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PROFINITE INVARIANTS OF ARITHMETIC GROUPS

HOLGER KAMMEYER, STEFFEN KIONKE, JEAN RAIMBAULT,
AND ROMAN SAUER

Abstract. We prove that the sign of the Euler characteristic
of arithmetic groups with the congruence subgroup property is
determined by the profinite completion. In contrast, we construct
examples showing that this is not true for the Euler characteristic
itself and that the sign of the Euler characteristic is not profinite
among general residually finite groups of type F . Our methods
imply similar results for `2-torsion as well as a strong profiniteness
statement for Novikov–Shubin invariants.

1. Introduction

A finitely generated, residually finite group Γ is called profinitely
rigid if any other such group Λ with the same set of finite quotients
as Γ is isomorphic to Γ; this can be expressed in terms of profinite

completions: if Λ̂ ∼= Γ̂, then Λ ∼= Γ (see [19]). While all finitely
generated abelian groups have this property, there are already virtually
cyclic groups which are not profinitely rigid [5]. In general, profinite
rigidity is extremely difficult to characterize. Recent work of Bridson–
McReynolds–Reid–Spitler [12] shows that profinite rigidity holds for
certain Kleinian groups, including the Weeks manifold group. On the
other hand we note that profinite rigidity of free groups, surface groups
or SLn(Z) is still open.

1.1. Main results. Two related questions seem more accessible: (i) to
establish profinite rigidity among a certain class of groups and (ii) to
find profinite invariants. A group invariant is profinite if it takes the
same value on finitely generated, residually finite groups whose profinite
completions are isomorphic. In this paper we study a combination
of both: we establish profinite invariance of the sign of the Euler
characteristic within a most relevant subclass of finitely generated,
residually finite groups: arithmetic groups with the congruence subgroup
property. In particular, this (conjecturally) includes all irreducible
lattices in higher-rank semisimple Lie groups.

Theorem 1.1. Let G1 and G2 be linear algebraic groups defined over
number fields k1 and k2, and let Γ1 ≤ G1(k1) and Γ2 ≤ G2(k2) be
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arithmetic subgroups. Suppose that G1 and G2 have a finite congru-
ence kernel and that Γ1 is profinitely commensurable with Γ2. Then
signχ(Γ1) = signχ(Γ2).

Let us explain the meaning of the terms in this statement. Two
groups Γ1 and Γ2 are called profinitely commensurable if the profinite

completions Γ̂1 and Γ̂2 have isomorphic open subgroups. Equivalently, Γ1

and Γ2 have finite index subgroups with isomorphic profinite completions.
The function sign(x) takes the values −1, 0, 1 if x < 0, x = 0, x > 0.
A subgroup of G(k) is arithmetic if it is commensurable to G(Ok) :=
G(k) ∩ GLn(Ok) for some k-rational embedding G → GLn, where
Ok is the ring of algebraic integers in k. Any nonzero ideal a ⊂
Ok defines a finite index normal subgroup of G(Ok) as the kernel
of the homomorphism G(Ok) → G(Ok/a) defined by reduction of
coefficients. These are called principal congruence subgroups. They
define a unit neighborhood base in G(k) for the so called congruence
topology. The arithmetic topology of G(k), defined by declaring all finite
index subgroups of G(Ok) as a unit neighborhood base, is thus a priori
finer than the congruence topology. It is straightforward to see that
neither topology depends on the chosen embedding G→ GLn. Hence

we obtain a canoncial continuous homomorphism Ĝ(k) → G(k) from
the arithmetic completion to the congruence completion, where each
completion is formed with respect to the canonical uniform structure
of topological groups. The kernel is called the congruence kernel of G.
Serre conjectured that for simple groups G the congruence kernel is
finite (“G has the congruence subgroup property”) whenever the real
Lie group G(k ⊗Q R) has real rank at least 2; we refer to [49] for
a survey on the status of this conjecture. A purely group theoretic
characterization of the congruence subgroup property can be given in
terms of subgroup growth and it is also closely related to the notion of
bounded generation [40].

We note that it is known that profinite rigidity does not hold for all
higher rank arithmetic lattices, even among themselves (as follows from
[2]). However, the profinite isomorphism class of arithmetic groups for
which the congruence subgroup property holds, is easier to understand
than that of general lattices; for example M. Aka proves in loc. cit. that
it is always finite within the class of arithmetic groups. To prove the
theorem above we push Aka’s arguments further.

It is possible to calculate the Euler characteristic of arithmetic groups
using Harder’s Gauß-Bonnet Theorem [24]. We apply this method to
obtain the following example which shows that Theorem 1.1 does not
extend to the Euler characteristic itself.
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Theorem 1.2. For positive integers m and n, let Γm,n be the level four

principal congruence subgroup of Spin(m,n)(Z). Then Γ̂8,2
∼= Γ̂4,6 but

χ(Γ8,2) = 289 · 52 · 17 whereas χ(Γ4,6) = 290 · 52 · 17.

The spinor groups Spin(m,n)(Z) arise from the (m+ n)-ary integral
diagonal quadratic form with m coefficients “+1” and n coefficients
“−1”. Precise definitions are given in Section 4. The existence of the
above examples implies that one cannot broaden the conclusion of
Theorem 1.1 from arithmetic to residually finite groups that admit a
finite classifying space. The latter is referred to as being of type (F ).

Corollary 1.3. There are three residually finite groups Γ1, Γ2, and Γ3

of type (F) which have isomorphic profinite completions such that

χ(Γ1) < 0, χ(Γ2) = 0, χ(Γ3) > 0.

Setting c = 289 · 52 · 17, the above groups can simply be taken as

Γ1 = (Γ8,2 × Γ8,2) ∗ F2c2 ,

Γ2 = (Γ8,2 × Γ4,6) ∗ F2c2 ,

Γ3 = (Γ4,6 × Γ4,6) ∗ F2c2 ,

where F2c2 is the free group on 2c2 letters. Since the profinite comple-
tion functor preserves products and coproducts, the three groups are
profinitely isomorphic. They are still residually finite and of type (F ).
Additivity and multiplicativity of the Euler characteristic gives

χ(Γ1) = c2 + (1− 2c2)− 1 = −c2 < 0,

χ(Γ2) = 2c2 + (1− 2c2)− 1 = 0,

χ(Γ3) = 4c2 + (1− 2c2)− 1 = 2c2 > 0.

The Euler characteristic equals the alternating sum of the `2-Betti
numbers [29, 41]. For arithmetic groups, `2-Betti numbers are known
to be nonzero in at most one degree. Such a nonzero `2-Betti number
occurs if and only if the group is semisimple and the fundamental rank is
zero. In that case, the degree with nonvanishing `2-Betti number is given
by half the dimension of the associated symmetric space X so that we

have signχ(Γ) = (−1)
dimX

2 . This dimension, however, can change when
passing to a profinitely commensurable arithmetic group. So `2-Betti
numbers themselves are not profinite. Among S-arithmetic groups, no
higher `2-Betti number is profinite [31], in contrast to the first `2-Betti
number which is profinite among all finitely presented residually finite
groups [11, Corollary 3.3]. Thus in the semisimple case, the proof of
Theorem 1.1 splits into two parts: showing that the fundamental rank
is profinite, so that the vanishing of Euler characteristic is profinite,
and showing that the profinite completion determines the dimension of
the symmetric space mod 4.



4 H. KAMMEYER, S. KIONKE, J. RAIMBAULT, AND R. SAUER

1.2. Extension to other invariants. Whenever an arithmetic group Γ
has vanishing Euler characteristic, a secondary invariant called `2-torsion
and denoted by ρ(2)(Γ) is defined; see [41, Chapter 3] and [29, Chap-
ter 5] for an introduction. In many ways, ρ(2)(Γ) behaves like an
“odd-dimensional cousin” of χ(Γ). Also the profinite behavior of ρ(2)(Γ)
is parallel to χ(Γ).

Theorem 1.4. In addition to the assumptions in Theorem 1.1, suppose
that χ(Γi) = 0 for either (then both) i = 1, 2 and rkki Gi = 0 for both
i = 1, 2. Then sign ρ(2)(Γ1) = sign ρ(2)(Γ2).

