correspond
to volumetric flow rates; the resistors and capacitors represent hydraulic resistance and wall compliance, respectively. Writing the
constitutive equations characterizing the circuit elements and the Kirchhoff laws of currents and voltages leads to a system of ordinary
differential equations whose solution provides the time-dependent profiles of pressures at the circuit nodes and flow rates through
the circuit branches. We emphasize that IOP plays a crucial role in the description of the vein collapsibility, which is modelled in the
OMVS by Starling resistors [51]. Namely, when the external pressure is higher than the internal blood pressure, veins collapse, therefore
dropping down the blood flow.

The network is constructed as an extension of a previous model for the retinal circulation, proposed and validated in [16] and
[5]. The vasculature is divided into six main compartments: central retinal artery (cra), arterioles (r,a), capillaries (r,c), venules
(r,v), central retinal vein (crv), and the lamina cribrosa (lc). Each compartment includes resistances (R) and capacitances (C). The
intraocular segments (Rcra,3,Rcra,4,Rr,v1,Rr,v2,Rcrv,1,Rcrv,2) are exposed to the IOP and the retrobulbar segments are exposed to the RLTp
(Rcra,1,Rcra,2,Rcrv,3,Rcrv,4). The explicit conservation and constitutive laws, as well as parameters involved in the description of the
retinal circuit, follow directly from work by [16] and [5]. To the initial model, we have added a simplified description of the hemody-
namics in the lamina cribrosa, involving two resistors lcRin and lcR, and one capacitor C5, with the following values: lcRin = 78181.9
mmHg s cm−3, lcR = 23988.25 mmHg s cm−3, and C5 = 0.000000753 cm3 mmHg−1. Also, in the original circuit, the external pressure
on the resistances Rcra,3 and Rcrv,2 is the effective stress exerted by the lamina on these vessels, which has been computed via a simpli-
fied fluid-structure interaction model [15] describing the CRA/CRV interaction with the lamina cribrosa. In the current version of the
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(a) System I: 0D hemodynamics of retinal vasculature. (b) System II: 0D hemodynamics of retinal vasculature + 3D hemodynam-
ics of lamina cribrosa.

(c) System III: 0D hemodynamics of retinal vasculature + 3D hemody-
namics of lamina cribrosa + 3D biomechanics of lamina cribrosa, retina,
choroid, sclera, and cornea.

Figure 1: Schematic of the OMVS multiscale structure. IOP = intraocular pressure, RLTp = retrolaminar tissue pressure, CRA = Central
Retinal Artery, CRV = Central Retinal Vein, OA = ophthalmic artery, OV = ophthalmic vein, TCPA = temporal posterior ciliary artery,
NPCA = nasal posterior ciliary artery.

model, we do not account for this contribution in a similar manner but rather adopt a simplified approach, in which the external pressure
corresponds to IOP. Further extensions could incorporate this dependence, but our choice was dictated by the possibility of computing
stresses directly from the System III component of the OMVS.

The reduced model thus obtained can predict the hemodynamics within the lamina cribrosa, the retinal vasculature, and the central
retinal vessels based on the key inputs described in Tab. 1 and displayed as coloured dots in Fig. 2. For the proposed study we fixed
the value of the pressure at cavernous sinus (blue node), while we choose as input variables for UQ and SA the systolic and diastolic
pressure at the ophthalmic artery (SP and DP, red node), the intraocular pressure (IOP, yellow node) and the retrolaminar tissue pressure
(RLTp, green node).

Regarding the outputs, and in light of the clinical application in view, we will focus on the quantities of interest in the UQ and SA
analysis listed in Tab. 2. Note that these quantities of interest will reflect the behaviour of the system at different time instants through
the cardiac cycle.

The mathematical model previously described has been implemented in OpenModelica [11], an open-source Modelica-based mod-
elling and simulation environment intended for industrial and academic studies of complex dynamic systems. Model results have been
obtained using DASSL [26] with a tolerance of 10−6, a time step of 10−3 and total simulation time of 8 s. DASSL (Differential/Algebraic
System Solver) is an implicit, high order, multi-step solver with a step-size control based on backward differentiation formula (BDF).
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Figure 2: Schematic of the 0D circuit-based model (System I of the OMVS) employed in this contribution for UQ and SA. The coloured
nodes are the input of the model that can be inferred from clinical measurements.