We conjecture that the assumption on rkki Gi is not needed. It would
not be needed if [42, Conjecture 1.2] was true and it is not needed if
the fundamental rank of Gi defined on p. 8 is even [28, Theorem 1.2].
But in our proof, we are using the equality of analytic and cellular
`2-torsion which is, at present, only known if Γi is a cocompact lattice in
the Lie group

∏
v Gi(kiv) where v runs through the infinite places of ki.

This cocompactness condition is equivalent to rkki Gi = 0. Interesting
examples to which the theorem applies can be found among cocompact
lattices in Spin(p, q) and Spin(p − 4, q + 4) for odd integers p, q ≥ 7:
Combining methods of Aka [3] with Kneser’s solution of the congruence
subgroup problem for anisotropic spinor groups [36], one can find an
arithmetic Q-anisotropic lattice in each group such that the two lattices
are profinitely isomorphic. According to Olbrich [47], these have nonzero
`2-torsion. By our theorem, the values have the same sign.

If Γ and Λ are of type (F ) and Λ is residually finite and `2-acyclic,
then we have the product formula ρ(2)(Γ× Λ) = χ(Γ)ρ(2)(Λ) as proven
in [41, Theorem 3.93 (4), p. 161]. Hence if M is some closed hyperbolic
3-manifold, then

2 ρ(2)(Γ8,2 × π1M) = ρ(2)(Γ4,6 × π1M) < 0.

The groups Λi = π1M × Γ4−i, where Γ4−i was introduced below Corol-
lary 1.3, are residually finite, of type (F ) and

ρ(2)(Λ1) < 0, ρ(2)(Λ2) = 0, ρ(2)(Λ3) > 0.

This shows that, as before, Theorem 1.4 has no immediate extension in
one way or another.

Since an arithmetic group Γ has at most one nonzero `2-Betti number,
the Euler characteristic χ(Γ) encodes the entire reduced `2-cohomology.
The lesser known Novikov–Shubin invariants αp(Γ) capture whether Γ
additionally possesses unreduced `2-cohomology. The reader can find an
overview in [41, Chapter 2]. In the semisimple and k-anisotropic case,
our methods imply an even stronger statement on these subtle invariants.
To state it, let us introduce the relabeling α±q(Γ) = αk±q(Γ) where the
symmetric space on which Γ acts is either 2k- or (2k + 1)-dimensional.
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Theorem 1.5. For i = 1, 2, let ki be number fields, let Gi be semisimple
linear algebraic ki-groups with rkki Gi = 0, and let Γi ≤ Gi be arithmetic.
Suppose that G1 and G2 have a finite congruence kernel and that Γ1 is
profinitely commensurable with Γ2. Then α±q(Γ1) = α±q(Γ2) for all q.

This time the assumption that rkki Gi = 0 is likely to be essential
because only in the cocompact case do analytic and cellular Novikov–
Shubin invariants agree [21] and only the analytic Novikov-Shubin invari-
ants are entirely governed by the fundamental rank. Compare [27, The-
orem 1.4]. Given a semisimple Lie group G with symmetric space
X = G/K, let us set n = dimX and let m = δ(G) be the fundamental
rank. For a torsion-free cocompact lattice Γ ≤ G, Olbrich [47, The-
orem 1.1.(b)] has shown in the analytic approach that αp(Γ) 6= ∞+

if and only if p ∈ [n−m
2
, n+m

2
− 1]. Moreover, in this range we have

αp(Γ) = m. The arithmetic groups Γi are finitely generated linear in
characteristic zero, hence have torsion-free subgroups of finite index
by Selberg’s lemma. Novikov–Shubin invariants are unchanged when
passing to commensurable groups [41, Theorem 2.55 (6)]. Since we show
in Theorem 2.1 that m = δ(G) is a profinite invariant for arithmetic
subgroups of semisimple groups, Theorem 1.5 follows.

1.3. Towards S-arithmetic groups and weakening CSP. In gen-
eral we do not know whether our results generalize from arithmetic
to S-arithmetic groups. However, we can extend our results in special
cases. For example, for groups

Γi = Spin(qi)(Z[S−1
i ])

where Si are finite sets of rational primes and qi are integral quadratic
forms such that Spin(qi) has finite Si-congruence kernel, we checked
that still signχ(Γ1) = signχ(Γ2) whenever Γ1 and Γ2 are profinitely
commensurable. The proof is a case by case study invoking the clas-
sification of anisotropic quadratic forms over Qp. Interestingly and as
opposed to the arithmetic case, for these S-arithmetic groups it is no
longer true that the dimension of the symmetric space is a profinite
invariant mod 4. However, if Γ1 and Γ2 are profinitely commensu-
rable and dimX1 6≡ dimX2 mod 4, then there always exists a finite
prime p ∈ S1 ∩ S2 such that rkQp G1 6≡ rkQp G2 mod 2 so that still
signχ(Γ1) = signχ(Γ2). An example of this behavior is presented in
Example 4.8.

Another family of S-arithmetic groups for which we can establish
profiniteness of the sign of the Euler characteristic is the following: fixing
a (higher rank simple) Q-group G, non-commensurable but profinitely
commensurable S-arithmetic groups occur when G is considered over
varying number fields. Methods due to Aka [2] are used in [30] to show
that these groups must be defined over arithmetically equivalent number
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fields k and l. This implies profiniteness of signχ(Γ) if S contains no
places over ramified primes or if G splits over k and l.

It is unclear if these observations can be extended to general algebraic
groups with CSP. Notwithstanding, we can strengthen Theorems 1.1
and 1.4 formally by only requiring that one of the two groups be
arithmetic and have CSP.

Theorem 1.6. Let G1 and G2 be linear algebraic groups defined over
number fields k1 and k2. Suppose G1 has finite congruence kernel and
that either G2 is reductive and each k2-simple factor of the universal
covering of its derived subgroup satisfies the Platonov–Margulis conjec-
ture, or that G2 is not reductive. Let Γ1 ≤ G1 be arithmetic and let
Γ2 ≤ G2 be S-arithmetic for a finite set of places S of k2 containing all
the infinite ones.

(i) If Γ1 and Γ2 are profinitely commensurable, then

signχ(Γ1) = signχ(Γ2).

(ii) If in addition rkk1 G1 = rkk2 G2 = 0 and χ(Γ1) = χ(Γ2) = 0, then

sign ρ(2)(Γ1) = sign ρ(2)(Γ2).

See [48] for an introduction to the Platonov–Margulis conjecture and
[52, Appendix A] for a shorter and more up-to-date survey. We note
that while this conjecture is still open in some case its status is still
better than that of the congruence subgroup property; in particular it
is known to hold for inner forms of type An. Unlike Theorem 1.1 the
above result can be applied when the R-points of the Weil restriction
of G2 are of real rank one; Theorem 1.1 is not applicable since real and
complex hyperbolic lattices often do not have CSP (and are conjectured
to never have it).

1.4. Comments on rank one groups. Finally, the question occurs
whether the assumption of CSP in Theorem 1.1 can be removed, which
by Serre’s conjecture should boil down to understanding the case of
rank one simple Lie groups. Taking the classification of rank one simple
real Lie groups into account, the profiniteness of the sign of Euler
characteristic or `2-torsion reduces to the question of profiniteness of
the dimension of the symmetric space modulo 4.

However, the techniques used to prove such a statement would by
necessity be very different from the rigidity results used in higher rank,
except possibly for lattices in the quaternionic hyperbolic spaces and
the octonionic hyperbolic plane. There has already been much work on
this topic, or related topics; some topological profinite invariants for
3–manifold groups are given in [7]. Let us also mention the following
results of interest.
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(1) Recent work of Bridson–McReynolds–Reid–Spitler [12] shows
that profinite rigidity holds for certain Kleinian groups, in-
cluding the Weeks manifold group. Note that profinite rigid-
ity is generally hard to establish. It is, for example, open
whether free groups or more generally Fuchsian groups, Kleinian
groups, SL(n,Z), or mapping class groups of closed surfaces are
profinitely rigid.

(2) The question becomes more accessible if one only asks for profi-
nite rigidity among a certain class of groups. In this vein,
Bridson–Reid [13] had previously shown that the figure-eight
knot group is a Kleinian group which is profinitely rigid among
3-manifold groups. In general, it is not even known whether
Kleinian groups are profinitely rigid among themselves. In fact,
it is open whether the volume of hyperbolic 3-manifolds is profi-
nite in the sense that it agrees for two such manifolds whose
fundamental groups have isomorphic profinite completions.

(3) Fuchsian groups are profinitely rigid among lattices in Lie groups
and S-arithmetic groups; this follows from profiniteness invari-
ance of the first L2-Betti number, which distinguishes them from
lattices in other Lie groups, and the work of Bridson–Conder–
Reid [11] which distinguishes them between themselves.

(4) It follows from the work of Bergeron–Haglund–Wise [6] and
Minasyan–Zaleskii [45] that arithmetic lattices of simple type
in SO(n, 1) (for any n) are cohomologically good, in particular
their profinite completion knows their virtual cohomological
dimension, which equals n for a uniform lattice and n− 1 for a
non-uniform one. It is well-known that Fuchsian groups are good.
It also follows from the work of Agol [1] together with that of
Minasyan–Zalesskii that lattices in SO(3, 1) are cohomologically
good.

(5) Recently M. Stover [58] gave examples, for any n ≥ 2, of a pair
of lattices in PU(n, 1) which are profinitely isomorphic, but not
commensurable to each other.

1.5. Outline. In Section 2 we establish profinite invariance of the
fundamental rank of the associated Lie groups as well as profinite
invariance of the dimension of the associated symmetric space mod 4
in the semisimple case. Section 3 then derives the main results as
straightforward conclusions from the previous section. In Section 4 we
explicitly compute the Euler characteristic of the arithmetic spin groups
Γm,n.

Acknowledgements. H.K., S.K., and R.S. acknowledge funding by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) – 281869850 (RTG 2229) and 338540207. J.R. acknowledges
support by ANR grant ANR-16-CE40-0022-01 - AGIRA.
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2. Profinite invariance of fundamental rank and dimension
mod 4

For better reference, we have chosen to formulate our results in the
introduction in terms of number fields. But as is well known, given a
number field k and a linear algebraic k-group G, the restriction of scalars
functor ReskQ as for instance introduced in [48, Section 2.1.2, p. 49] comes

with a natural isomorphism ReskQG(Q) ∼= G(k) which preserves the

notion of arithmetic subgroup and satisfies, moreover, C(ReskQG, Q) ∼=
C(G, k) for the congruence kernels. Thus every arithmetic subgroup of
a k-group is isomorphic to an arithmetic subgroup of a Q-group and
the former has finite congruence kernel if and only if the latter does.
These remarks justify that henceforth we will work over k = Q only.
As an outcome of the introduction we see that the following theorem is
the main technical result we need to attack.

Theorem 2.1. Let Γ1 ≤ G1 and Γ2 ≤ G2 be arithmetic subgroups of
semisimple linear algebraic Q-groups with finite congruence kernel. If
Γ1 is profinitely commensurable with Γ2, then

(i) dimX1 ≡ dimX2 mod 4 and
(ii) δ(G1) = δ(G2).

Here Xi = Gi/Ki is the symmetric space associated with Gi. It is
defined by choosing a maximal compact subgroup Ki ⊆ Gi of the Lie
group Gi = Gi(R). The number

δ(Gi) = rkC(L(Gi)⊗R C)− rkC(L(Ki)⊗R C)

is called the fundamental rank of Xi, sometimes also known as the
deficiency of Gi. The notation L(Gi) and L(Ki) denotes the Lie algebras
of the Lie groups Gi and Ki.

The rough outline of the proof of Theorem 2.1 is as follows. We first
show that under the assumption of CSP and strong approximation, the
profinite commensurability of Γ1 and Γ2 implies that the Lie algebras
of the p-adic analytic groups G1(Qp) and G2(Qp) are isomorphic for all
finite primes p (Proposition 2.4). Weil’s product formula expresses the
signature of a rational quadratic form mod 8 in terms of Gaussian sums
associated with the Fp-reductions of the form. Applying this formula to
the Killing forms of the Lie algebras of G1 and G2, we can conclude that
dimX1 ≡ dimX2 mod 4 (Proposition 2.5). To show that δ(G1) = δ(G2),
we first explain that if G1(Qp) ∼= G2(Qp) for all p, then of necessity
G1 ×Q R and G2 ×Q R are inner forms of one another (Proposition 2.7).
Therefore, if we fix an isomorphism ϕ : G1 ×Q C→ G2 ×Q C and if τi
denotes the complex conjugation satisfying Gi(C)τi = Gi(R), then τ1

and ϕ−1τ2ϕ are conjugate by an inner automorphism. In that case the
maximal compact subgroups of Gi(R) have the the same rank as we
verify in Proposition 2.9, so that equality of fundamental ranks follows.
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To begin with, we verify that in a typical situation, isomorphisms of
products of p-adic Lie groups must be factor-wise. The notation “≤o”
and “≤c” indicates open and closed subgroups, respectively.

Lemma 2.2. Let G be a profinite group with open subgroups A,B ≤o G.
Suppose that

A =
∏
p

Gp and B =
∏
p

Hp,

for certain p-adic analytic groups Gp, Hp ≤c G where the product runs
over all prime numbers. Then Hp and Gp are virtually isomorphic
for all primes p. In particular, the Lie algebras L(Hp) and L(Gp) are
Qp-isomorphic.

Proof. Let p be a prime. We may assume that dim(Gp) ≥ dim(Hp).
After possibly shrinking B, we may assume B ⊆ A = G. Let π : G→ Gp

denote the projection homomorphism. For every prime ` 6= p the image
π(H`) is p-adic and `-adic analytic, hence a finite group. Moreover, let
Up Eo Gp be an open normal uniform pro-p subgroup (the existence
follow from [18, Corollary 8.34]). Recall that such a group is torsion-free
(see [18, Theorem 4.5]). Thus π(H`) ∩ Up = {1}, since it is finite and
torsion-free.

Now we consider the homomorphism π : G→ Gp/Up composed from
π and the canonical factor map Gp → Gp/Up. Since π is continuous, its
kernel is open and there is a finite set of primes S (with p ∈ S) such
that

π(
∏
`6∈S

H`) = {1}.

It follows that π(
∏

` 6=pH`) is finite. However, the homomorphism π is

surjective and we deduce that π(Hp) is an open subgroup of Gp.
Choose an open normal uniform pro-p subgroup Vp Eo Hp such that

π(Vp) ⊆ Up. Since Vp is finitely generated powerful (see [18, Definition
2.1]) and Up is torsion-free, we deduce that π(Vp) is a finitely generated,
powerful, torsion-free pro-p group. By [18, Theorem 4.5] we get that
π(Vp) is a uniform subgroup in Up, and as it is also open we have
dim π(Vp) = dimUp, so dimVp ≥ dimUp. By assumption dim(Vp) ≤
dim(Up) and we conclude that the dimensions are equal and that π|Vp
is an isomorphism onto its image.

�

Remark 2.3. For an affine group scheme H over a commutative ring
R, the Lie algebra (functor) will be denoted by Lie(H). For a Lie group
U over a complete valuated field k, e.g. R, C or Qp, the associated
k-Lie algebra will be denoted by L(U). Recall that, if G is a linear
algebraic group over k, then G(k) is a k-analytic Lie group and

Lie(G)(k) ∼= L(G(k)).



10 H. KAMMEYER, S. KIONKE, J. RAIMBAULT, AND R. SAUER

A little more general than necessary, we will now see that assuming
CSP and strong approximation, profinitely commensurable S-arithmetic
subgroups lie in algebraic groups whose Lie algebras become isomorphic
when completing the field outside S.

Proposition 2.4. Let S1 and S2 be finite sets of places of Q containing
the infinite one and let G1 and G2 be algebraic Q-groups. Assume Gi has
finite Si-congruence kernel and strong approximation w. r. t. Si. Sup-
pose G1 and G2 have profinitely commensurable S1- and S2-arithmetic
subgroups. Then S1 = S2 and Lie(G1)(Qp) ∼= Lie(G2)(Qp) for p 6∈ S1.

Proof. Choose Si-arithmetic subgroups Γi ⊆ Gi(Q) such that Γ̂1
∼= Γ̂2.