Key name Unit Brief description
DP mmHg Diastolic blood Pressure
SP mmHg Systolic blood Pressure

IOP mmHg IntraOcular Pressure
RLTp mmHg RetroLaminar Tissue pressure

Table 1: Input parameters for the reduced OMVS.

Key name Unit Brief description
CRA ps µl/min peak systolic CRA blood flow
CRA es µl/min end systolic CRA blood flow
CRA ed µl/min end diastolic CRA blood flow
CRV ps µl/min peak systolic CRV blood flow
CRV es µl/min end systolic CRV blood flow
CRV ed µl/min end diastolic CRV blood flow

LC ps µl/min peak systolic lamina cribrosa blood flow
LC es µl/min end systolic lamina cribrosa blood flow
LC ed µl/min end diastolic lamina cribrosa blood flow

Table 2: Quantities of interest in the UQ and SA analysis.

These features allow it to be stable and fit to be used for a wide range of models. Its first development can be in found in [26].
The system reaches a periodic state after the first cardiac cycle. However, we consider our output the last simulated cardiac cycle. Then,
we retrieve the CRA, CRV, and the lamina cribrosa blood flow at three specific instant during the last cardiac cycle, namely the peak
systolic time, the end of the systole and the end of the diastole (see Fig. 3). The choice of these three particular time instant in the
cardiac cycle is driven by their interest from a clinical perspective. Moreover, in view of the model validation, the measurements of the
blood flow is very often taken at peak systole and end diastole [19].

2.2 Uncertainty quantification and sensitivity analysis approach
Uncertainty propagation. The construction of a reliable model for ocular biofluid dynamics involves several steps with inherent
uncertainties, among which: parameter inference from uncertain experimental data, model personalization to the same subject data at
different time instants or to different individuals, etc. Therefore, a major challenge is to assess how these sources of uncertainty impact
the clinically relevant outputs of the simulation and ultimately affect the confidence in the model predictions.

In the present contribution, we adopted the following approach: for the set of key inputs of the reduced version of the OMVS model,
the uncertainty is represented by a probability density function (pdf), which quantifies the probability of a given parameter to reproduce
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Figure 3: Specific instant during the last cardiac cycle (peak systole, end systole and end diastole) used to compute the clinical outputs
of interest. Image edited from https://en.wikipedia.org/wiki/Cardiac_cycle.

a specific observation. We next develop a forward uncertainty quantification, also known as uncertainty propagation, to investigate how
these input uncertainties are propagated to the outputs via the computational model. Thus, the combined information between previous
modelling knowledge and assumptions on the prior pdfs allows us to obtain the posterior pdf for the quantities of interest selected from
the clinical perspective.

Remark 1. A major challenge that needs to be addressed is the choice and representation of the prior pdf in light of the quantitative
and qualitative information available from generally noisy data, see for instance [40] and further discussion in Sec. 2.3.

Sensitivity analysis. This part aims to determine synthetic measurements of which key inputs are the most influential on the quantities
of interest selected among the outputs of the computational model without making assumption on the model and taking into account
the continuous nature of the input parameters. To this end, we adopt the stochastic framework of global sensitivity analysis, which
considers the input parameters {X j} j∈{1,...d} to be random independent variables with uncertainty modelled by a probability distribution,
and employed to compute the random output Y . We have not considered the sensitivity analysis of the dynamic process Y(t). The
methods described hereafter can be adapted to time t, and we could study the sensitivity indices with respect to time. However, it is
more useful — easier to interpret — to perform sensitivity analysis at important characteristics of the response time series, in our case,
peak systole, end systole, and end diastole, as discussed in Sec. 2.1.