Since the congruence kernels are finite, we can pass to finite index

subgroups if need be, to assume that Γ̂i is (isomorphic to) the closure

of Γi in Gi(ASi). Strong approximation implies that Γ̂i is an open
subgroup of Gi(ASi) where denotes the ring of Si-adeles, that is the
restricted product

∏′
p6∈Si Qp. In particular, it has an open subgroup

which is isomorphic to a product
∏

p6∈Si U
(i)
p for certain open compact

subgroups U
(i)
p ≤o Gi(Qp). So clearly S1 = S2 and Lemma 2.2 and

Remark 2.3 complete the proof. �

The following is a variation of an observation of Rohlfs-Speh [54,
Lemma 2.5]; see also [34, Lemma 4].

Proposition 2.5. Let G1 and G2 be semisimple linear algebraic groups
over Q with associated symmetric spaces X1 = G1/K1 and X2 = G2/K2.
If Lie(G)(Qp) ∼= Lie(H)(Qp) for all p, then

dimX1 ≡ dimX2 mod 4.

Proof. We note that Lie(Gi)(k) = k ⊗Q Lie(Gi)(Q) for every extension
field k of Q. The Killing forms βi on Lie(Gi)(Q) are non-degenerate sym-
metric bilinear forms defined over Q. The Cartan decomposition implies
that βi has signature (dim(Xi), dim(Ki)) as a form on Lie(Gi)(R).

The Killing form is completely determined by the Lie algebra struc-
ture, hence the quadratic spaces (Lie(G1)(Qp), β1) and (Lie(G2)(Qp), β2)
are isometric for every prime number p. Weil’s product formula implies
that dim(X1)− dim(K1) ≡ dim(X2)− dim(K2) mod 8; see [55, Corol-
lary 8.2]. Let d = dim(G1) = dim(G2), then d = dim(X1) + dim(K1) =
dim(X2) + dim(K2) and we deduce that

2 dim(X1) ≡ dim(X1)− dim(K1) + d ≡ 2 dim(X2) mod 8. �

Definition 2.6. Let G1, G2 be linear algebraic groups over a field k of
characteristic 0. We say that G2 is an inner form of G1, if there is an
isomorphism ϕ : G1 ×k k → G2 ×k k (where k is the algebraic closure
of k) such that ϕ−1σϕσ−1 is an inner automorphism of G1 ×k k for all
σ ∈ Gal(k/k)
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Proposition 2.7. Let S be a finite set of places of Q containing the
archimedean place. Let G1 and G2 be simply connected semisimple
algebraic groups over Q such that Lie(G1)(Qp) ∼= Lie(G2)(Qp) for all
p /∈ S. Then G2 ×Q R is an inner form of G1 ×Q R.

Proof. Our goal is to reach a contradition between Gi ×Q R being
outer forms of each other and the hypothesis that Gi ×Q Qp being
locally isomorphic for almost all p. The latter implies in particular that
Lie(G1)(L) ∼= Lie(G2)(L) for some finite Galois extension L/Q. Since
simply connected semisimple groups are determined up to isomorphism
by their Lie algebras, we deduce

G1 ×Q L ∼= G2 ×Q L.

Without loss of generality we may assume, after possibly passing to a
larger field L, that G1 ×Q L is split. Note that for any extension field
L′ of L there is an exact sequence
(2.1)

1 −→ Ad(G1 ×Q L
′) −→ Aut(G1 ×Q L

′)
πL′−→ AutG1

(Dyn(Φ)) −→ 1

where Dyn(Φ) denotes the Dynkin diagram of the root system Φ of
G1 ×Q L and AutG1

(Dyn(Φ)) is the image of G1 ×k L′ in there; see
(25.16) in [38]. In addition, for every Galois extension L1/L2 where
L1 contains L, the short exact sequence is Galois equivariant, where
the action of the Galois group Gal(L1/L2) on Aut(Dyn(Φ)) is the one
induced from the action of Gal(L/Q).

We choose an isomorphism ϕ : G1 ×Q L→ G2 ×Q L and consider the
corresponding 1-cocycle defined by aσ = ϕ−1σϕσ−1 ∈ Aut(G1 ×Q L)
for all σ ∈ Gal(L/Q). The associated non-abelian cohomology class in
H1(Gal(L/Q),Aut(G1×QL)) will be denoted by [a] and is independent
of the choice of ϕ. Pick an embedding ι : L → C. We note that ι
induces a homomorphism ι∗ : Gal(C/R)→ Gal(L/Q) of groups.

From now on we suppose that G2×QR is not an inner form of G1×QR.
In this case the image ι(L) is not contained in R, since otherwise G1×QR
and G2 ×Q R are isomorphic. The long exact sequence associated to
(2.1) contains the following segment:

H1
(
Gal(C/R),Ad(G1 ×Q C)

)
−→ H1

(
Gal(C/R),Aut(G1 ×Q C)

)
πC−→ H1

(
Gal(C/R),AutG1

(Dyn(Φ))
)

⊂ H1
(
Gal(C/R),Aut(Dyn(Φ))

)
which shows that the class πC(ι∗∗[a]) ∈ H1(Gal(C/R),Aut(Dyn(Φ)))
is non-trivial1. Let τ ∈ Gal(C/R) denote complex conjugation. By
Chebotarev’s density theorem, see [46, Theorem 13.4], there is a
prime number p 6∈ S and a prime ideal p ⊆ OL lying over p such

1We use a double star ι∗∗ to denote the pull-back by the homomorphism induced
from the field embedding ι.
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that Lp/Qp is an unramified quadratic extension and the image of
Gal(Lp/Qp) → Gal(L/Q) is 〈ι∗τ〉. Let j : L → Lp denote the inclu-
sion map. Naturality of the above long exact sequence shows that
the cohomology class πLp(j

∗∗([a])) ∈ H1(Gal(Lp/Qp),Aut(Dyn(Φ))),
and hence also j∗∗([a]) ∈ H1(Gal(Lp/Qp),Aut(G1×QLp)) is non-trivial.
By [23, XXIV 7.3.1 (iii)], the natural map

d : AutLp(G1 ×Q Lp)→ AutLp- Lie(Lie(G1)(Lp))

is an isomorphism. It follows that the Qp-Lie algebras Lie(G1)(Qp)
and Lie(G2(Qp)) are outer forms of each other, in particular they are
not isomorphic which yields a contradiction since we assumed that
p 6∈ S. �

The next proposition will show that inner forms of real Lie groups
have maximal compact subgroups of the same rank. We will use in
this context that inner forms can be realized as the fixed point sets
of conjugate involutions on the complexification (viewed as real Lie
group). In the course of the proof we will need the following lemma,
which should be standard but for which we could not find a reference.

Lemma 2.8. Let K be a compact Lie group and let τ ∈ Aut(K) be an
automorphism of order two. There is a maximal torus T ⊆ K which is
τ -stable, i.e. τ(T ) = T .

Proof. Since τ(K0) = K0 and all tori are contained in the connected
component K0, we may assume that K is connected. Let k denote the
Lie algebra of K. The correspondence between maximal tori of K and
maximal abelian subalgebras of k (cf. [35, 4.30]) shows that it suffices
to prove the corresponding result for Lie algebras.

We decompose k as

k = kτ ⊕ k−

where kτ is the subalgebra of τ -invariant elements and k− is the (−1)-
eigenspace of τ . Let a ⊆ kτ be a maximal abelian subalgebra of kτ . Let
c(a) = {X ∈ k | [X, Y ] = 0 for all Y ∈ a } be the centralizer of a.

Choose a subspace b ⊂ k− ∩ c(a) which is maximal abelian, i.e.
is maximal with the property [b, b] = 0. We define t = a + b and
we will show that t is a maximal abelian subalgebra of k. Clearly,
[t, t] = [a, a] + [a, b] + [b, b] = 0 shows that t is abelian. Now suppose
that h ⊇ a is a larger abelian subalgebra. Since a ⊆ h, the algebra
h lies in c(a). In particular, h ∩ kτ = a since a is maximal abelian in
kτ . Similarly, h ∩ k− = b since b was maximal abelian in c(a) ∩ k− Let
X ∈ h and write X = X+ + X− with X+ ∈ kτ and X− ∈ k−. For all
Z ∈ a one has

0 = [X,Z] = [X+, Z] + [X−, Z] ∈ kτ ⊕ k−
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and therefore X+ ∈ c(a)∩kτ = a ⊆ h and so X− ∈ k−∩h = b. It follows
that h = a+ b = t. Finally, we note that t is τ -stable, since a and b are
contained in eigenspaces of τ . We conclude by taking T = exp(t). �

Proposition 2.9. Let G be a connected real Lie group with finite
center and let σ, τ be two automorphisms of order two. Suppose that
σ = int(g) ◦ τ for some g ∈ G. If the fixed point groups Gτ and Gσ

are connected, then their maximal compact subgroups have the same
complex rank.