To quantify the influence of the variations of X j on the variations of Y , we compute the so-called Sobol’ sensitivity indices originally
proposed in the seminal paper [50], see also [27]. More precisely, we define the first-order indices as

S j =
var[E(Y |X j)]

var[Y]
, (2.1)

where (i) var denotes the variance and E the expected value; (ii) var[Y] corresponds to the variability of Y with respect to the overall
uncertainty including non-linear effects; (iii) var[E(Y |X j)], the variance of the conditional expectation E(Y |X j), corresponds to the main
or first order effect of X j; it means that if Y is sensitive to X j, E(Y |X j) is likely to vary a lot and hence var[E(Y |X j)] as well.

Another useful index is the total Sobol’ index, defined as

S tot
j = 1 −

var[E(Y |X(− j))]
var[Y]

= 1 − S − j, (2.2)

where X(− j) = (X1, . . . , X j−1, X j+1, . . . , Xd) and S − j denotes the sum of the indices where X j is not involved. Additionally, the effect
due to specific interactions between the jth and the kth factors (k , j) can be measured by second-order Sobol’ indices, and so on for
high-order interactions, see for more details [27].

Several approaches have been proposed to numerically compute these sensitivity indices, as reviewed for instance in [27]. In the
present work, we adopted the following two strategies: (i) a Monte Carlo-type approach and an estimator proposed in [46] on the basis
of a combinatoric argument, and (ii) a Fourier amplitude sensitivity test (FAST) [47], which is a spectral method based upon the Fourier
decomposition of the model response. The computational cost of the first approach for first order and total order Sobol’ indices is of
(d + 2)n model evaluations [46], where d is the input space dimension and n is the sample size; as for the FAST method the computation
cost for first and total order indices is of d n model evaluations [47].

This variance-based approach implies intensive sampling, but it allows us to explore the input factors’ full uncertainty ranges. We
provide the two strategies as a way to ensure the reliability of our estimates. Indeed, given a sampling size, they may vary when repeating
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the estimations, and, in the Monte-Carlo approach, they can even be negative, although we used an implementation that mitigates this
issue.

All the results on the UQ and SA analysis presented hereafter are carried out exploiting the Python statistical library Open-
TURNS [1].

2.3 Input data
Both mathematical methods described before need as prior knowledge the statistical distribution of the input. We detail and critically

discuss in the sequel the choices we propose, based on assumptions deduced from the experimental and clinical literature. Recall that
the input of our model are systolic blood pressure (SP), diastolic blood pressure (DP), IOP and RLTp.

Blood pressures. For SP and DP data we refer to the paper of Sesso and co-authors [49] where these two quantities showed a normal
distribution. In particular SP has a mean of 124.1 mmHg and a standard deviation of 11.1 mmHg (Fig. 4a), whereas DP has a mean of
77.5 mmHg and a standard deviation of 7.1 mmHg (Fig. 4b).

80 100 120 140 160
SP

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Re
la

tiv
e 

fre
qu

en
cy

(a) Systemic systolic blood pressure
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(b) Systemic diastolic blood pressure

50 60 70 80 90 100 110 120 130
MAP

0.00

0.01

0.02

0.03

0.04

0.05

Re
la

tiv
e 

fre
qu

en
cy

(c) Systemic mean arterial pressure

Figure 4: Normal probability density functions of the input blood pressure variables

Using SP and DP as input parameters raises an issue for the sensitivity analysis, notably the Sobol’ index study, namely that the
inputs have to be assumed independent, see Sec. 2.2. For IOP, RLTp, we can make this assumption reasonably, however, this is not valid
for SP and DP [13]. To overcome this problem we used Mean Arterial Pressure (MAP) as input variable in the Sobol study that has a
normal distribution with mean 93 mmHg and standard deviation of 7.6 mmHg. In this case we also reconstructed the MAP distribution
starting from the normal distribution of SP and DP and the following relationship:

MAP =
1
3

S P +
2
3

DP (2.3)

to check its normal distribution assumption (Fig. 4c).
From Eq. (2.3) and from the correlation assumption between SP and DP made in [13], we can then reconstruct SP and DP starting from
the MAP. Finally, the MAP is independent of the other two inputs (IOP, RLTp) and can be used as a sensitivity analysis parameter.

Intraocular pressure. There is a considerable discussion about normal and lognormal probability density functions in literature, and
which of the two can better represent biological phenomena [25].

To explain our modelling choices we consider different IOP distributions using the data recovered from the clinical work of Suh
and collaborators [52] (mean µnormal = 14.7 mmHg, standard deviation σnormal = 2.8 mmHg). Starting from these values, we have
computed the mean and the variance both for Gaussian distribution and for a lognormal behaviour using the following formulas [21] to
be consistent with the data:

µlognormal = log


µnormal√
1 +

σ2
normal

µ2
normal

 σ2
lognormal = log

1 +
σ2

normal

µ2
normal


We performed a comparative analysis using three different IOP distributions based on the same clinical data, which have been defined

above. In particular, we compare a normal, a truncated normal and a lognormal distribution.
Fig. 5 highlights that the normal probability density (blue) is going beyond some physiological constraints for healthy patients such

as IOP > 5mmHg. The truncated normal probability density function (green) does not show this issue; however, this IOP distribution
presents an abnormal cut in the left tail, making it ineffective for a sensitivity analysis study. For our simulations, with the data provided
by Suh et al. [52], the lognormal distribution seems to be the more natural one. Our choice is dictated by the fact that we want to
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Figure 5: Comparison among normal (blue), lognormal (orange)
and truncated normal (green) IOP distributions using the same in-
put data [52].
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Figure 6: Lognormal probability density function of the input in-
traocular pressure (IOP).

avoid miscalculation due to unphysiological input parameters that may lead to unrealistic discontinuities in the simulation results. This
lognormal assumption has also been accepted in other works [56]. For this reason we utilized the log normal distribution based on the
population based study operated by Suh et al. [52] (Fig. 6).

Retrolaminar tissue pressure. For the RLTp we used a normal distribution (Fig. 7) with mean µnormal = 9.5 mmHg and standard de-
viation σnormal = 2.2 mmHg [29]. In this case, no issues regarding the independence with other input or the sampling of unphysiological
values occur.
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Figure 7: Normal probability density function of the input retrolaminar tissue pressure (RLTp).

Remark 2. Our choices for the input probability density functions are dictated by clinical measurements reported in the literature, in
particular [49] for the normal distribution of MAP, [52] for the lognormal distribution of IOP, and [29] for the normal distribution
of RLTp. For the blood pressure and the retrolaminar tissue pressure, all the clinical literature refers to a normal probability density
function of these inputs, whereas for what concerns the IOP, the prior knowledge on the uncertainty distribution is still a matter of
debate. The rationale behind our specific choices is that we aim to avoid unphysiological input values that may lead to unrealistic
discontinuities in the simulation results. It would also be possible in the future to estimate the input probability density functions in a
more patient-specific manner, by using given repeated clinical measurements of patient-specific targets, such as systolic and diastolic
blood pressure, intracranial pressure, intraocular pressure etc.
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3 Results
In this section, we present two virtual studies using the OMVS described in Sec. 2.1 and employing the two methods described in

Sec. 2.2. The input data assumptions have been discussed in Sec. 2.3. In particular, in the first study, we will use uncertainty propagation,
while in the second one, we will run a sensitivity analysis on the model.

3.1 Uncertainty propagation study
We completed three different sets of N = 10000 evaluations of the model using only the IOP as a stochastic input distribution. For

the RTLp we fixed its value for the three sets at 9.5 mmHg (mean value provided by [29]). These three sets of evaluations differ from
each other by the blood pressure value imposed; we selected three cases of clinical interest - in the same spirit as in [16]:

1. baseline subjects with a systolic/diastolic blood pressure of 120/80 mmHg;

2. low blood pressure subjects with SP = 100 mmHg and DP = 70 mmHg;

3. high blood pressure subjects with SP/DP = 140/90 mmHg.

Recall that the outputs on which we focus for the UQ study are listed in Tab. 2.