Proof. We first want to reduce to the case where g ∈ K for some
maximal compact subgroup K in G. Let Z ⊆ G be the center; we need
to find a k ∈ K such that kτ(k) ∈ Z (so int(k) ◦ τ has order 2) and
there exists h ∈ G such that hkτ (h)−1 ∈ gZ (so Gσ′ is conjugated by h
to Gσ, where σ′ = int(k) ◦ τ). Let

G̃ = Goτ Z/2.

Let K̃ be a maximal compact subgroup of G̃ containing (1, τ). We

have that K := K̃ ∩G is a maximal compact subgroup of G, as follows
for example from [25, Theorem 14.1.3]. In addition we note that K is
τ -stable, which we will use later in the proof. We now define the group

Ĝ = (G/Z) oτ Z/2.

As gτ(g) = 1 the element (gZ, τ) ∈ Ĝ has order 2. It is contained in

a maximal subgroup of Ĝ, hence (since any compact subgroup of Ĝ
is contained in a conjugate of K/Z o Z/2) there exists h ∈ G so that
(hZ, 1)−1(g, τ)(hZ, 1) ∈ K/Z o Z/2. This means exactly that there
exists k ∈ K such that hkτ(h)−1 ∈ gZ so we are finished with this
reduction.

From now on it suffices to consider K instead of G. We need to
show that Kτ and Kσ have the same rank. The centralizer CK(g) is
a closed subgroup of K. Since τ(g) ∈ g−1Z, the centralizer CK(g) is
stable under τ (and hence also σ). Since g is contained in a maximal
torus of K (e.g. [35, 4.36]), the maximal tori in CK(g) are maximal
in K. By Lemma 2.8 we find a maximal torus T ⊆ CK(g) which is
τ -stable. In fact, g ∈ T . This follows from Theorem 4.50 in [35] using
that g centralizes T , the group K is connected and T is maximal in K.

We can write g = g0h0 for elements g0, h0 ∈ T which satisfy τ(g0) =
g0 and τ(h0) = h−1

0 : this follows immediately from the eigenspace
decomposition of the Lie algebra t with respect to τ , and the fact that
the exponential map exp : t→ T is onto and τ -equivariant. For later
use we further write h0 = h2 for some h with τ(h) = h−1. Observe
that gτ(g) = g2

0 ∈ Z. The automorphism σ′ = int(g0) ◦ τ satisfies
σ ◦ int(h) = int(h) ◦ σ′ and, as above, conjugation by h provides an
isomorphism of the fixed point groups Kσ′ and Kσ. This means, we
may assume that g = g0 and τ(g) = g. In other words, we assume that
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g ∈ Kτ ∩Kσ. Since Kτ and Kσ are connected, the centralizer of any
element contains a maximal torus. Finally, we observe that

CK(g) ∩Kσ = Kτ ∩Kσ = Kτ ∩ CK(g).

This means, that a maximal torus of Kτ ∩Kσ is maximal in both fixed
point groups. �

Proof of Theorem 2.1. Recall that we are in the following situation: Γi
are profinitely commensurable arithmetic subgroups in the Q-points of
two semisimple Q-groups Gi, i = 1, 2. Moreover the congruence kernel
of each Gi is finite. To simplify notation we will assume that Γi are
profinitely isomorphic (since taking profinitely isomorphic finite-index
subgrousp in each does not change the hypotheses).

We start by reducing to the case where Gi have no Q-factor whose
R-points are compact. To do so let Gi = H i×Ki where H i satisfies this
hypothesis and Ki×QR is compact. Let d be the largest of the minimal
dimensions of a Q-rational representation of Gi and let Φi be the set
of all morphisms Γi → GLk(Z/3) for 2 ≤ k ≤ d. Then the subgroups
Γ′i =

⋂
ϕ∈Φi

ker(ϕ) are profinitely isomorphic. By Minkowski’s theorem

they are torsion-free. As Ki(Q)∩Γi is finite we get that Γ′i is isomorphic
to an arithmetic subgroup of H i(Q).

Similarly we can reduce to the case where Gi are simply-connected:

let G̃i be the simply-connected covers of the Gi and let n be the largest

between the minimal indices of a subgroup of Γi lifting to G̃i. Taking Γ′i
to be the intersection of all subgroups in Γi of index at most n we get
two groups Γ′1,Γ

′
2 which are profinitely isomorphic and also isomorphic

to arithmetic subgroups in G1(Q), G2(Q) respectively.
These new Gi satisfy the hypotheses of the Kneser–Platonov theo-

rem [48, Theorem 7.12, p. 427] and it follows that they have strong
approximation. We note that both replacement procedures above
preserve the property of having a finite congruence kernel, so the
we can apply to the Gi the Proposition 2.4 in order to deduce that
Lie(G1)(Qp) ∼= Lie(G2)(Qp) for every prime p. Applying Proposition 2.5
we subsequently conclude that dim(X1) ≡ dim(X2) mod 4.

Proposition 2.7 implies that the group G2 ×Q R is an inner form
of G1 ×Q R. Hence an isomorphism ϕ : G1 ×Q C → G2 ×Q C can
be chosen so that ϕ−1τ2ϕτ

−1
1 = int(g) for some g ∈ G1(C) where τi

denotes the involution on Gi(C) induced by complex conjugation, so
that Gi(C)τi = Gi(R). Setting σ = ϕ−1τ2ϕ, we have σ = int(g) ◦ τ1

and G1(C)σ ∼= G2(R). Since the groups Gi are simply-connected, the
real Lie groups Gi(R) are connected; see [48, Proposition 7.6]. By
Proposition 2.9 we have that rkC(L(K2)⊗ C) = rkC(L(K1)⊗ C), and
as δ(Gi(R)) = rkC(Lie(Gi)(C))− rkC(L(Ki)⊗C) we can conclude that
δ(G1) = δ(G2). �
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3. Conclusion of main results

We prove the main result, Theorem 1.1, and the slightly strengthened
version, Theorem 1.6. Most of what we need for the semisimple case is
contained in Theorem 2.1. In this section we put everything together
and describe the reduction to the semisimple case.

Lemma 3.1. Let G be a semisimple linear algebraic Q-group with finite

congruence kernel and Γ ≤ G(Q) an arithmetic subgroup. Then Γ̂
has no (topologically) finitely generated infinite closed normal solvable
subgroup.

Proof. The desired property of Γ̂ stays unchanged by passing to finite
index subgroups. The group G is an almost direct product of simple
Q-groups. A finite index subgroup of Γ is an arithmetic subgroup
of the product of simple Q-factors whose R-points are non-compact.
Moreover, the latter product has a finite congruence kernel [51, p. 400].
So we may and will assume that G contains no Q-simple (almost) factor
whose R-points are compact. By an observation of Serre, G is simply
connected [57, 1.2 c)]. Hence G satisfies strong approximation [48,
Theorem 7.12 on p. 427]. Since the congruence kernel of G is finite, we

can assume, by passing once more to a finite index subgroup, that Γ̂

is embedded into
∏

pG(Qp). By strong approximation Γ̂ is a compact

open subgroup of
∏

p Up, where each Up < G(Qp) is a compact open
subgroup. Let prp be the projection from the product to Up. Let N be

a finitely generated closed normal solvable subgroup of Γ̂. We have to
show that N is finite.

If prp(N) was infinite for some prime, its Lie subalgebra would be a
non-trivial solvable ideal in L(G(Qp)) contradicting semisimplicity of
G. Thus Fp := prp(N) is finite for every prime p.