Numerical simulations. Fig. 8 shows the computed probability density functions for the three different locations we selected (CRA,
CRV and LC), for three different time instants (peak systole, end systole and end diastole), and for the three populations of clinical
interest (low, baseline and high blood pressure). We also report the simulated mean and standard deviation for each computed output in
Tab. 3. Thus, we highlight that:

• as expected, in each location and for all time instants, blood flow values decrease as we move from low to baseline and high blood
pressure populations;

• for the simulated CRA blood flow, the three populations (baseline, low and high) have distinct pdfs at all evaluated time instants
(peak systolic, end systolic, end diastolic), and present a significant asymmetry;

• for the simulated CRV blood flow, we have well established different pdfs at peak and end systole. We remark that within the
veins we have a delayed peak of blood flows and CRV es values higher than CRV ps values (Tab. 3), in good agreement with
experimentally observed patterns in time velocity curves acquired with Doppler imaging. The CRV blood flow pdf at end diastole
exhibits a peculiar shape: a peak of frequencies for high values and a plateau in the number of realizations for low values separated
by an almost empty frequency area of relatively middle values. Even if the clinical interpretation of these distributions is difficult,
it is interesting to observe that these results suggest a different repartition of frequencies between the three cases, in particular,
for low blood pressures, the high values peak is narrower and the plateau is wider and with more realizations than the high blood
pressure case. This fact is confirmed by the boxplot in Fig. 9a: the tail of CRV blood flow low values is within the first and third
quantile range for the low blood pressure case, whereas this tail is composed just by outliers for baseline and high blood pressure
populations;

• for the LC blood flow, the OMVS suggests a similar analysis to CRV blood flow. The pdfs at peak, and end systole are distinct,
whereas at end diastole it shows a peak of frequencies at low values and a more uniform distribution elsewhere. Also, Fig. 8i
points out that for only for the low blood pressure virtual population a second peak and a considerable high number of frequencies
can be identified at high values. Similarly to the CRV analysis, we propose the boxplot for the output LC ed in Fig. 9b: as
predicted by the pdf. The tail of high values in the low blood pressure population is within the first and third quantile range. In
contrast, the same tail consists of only outliers for baseline and high blood pressure populations. Finally, the computed LC blood
flow variability is considerably lower than for the other two outputs (CRA and CRV) as reported in Tab. 3.

[µl/min] CRA ps CRA es CRA ed CRV ps CRV es CRV ed LC ps LC es LC ed
baseline 73.3 ± 1.0 32.8 ± 0.6 21.7 ± 1.7 43.6 ± 1.7 52.1 ± 0.3 31.7 ± 4.6 41.6 ± 0.1 25.5 ± 0.05 15.0 ± 0.5
low 59.6 ± 1.5 26.1 ± 0.9 10.6 ± 3.0 37.0 ± 2.4 42.9 ± 0.3 23.7 ± 6.3 34.6 ± 0.1 21.3 ± 0.08 13.6 ± 0.7
high 87.1 ± 0.8 39.5 ± 0.5 32.1 ± 0.8 51.1 ± 0.9 61.6 ± 0.4 38.3 ± 2.7 48.6 ± 0.07 29.8 ± 0.05 16.5 ± 0.3

Table 3: Simulated mean and standard deviation for all the quantities of interest in the uncertainty propagation study.

3.2 Sobol’ index study
In this study, we utilize as random input variables the IOP, the retrolaminar tissue pressure (RLTp), and the SP and DP to compute the

Sobol’ indices using the distribution introduced in Sec. 2.3. We compute the Sobol’ first and total indices using the Saltelli algorithm [46]
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(a) Peak systolic CRA blood flow.
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(b) End systolic CRA blood flow.
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(c) End diastolic CRA blood flow.
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(d) Peak systolic CRV blood flow.
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(e) End systolic CRV blood flow.
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(f) End diastolic CRV blood flow.
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(g) Peak systolic LC blood flow.

22 24 26 28 30
LC_es [ l/min]

0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e 

fre
qu

en
cy

baseline
low
high

(h) End systolic LC blood flow.
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(i) End diastolic LC blood flow.

Figure 8: Output probability density functions predicted by the OMVS for three virtual populations: baseline subjects with normal SP
and DP values (blue), low blood pressure subjects (orange), and high blood pressure subjects (green).

and the FAST first and total indices [47]. We performed 5 analysis with increasingN = [1000, 2000, 5000, 7500, 10000]. The stopping
criteria is based on the absolute iterative error:

max
∀o∈O
{|idxn − idxn∗ |} (3.1)

where O = CRAps,es,ed, CRVps,es,ed, LCps,es,ed, idx are the first or total index for two consecutive choices (n > n∗) inN . The final figures
proposed have been obtained with n = 10000 where the error was less than 4 · 10−2 for all input indices and using both algorithms to
compute the results (see Tab. 4).