We know that Γ is a subset of Up ⊆ G(Qp) and it is is Zariski dense
in G by [43, Proposition (3.2.11) on p. 65]. Since the finite, in particular
algebraic, subgroup Fp of G is normalised by the Zariski dense set Γ,
we conclude that Fp is a normal subgroup of G [44, Proposition 1.38 on
p. 31]. Thus it is contained in the center of G by semisimplicity. Since
there exist embeddings G(Qp) ⊂ G(C) for all p, there is e ∈ N such
that Fp is abelian with exponent e for every prime p. In particular, N
is abelian with exponent e. Since it is finitely generated as a profinite
group, it is finite [53, Theorem 4.3.5 on p. 131]. �

Lemma 3.2. Let G be a linear algebraic Q-group and Γ ≤ G(Q) an
arithmetic subgroup. If Γ has no finitely generated infinite normal
solvable subgroup, then G is reductive and Γ∩D(G)(Q) has finite index
in Γ where D(G) denotes the derived subgroup.

Proof. Upon passing to finite index subgroups ofG and Γ we may assume
G is connected so that due to [8, Théorème 7.15] and [43, Section 0.24,
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p. 21], we have a decomposition

G = Ru(G) o SD(G)

as semidirect product of the unipotent radical Ru(G) and a reductive
Q-subgroup SD(G). The latter group is an almost direct product of
the central Q-torus S and the semisimple derived subgroup D(G).

By [8, Corollaire 7.13.(4)], Γ is commensurable with the group
Λ = Ru(G)(Z) (SD(G))(Z). Using [43, Corollary (3.2.9) on p. 64]
S(Z)D(G)(Z) and (SD(G))(Z) are commensurable. As arithmetic sub-
groups of unipotent groups are Zariski dense [43, Lemma 3.3.3.(iii),
p. 65], it follows that Ru(G)(Z) is an infinite normal nilpotent subgroup
of Λ whenever Ru(G) is not trivial. Moreover, arithmetic groups are
finitely generated. So our assumption on Γ implies that Ru(G) is trivial
and G is reductive. Since the group S(Z) is abelian and normal in Λ
which is commensurable to Γ it has to be finite. Thus Γ ∩ D(G)(Q) is
of finite index in Γ. �

One says that a profinite group is adelic if it isomorphic to a closed

subgroup of some SLm(Ẑ). See [40, p. 220] for a discussion of this
notion. One easily sees that a profinite group G that contains an adelic

subgroup H < SLm(Ẑ) of finite index is itself adelic—via an embedding

into SLm[G:H](Ẑ).

Theorem 3.3 (Platonov-Rapinchuk, Lubotzky). Let G be a simply
connected semisimple linear algebraic Q-group such that each Q-simple
factor of G satisfies the Platonov-Margulis conjecture. Let Λ < G(Q) be

an S-arithmetic subgroup. If Λ̂ is adelic, then G has a finite congruence
kernel.

Proof. Being simply connected, the group G is a product of its Q-simple
factors Gi, hence Λ is commensurable with a product of arithmetic
subgroups Λi ⊆ Gi(Q). If each Gi has a finite congruence kernel then

so has G. Further, Λ̂ is adelic if and only if each Λ̂i is adelic. Hence we
may and will assume that G is Q-simple.

Since Λ̂ is an adelic group, it is boundedly generated by [40, Theo-
rem 12.2 on p. 220]. Finally, by [40, Theorem 12.10 on p. 223], which
depends on the Platonov-Margulis conjecture as a global assumption,
G has a finite congruence kernel. To be more precise, the assumption
in loc. cit. is that G is absolutely simple over a number field. But as a
Q-simple group G is the Weil restriction of an absolutely simple group
H over a number field. So by loc. cit. H has a finite congruence kernel,
hence G has a finite congruence kernel; see the remark at the beginning
of Section 2. �

Proof of Theorems 1.1 and 1.6(i). By passing to finite index subgroups,
we may assume that Γ1 and Γ2 are profinitely isomorphic. As in the
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proof before, we conclude from the congruence subgroup property of

G1 that Γ̂1
∼= Γ̂2 is adelic.

Assume first that Γ1 has a finitely generated infinite normal solvable
subgroup. Its closure is a (topologically) finitely generated infinite

closed normal solvable subgroup of Γ̂1
∼= Γ̂2. The `2-Betti numbers of

Γ1 vanish by a result of Cheeger-Gromov [16], thus χ(Γ1) = 0.
If Γ2 had an infinite normal solvable subgroup, then χ(Γ2) = 0 for

the same reason and the proof would be finished. Otherwise Lemma 3.2
would imply that G2 is reductive and, upon passing to finite index
subgroups, Γ2 is an arithmetic subgroup of the semisimple group D(G2).
We show that this cannot happen, thus concluding the proof in the case
that Γ1 has a finitely generated infinite normal solvable subgroup. The

preimage Λ of Γ2 in D̃(G2) is commensurable with Γ2 by [43, (3.2.9)

Corollary on p. 64]. Hence Λ̂ is adelic because Γ̂1
∼= Γ̂2 is. So D̃(G2) has

a finite congruence kernel by Theorem 3.3 and the assumption regarding

the Platonov-Margulis conjecture in Theorem 1.6. Moreover, Λ̂ contains
(topologically) finitely generated infinite closed normal solvable subgroup

because Γ̂1
∼= Γ̂2 does. According to Lemma 3.1 this is absurd.

Next we assume that Γ1 has no finitely generated closed normal infinite
solvable subgroup. By Lemma 3.2 the group G1 is reductive. Its derived
subgroup D(G1) has a finite congruence kernel as well [50, Lemma 2].
Again by Lemma 3.2 and upon passing to a finite index subgroup of Γ1

we may assume thus that G1 is semisimple and has a finite congruence
kernel. By the argument at the beginning of the proof of Lemma 3.1
we may assume that G1 is simply connected. Hence G1 has strong
approximation [48, Theorem 7.12 on p. 427].

By Lemma 3.1 the group Γ̂1
∼= Γ̂2 has no (topologically) finitely

generated infinite closed normal solvable subgroup. In particular, Γ2 has
no finitely generated infinite normal solvable subgroup. By Lemma 3.2
the group G2 is reductive, and, upon passing to finite index subgroups
and replacing G2 by its derived subgroup, we may assume that Γ2 is an
S-arithmetic subgroup of the semisimple group G2. By passing to finite
index subgroups once more and appealing to [43, (3.2.9) Corollary on
p. 64] and replacing G2 by its simply connected covering, we may assume
that Γ2 is an S-arithmetic subgroup of the simply connected semisimple
group G2, which satisfies strong approximation by [48, Theorem 7.12

on p. 427]. Since Γ̂2 is adelic, G2 has a finite congruence kernel by
Theorem 3.3.

We can then apply Proposition 2.4 to conclude that S contains no
finite places and Theorem 2.1 to obtain that dimX1 = dimX2 mod 4
and δ(G1) = δ(G2). Note that for the proof of Theorem 1.1 we could
just start at this point of the argument.

The semisimple Lie groups Gi possess uniform lattices Λi ≤ Gi and
Γi is measure equivalent to Λi, see [?Furman:measured-group-theory,
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Definition 2.1 and Example 2.2]. Gaboriau’s proportionality princi-

ple [22, Théorème 6.3] implies that b
(2)
n (Γi) = 0 if and only if b

(2)
n (Λi) = 0.

Borel [9] computed that b
(2)
n (Λi) 6= 0 if and only if δ(Gi) = 0 and

dimXi = 2n. As we have χ(Γi) =
∑

n≥0(−1)nb
(2)
n (Γi), it follows that

signχ(Γi) =

{
0 if δ(Gi) > 0

(−1)dim(Xi)/2 if δ(Gi) = 0.

This formula can also be deduced using Harder’s Gauß-Bonnet Theorem
[24] and Hirzebruch’s proportionality principle. Be aware that δ(Gi) = 0
implies that dimXi is even: since every root system has an even number
of roots, it follows that δ(Gi) and dimXi have the same parity. This
completes the proof. �

The proof of the profiniteness of sign ρ(2)(Γ) is mostly parallel to the
proof of profiniteness of signχ(Γ).

Proof of Theorem 1.4 and 1.6(ii). In addition to having vanishing `2-
cohomology, groups of type (F ) with infinite elementary amenable
normal subgroups also have vanishing `2-torsion [41, Theorem 3.113,
p. 172]. Hence as in the previous proof, we may assume that G1 and
G2 are semisimple and S contains no finite places. Further, we obtain
dimX1 = dimX2 mod 4 and δ(G1) = δ(G2). Since rkQG1 = rkQG2 =
0, the arithmetic subgroups Γi are uniform lattices in Gi. Thus using the
equality of topological and analytic `2-torsion for closed manifolds [14],
a result of Olbrich [47, Theorem 1.1.(c)] gives ρ(2)(Γi) 6= 0 if and only if
δ(Gi) = 1. From Olbrich’s formulas in [47, Proposition 1.3], it follows
moreover that if δ(Gi) = 1, then sign ρ(2)(Γi) = (−1)(dimXi−1)/2. This
completes the proof of Theorem 1.4. �

4. The Euler characteristic of arithmetic spin groups

In this final section we explicitly compute the Euler characteristic of
arithmetic spin groups and as a particular case, we obtain the proof of
Theorem 1.2.

Let V be a free Z-module of finite rank d with a symmetric bilinear
form b : V ×V → Z. We will assume that the form b is non-singular, i.e.
for every primitive vector v ∈ V , there is some w ∈ V with b(v, w) = 1.

The following examples will be of interest for us. Let m,n ≥ 0 be
integers and define d = m+n. We consider Vm,n = Zd with the standard
basis e1, . . . , ed. The bilinear form bm,n defined by

bm,n(ei, ej) =


1 if i = j ≤ m

−1 if i = j > m

0 if i 6= j

is non-singular.
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For every commutative ring A, we put VA = A⊗Z V and we write bA
for the A-bilinear extension of b. We get an associated Clifford algebra

C(VA, bA) = TA(VA)/(v2 − bA(v, v))

as a quotient of the tensor algebra TA(VA) of VA. As A-module the
Clifford algebra free and, if e1, . . . , ed is a basis of V , then a basis of
C(VA, bA) is given by the elements

e(J) = ej1 · ej2 · · · ejs
for every subset J = {j1, j2, . . . , js} ⊆ {1, . . . , d} with j1 < j2 < · · · <
js; see [37, IV (1.5.1)]. Here the convention e(∅) = 1 is used. As a
consequence A ⊗Z C(V, b) ∼= C(VA, bA). The Clifford algebra is Z/2Z
graded and decomposes as C(VA, bA) = C0(VA, bA)⊕ C1(VA, bA) where
C0(VA, bA) is spanned by the e(J) for sets J of even cardinality.

We note that there is a unique anti-automorphism ι : C(VA, bA) →
C(VA, bA) with ι(v) = v for all v ∈ VA (of order two). Moreover, the
grading yields an involution x 7→ x′ with x = x0 + x1 and x′ = x0 − x1

for all x0 ∈ C0(VA, bA) and x1 ∈ C1(VA, bA). Composition of these two
maps yields the conjugation x 7→ x = ι(x′) = ι(x)′ on the Clifford
algebra.

Definition 4.1. For a commutative ring A the spin group of b over A
is defined by

Spin(b)(A) = {g ∈ C0(VA, bA) | gg = 1 and gVAg = VA}.

The functor Spin(b) from the category of commutative rings to the
category of groups is an affine group scheme of finite type over Z. In
the following we investigate only spin groups for the forms b = bm,n. In
this case the basis vectors satisfy ei · ej = −ej · ei in the Clifford algebra
for all i 6= j. Hence, we have ι(e(J)) = (−1)|J |(|J |−1)/2e(J) and therefore
the identity

(4.1) e(J) = (−1)|J |(|J |+1)/2e(J)

holds for every subset J ⊆ {1, . . . ,m+ n}.

Definition 4.2. Let m,n > 0 be integers. In Spin(bm,n)(Z) we define
the principal congruence subgroup of level 4 as

Γm,n = ker
(

Spin(bm,n)(Z)→ Spin(bm,n)(Z/4Z)
)
.

Remark 4.3. We decided to work with the principal congruence sub-
group of level 4 for two reasons. First, a classical result of Minkowski
shows that the principal congruence group Γm,n is torsion-free (see
[32, III.2.3] for a formulation in terms of group schemes). Therefore the
work of Borel-Serre implies that the arithmetic group Γm,n is a group
of type F [10, 11.1].

The second reason is that, as we shall see below, the group scheme
Spin(bm,n) is not smooth at the prime 2. Passing to the congruence
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subgroup of level 4 avoids some technicalities in the computation of the
Euler characteristic.

Theorem 4.4. Let d ≥ 3 with d = m + n for integers m,n ≥ 1. Put
` = bd

2
c and k = bm

2
c. If m and n are odd, then χ(Γm,n) = 0.

If at least one of m and n is even, then

χ(Γm,n) = (−1)mn/2R(d)

(
`

k

) `−1∏
j=1

(
(22j − 1) |ζ(1− 2j)|

)
where R(d) is

R(d) =


25`2−4`(2` − 1)|ζ(1− `)| if d ≡ 0 mod 4

25`2−5`+1 |Bψ,`|
`

if d ≡ 2 mod 4

25`2(2d−1 − 1)|ζ(2− d)| if d ≡ 1 mod 2.

Here Bψ,` is the `-th generalized Bernoulli number with respect to the
primitive Dirichlet character ψ modulo 4.

Remark 4.5. For the definition of the generalized Bernoulli numbers
we refer to [46, p.441]. We have Bψ,` = 0 exactly if ` is even, a
case which does not occur in the formula. The generalized Bernoulli
numbers can be computed easily. For convenience we list the first values:

` 1 3 5 7 9

Bψ,` −1
2

3
2

−25
2

427
2

−12465
2

Assuming Theorem 4.4 for the moment, we obtain the proof of
Theorem 1.2 as a special case.

Proof of Theorem 1.2. We consider the groups Γ8,2 ⊆ Spin(8, 2) and
Γ4,6 ⊆ Spin(4, 6). It follows from [3] that these groups are profinitely
isomorphic. We briefly recall the argument. The algebraic groups
Spin(b8,2)×Z Q and Spin(b4,6)×Z Q are simple and simply connected
and the associated real Lie groups Spin(8, 2) = Spin(b8,2)(R) and
Spin(4, 6) = Spin(b4,6)(R) are not compact. Hence both algebraic
groups have strong approximation; see [48, Theorem 7.2]. Moreover,
the quadratic forms b8,2 and b4,6 have Witt index 2 and 4 respectively,
therefore according to [36, 11.3] the congruence kernels of Spin(b8,2)
and Spin(b4,6) are trivial. We deduce that

Γ̂8,2 = K8,2 ×
∏
p odd

Spin(b8,2)(Zp)

and

Γ̂4,6 = K4,6 ×
∏
p odd

Spin(b4,6)(Zp)
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where Km,n = ker
(
Spin(bm,n)(Z2) → Spin(bm,n)(Z/4Z)

)
is the open

compact principal congruence subgroup of level 4. However, the forms
b8,2 and b4,6 are isometric over Zp for every prime number p; see [3,
Cor.3]. Thus the group schemes Spin(b8,2) ×Z Zp and Spin(b4,6) ×Z
Zp are isomorphic for every prime p. In particular, Spin(b8,2)(Zp) ∼=
Spin(b4,6)(Zp) and K8,2

∼= K4,6; we deduce that the profinite completions
are isomorphic.

Now we use Theorem 4.4 to compute the Euler characteristic. We
have d = 10 and ` = 5 and thus we obtain R(d) = 2100 · 5. Since
ζ(−1) = − 1

12
, ζ(−3) = 1

120
, ζ(−5) = − 1

252
and ζ(−7) = 1

240
(c.f.

[20, §1.5]) the product evaluates as

4∏
j=1

(
(22j − 1) |ζ(1− 2j)|

)
=

3 · 15 · 63 · 255

12 · 120 · 252 · 240
=

17

211
.

For m = 8 we have k = 4 and with
(

5
4

)
= 5 we obtain

χ(Γ8,2) = 289 · 52 · 17.