Numerical simulations. Fig. 10 report the Sobol indices using the Saltelli algorithm, while Fig. 11 report the FAST indices.
For what concerns the Sobol’ indices, Figs. 10a and 10b point out that the CRA blood flow at peak and end systole is highly depen-

dent on the value of the MAP, whereas the influence of IOP and RTLp remains minimal. In Fig. 10c, the results provided by the OMVS
suggest that the CRA blood flow at end diastole is highly influenced by the IOP, moderately by the MAP, and almost negligibly by the
RLTp. Moreover, in this case, we notice that the total order and first order, especially for the MAP, are significantly different, meaning
that high order interactions among parameters contribute to the variance of this output.
For the CRV blood flow, Fig. 10d illustrates that there is a high dependency of CRV ps on MAP and only a moderate one from IOP.
CRV es depends mainly on MAP (Fig. 10e), and CRV ed is highly dependent on the IOP and only mildly on the other two inputs
(Fig. 10f). Also, for CRV blood flow at end diastole, we notice that high order interactions occur, especially for MAP and IOP.
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Figure 9: Boxplots of the end diastolic blood flow in the CRV and the lamina cribrosa predicted by the OMVS for three virtual
populations: baseline subjects with normal SP and DP values, low blood pressure subjects, and high blood pressure subjects.

Input Monte-Carlo approach [46] FAST method [47]
first order index total order index first order index total order index

n = 2000, n∗ = 1000
IOP 0.332 0.009 0.012 0.012

RLTp 0.056 0.007 0.0004 0.006
MAP 0.092 0.090 0.032 0.0192

n = 5000, n∗ = 2000
IOP 0.129 0.017 0.035 0.017

RLTp 0.058 0.006 0.0004 0.008
MAP 0.076 0.063 0.031 0.012

n = 7500, n∗ = 5000
IOP 0.038 0.029 0.034 0.016

RLTp 0.028 0.003 0.0003 0.013
MAP 0.046 0.039 0.004 0.004

n = 10000, n∗ = 7500
IOP 0.037 0.014 0.006 0.005

RLTp 0.025 0.01 0.0002 0.006
MAP 0.02 0.017 0.007 0.007

Table 4: Error based on Eq. (3.1) computed between two consecutive choices of n ∈ N .

For the lamina cribrosa blood flow, the results provided by the OMVS sensitivity analysis suggest that the MAP is the dominant factor
with a moderate influence of the IOP only at end diastole (Fig. 10g, 10h, and 10i).

The FAST indices (Figs. 11) suggest that CRA ps (Fig. 11a), CRA es (Fig. 11b) and LC ed (Fig. 11i) depend mainly on MAP and
mildly on IOP and RLTp.
For what concerns the CRA ed (Fig. 11c) and CRV ed (Fig. 11f), they are highly influenced by the IOP, moderately by MAP and
negligibly little by the RLTp. In this case the first and total order - especially for the IOP - are very different, implying that high order
interactions are quite relevant to explain the variability of the output.
Fig. 11d suggests that CRV ps has a high dependency on MAP and a moderate one on IOP.
For CRV es (Fig. 11e), LC ps (Fig. 11g) and LC es (Fig. 11h), the sensitivity analysis results show that their variability is almost solely
due to changes in MAP.
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(a) Peak systolic CRA blood flow. (b) End systolic CRA blood flow. (c) End diastolic CRA blood flow.

(d) Peak systolic CRV blood flow. (e) End systolic CRV blood flow. (f) End diastolic CRV blood flow.

(g) Peak systolic LC blood flow. (h) End systolic LC blood flow. (i) End diastolic LC blood flow.

Figure 10: Estimation of Sobol’ indices using the Monte-Carlo approach [46]. Red squares represent first order indices, while blue
squares represent total order indices.

4 Discussion.
Hemodynamics in the ocular posterior tissue vasculature results from the combined effects of different factors. Specifically, ocular

blood flow is driven by the difference between arterial and venous blood pressure, is impeded by IOP and RTLp (directly related
to cerebrospinal fluid pressure) and is modulated by vascular regulation. Understanding these complex interrelated effects represents a
major challenge when interpreting results from various clinical studies in ophthalmology. The current contribution introduces a network-
based model in the framework of the Ocular Mathematical Simulator, that couples retinal blood circulation with a simplified description
of the LC hemodynamics. Further on, the model is employed to theoretically assess the relative contribution of IOP, RTLp and MAP
stochastic variations on several clinically meaningful outputs characterizing hemodynamics in the CRA, CRV and LC, by means of
uncertainty propagation methods and variance-based sensitivity indexes.

The results suggest that the hemodynamic response of the CRA, CRV and LC vasculature to variations in IOP and RTLp presents
noticeable differences among individuals with different blood pressures, that strongly influences all the computed outputs. These model
predictions are in good agreement with the experimental findings in [54] and several theoretical studies [16, 15, 4], designed to elucidate
how and to which extent blood pressure is influencing the distribution of ocular hemodynamics. Note that in a clinical setting, there is
an intrinsic difficulty of evaluating the contribution of each factor and the complex relationships among them.

The use of a lognormal distribution for the IOP translates into a non trivial interpretation of the output, especially at the level of the
CRV and LC due to the non-linear character of the model and the complex interplay between factors (as pointed out in Sec. 3.2). In this
context, mathematical models are crucial to reproduce these mechanisms and help to unveil their interpretation.

We have compared the CRA blood flow simulated results to other data in the literature. Our results - Tab. 3, in particular baseline
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(a) Peak systolic CRA blood flow. (b) End systolic CRA blood flow. (c) End diastolic CRA blood flow.

(d) Peak systolic CRV blood flow. (e) End systolic CRV blood flow. (f) End diastolic CRV blood flow.

(g) Peak systolic LC blood flow. (h) End systolic LC blood flow. (i) End diastolic CRV blood flow.

Figure 11: Estimation of first and total indices using the FAST method [47]. Red squares represent first order indices, while blue squares
represent total order indices.

where CRA ps = 73.3± 1.0 µl/min, CRA es = 32.8± 0.6 µl/min, CRA ed = 21.7± 1.7 µl/min - are in agreement with the experimental
results of Dorner et al. [7] (CRA mean blood flow of 38.1±9.1 µl/min) and Riva et al. [38, 39](CRA mean blood flow of 33±9.6 µl/min).

To compare our results with other clinical and mathematical studies that are more focused on the CRA blood velocities, we set the
hypothesis of CRA diameter of about 160 µm [7, 23]. Using this assumption, our simulations provide similar values for CRA blood
flows than the one measured by Harris et al. [19] (CRA ps = 120.6 µl/min, CRA ed = 30.1 µl/min) and the three virtual populations
simulated by Guidoboni et al. [16] (baseline: CRA ps = 119.4 µl/min, CRA ed = 33.7 µl/min; low: CRA ps = 95.3 µl/min, CRA ed
= 28.9 µl/min; high: CRA ps = 142.3 µl/min, CRA ed = 41.0 µl/min). This comparison shows the quality of the results, albeit the
simplicity of the model we have employed for our study. From the SA (Sec. 3.2) we evince that, as expected, the CRA blood flow
depends mainly by the MAP, and only at end diastole - when the arterial pressure is at minimum - the IOP is affecting the CRA results.

For the CRV, we compared the output CRV es results (Tab. 3) with total venous blood flow measurements reported in the literature.
The simulated baseline mean value (= 52.1 µl/min) agrees with the experiments performed by Garcia et al. [12] (64.9±12.8 µl/min) and
Feke et al. [9] (80±12 µl/min for age 25-38 group, 73±13 µl/min for age 54-58 group). From a qualitative viewpoint, the analysis of the
low values tail proposed in the numerical results paragraph may have an interesting physiological interpretation. As described in Section
2.1, IOP has a non-linear effect on the retinal vasculature, particularly on the venous part. Following this reason, the CRV high values
peak may represent the natural state when the IOP is lower than the venous blood pressure, whereas the low values plateau denotes the
collapse state. This statement is consistent with the previous analysis where we found a uniform distribution for low blood pressures
and an important frequency in the peak for high blood pressures. The SA supports this prediction: the dependency to IOP is significant
not only at end diastole, but also at peak systole. In contrast with the CRA, the CRV is a venous vessel, which blood pressure is lower
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therefore more easily influenced by external pressures (e.g. IOP). These indices show also significant differences between the first-order
and the total-order index, which means that there are high-order interactions between these parameters. This fact is not surprising but
it appears as a consequence of incorporating the Starling resistor effect, [51], which is a crucial requirement to retrieve clinical data, as
reviewed in [14].

For the lamina cribrosa hemodynamics, we highlight the fact that all mathematical results are crucial in the investigation of disease
because non-invasive measurements are not available nowadays for this tissue. Following similar consideration made for the CRV, we
notice an interesting physiological interpretation following the uncertainty propagation study (Sec. 3.1). For the low blood pressure
population, which is notably the most at risk for ocular neuropathies, the results may suggest that an overperfusion of the lamina -with
respect to the mean values of that population - occurs in more cases than for the other two population. The simplicity of the model, as
confirmed by the low variability in the LC blood flows, does not allow us to clarify this fact. The SA (Sec. 2.2) supports this analysis.
Sobol and FAST indices show a high dependency only due to the MAP, which can be not so intuitive as for the CRA or the CRV, indeed
we know that the pressure gradient across the LC (IOP − RLT p) may influence the hemodynamics [44]. Further analysis by adding a
three-dimensional hemodynamical and biomechanical description of the lamina would certainly help in this investigation, in particular
to notice the impact of IOP and RLTp on LC blood flow.

Finally we discuss the estimates of the first and total indices using the Monte-Carlo and FAST approaches. For all considered
quantities of interest, the two indices are suggesting similar outcomes, which allows us also to cross-validate the results of our analysis.
The main differences concern CRA ed (Figs. 10c and 11c) and CRV ed (Figs. 10f and 11f), in particular on the high order interactions
between IOP and MAP - more emphasized for the FAST estimates. We privilege the results provided by the Monte-Carlo estimates
which are unbiased compared to the FAST method. Also, the latter has the initial advantage of being more computationally efficient,
but at the cost of extra assumptions of smoothness in the model [57] that we are not currently able to verify for the OMVS.

5 Conclusion
Thanks to its special connection to the brain and its accessibility to measurements, the eye provides a unique window on the brain,

thereby offering non-invasive access to a large set of potential biomarkers that might help in the early diagnosis and clinical care of
Neuro-Degenerative Diseases [17]. The OMVS has already shown great potentiality to reproduce the ocular biomechanics and the
hemodynamics [42].

Pursuing this concept, in this contribution, we have proposed an uncertainty propagation study and a sensitivity analysis to evaluate
the impact of uncertainties on this ophthalmological virtual laboratory. First, we have set up a framework to perform a forward UQ
analysis, which allowed us to evaluate the effects of the propagation of uncertainty from input to output. Second, we completed a SA
study based on Sobol indices to capture the interplay between the different model parameters and their relative importance. Finally, we
have assessed qualitatively and quantitatively this computational framework in view of clinical applications.

In the context of computational models, a coupled UQ/SA analysis is crucial for the scientific research, especially in biology and
medicine. The use of such mathematical framework may be employed in the process of product development or diseases understanding,
decreasing the number of physical tests necessary and therefore the economic cost. The low fidelity model employed already provided
useful information for analysis, however this study must be pursued with higher fidelity models such as System II and System III,
see Figs. 1b and 1c respectively. The current methodology could thus be further improved, in particular by (i) using a multilevel
multifidelity estimator, as for instance the one developed in Dakota toolkit, see [32, 30]; (ii) devising a reduced order modelling
approach for the 3D elastic and poroelastic models, following the reduced basis framework [31, 33], developed in the open source
software Feel++ [36, 37]. Finally, considering sensitivity indices over time, as in [3], as well as characteristics instants, provides a
promising perspective of the present work.
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