For m = 4 we have k = 2 and since
(

5
2

)
= 10 we have

χ(Γ4,6) = 290 · 52 · 17. �

In order to prove Theorem 4.4 we need some preparation. For
simplicity we will write from now on b for bm,n and we set G = Spin(bm,n).
As a first step, we determine the Lie algebra of G. It follows from the
next lemma that the group scheme G×Z Zp is smooth if p 6= 2, but is
not smooth for p = 2. This problem forces us to be more careful when
dealing with the prime p = 2.

Lemma 4.6. Let A be a commutative ring and let ann(2A) = {a ∈
A | 2a = 0} be the annihilator of 2A. The Lie algebra of G over A is
isomorphic to the Lie subalgebra of C0(VA, bA) given by

Lie(G)(A) ∼=
⊕
|J |=2

Ae(J)⊕
⊕
Jeven
|J |6=2

ann(2A)e(J)

where the sums run over subsets J ⊆ {1, . . . , d} of even cardinality.

Proof. Consider the ring A[ε] with ε2 = 0. Recall that the Lie algebra
is defined as

Lie(G)(A) = {X ∈ C0(VA, bA) | 1 + εX ∈ G(A[ε])}.
Let X ∈ C0(VA, bA). Write

X =
∑
J even

xJe(J)

with coefficients xJ ∈ A and define g = 1+εX. Note that g−1 = 1−εX.
We determine under which conditions X ∈ Lie(G)(A).
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Using (4.1) we see that 1 = gg = 1 + ε(X + X) holds exactly
if xJ ∈ ann(2A) for all J with |J | ≡ 0 mod 4. Moreover, g satisfies
geig

−1 ∈ VA[ε] if and only if Xei−eiX ∈ VA for all i. Let J ⊆ {1, . . . , d}
be a set with an even number of elements. Then e(J)ei − eie(J) = 0 if
i 6∈ J . However, if i ∈ J , then

e(J)ei − eie(J) = e2
i (−1)|{j∈J |j>i}|2e(J \ {i}).

We deduce that Xei − eiX ∈ VA is satisfied precisely when xJ ∈
ann(2A) for all J with |J | > 2. We leave it to the reader to verify
that the Lie algebra structure is indeed induced by the commutator
bracket on C0(VA, bA). For instance, one can use the formula given in
[17, II,§4,4.2]. �

Proof of Theorem 4.4. We first fix some notation. LetG(R) = Spin(m,n)
be the associated real spin group. The Lie algebra L(Spin(m,n)) will be
denoted by g. We identify g with a Lie subalgebra of the Clifford algebra
C(VR, bR); c.f. Lemma 4.6. The vectors e(J) where J runs through the
two-element subsets of {1, . . . , d} are a basis of g. The subalgebra k
spanned by the e(J) where J ⊆ {1, . . . ,m} or J ⊆ {m+ 1, . . . ,m+ n}
is maximal compact. The corresponding maximal compact subgroup
will be denoted by K∞. A Cartan decomposition is given by g = k⊕ p
where p is spanned by the e(J) with J = {i, j} satisfying i ≤ m < j.

Let X = Spin(m,n)/K∞ denote the associated Riemannian symmet-
ric space. Note that dim(X) = mn and dim(G ×Z Q) = d(d − 1)/2
where d = m + n. Since X is simply connected and Γm,n acts freely
and properly on X, the quotient space X/Γm,n is the classifying space
of Γm,n. We will calculate the Euler characteristic of this space. If m
and n are odd, then the Euler-Poincaré measure on Spin(m,n) vanishes
and χ(Γm,n) = 0; see [56] or [33, Thm. 3.1]. From now on we assume
that dim(X) = mn is even.

The linear algebraic group G×ZQ is simple and simply connected [44,
Theorem 24.61 on p. 534]. The associated real Lie group G(R) =
Spin(m,n) is not compact, since we assume m,n ≥ 1. We infer that
G has strong approximation; see [48, Thm. 7.12]. It follows that the
inclusion Spin(m,n)→ G(A) induces a homeomorphism

G(Q)\G(A)/K∞Kf
∼= X/Γm,n

where Kf = K
(2)
m,n ×

∏
p odd G(Zp) is an open compact subgroup with

K(2)
m,n = ker

(
G(Z2)→ G(Z/4Z)

)
.

We will compute the Euler characteristic using the adelic formula
given in Theorem 3.3 in [33]. We choose B to be the symmetric bilinear
form on Lie(G)(Q) for which the vectors e(J) are an orthonormal basis.
The form B is nice in the sense of [33], i.e., the Cartan decomposition
on g = k⊕ p given above is orthogonal. Moreover, B induces a volume
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form volB on G(Qv) at every place of v of Q. Now Theorem 3.3 in [33]
yields

(4.2) χ(X/Γm,n) = (−1)mn/2
|W (gC)| τ(G)

|W (kC)|
volB(Gu)

−1 volB(Kf )
−1

where τ(G) is the Tamagawa number of G and W (gC) and W (kC)
denote the Weyl groups of the complexified Lie algebras of gC and kC
respectively. Moreover, Gu denotes the compact dual group,i.e., the
compact group Spin(d) in our case.

Now we evaluate the terms in the formula step by step. We put
` = bd

2
c and k = bm

2
c and k′ = bn

2
c. Observe that ` = k + k′ since we

excluded the case that both m and n are odd.
In evaluating the volume volB(Kf ) there is, however, a subtle point:

the adelic formula in [33] is based on the assumption that the underlying
group scheme is smooth over Z. This assumption is only used in
evaluating volB(Kf ). As we have seen in 4.6 our group scheme G is not
smooth over Z since there is a problem at the prime 2. In the last step
we shall take care of this problem.

Tamagawa number: τ(G) = 1.
Since d ≥ 2 the spin group G×ZQ is semi-simple and simply connected.
The assertion follows from Kottwitz’ Tamagawa number theorem [39].
For spin groups this was already observed by Tamagawa and Weil.

Orders of Weyl groups: |W (gC)|
|W (kC)| = 2

(
`
k

)
.

If d = 2` is even, then gC is a simple Lie algebra of type D` and kC
is a product of simple Lie algebras of type Dk and Dk′ . The table in
[26, p. 66], yields

|W (gC)|
|W (kC)|

=
2`−1`!

2k−1k! 2k′−1k′!
= 2

(
`

k

)
.

Similarly, if d = 2`+ 1, then gC is a simple Lie algebra of type B` and
the Weyl group has order 2``!; see [26, p. 66]. Now kC is a product of
two simple Lie algebras either of types Bk and Dk′ or of types Dk and
Bk′ . A short calculation yields the formula.

Volume of Gu: volB(Gu) = 2(3d−d2)/2
∏d

j=2 π
j/2Γ(j/2)−1.

The compact dual group Gu is Spin(d). Since Spin(d) is a two-fold
covering of SO(d) we obtain volB(Spin(d)) = 2 volB(SO(d)). However,
we have to relate the induced left invariant Riemann metric B to the
standard left invariant metric γ on SO(d). More precisely, the vectors
vi,j = Ei,j − Ej,i with i < j ≤ d, where Ei,j denotes the elemenary
matrix with entry 1 in position (i, j), form a basis of the Lie algebra
so(d). At the identity γ is the symmetric bilinear form for which (vi,j)i<j
is an orthonormal basis. Using induction one shows that the volume
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with respect to γ is

volγ(SO(d)) =
d∏
j=2

vol(Sj−1) =
d∏
j=2

2
πj/2

Γ(j/2)
.

The tangent map of the projection p : Spin(d)→ SO(d) maps the basis
vector e(I) with I = {i, j} and i < j to 2vi,j, therefore B = 1

4
γ and

volB(SO(d)) = 2−d(d−1)/2 volγ(SO(d)).

Local volume volB(Kf ):
Here we obtain a formula for the local volume

volB(Kf ) = volB(K(2)
m,n)

∏
p odd

volB(G(Zp)).

As in [33] we use the smoothness of G×Z Zp for all odd primes to apply
Weil’s formula volB(G(Zp)) = |G(Fp)|p− dimG. The special p = 2 is

discussed in Lemma 4.7 below, which yields volB(K
(2)
m,n) = 4−d(d−1)/2 =

2−d(d−1). It remains to evaluate the infinite product over all odd primes∏
p odd

|G(Fp)|−1pd(d−1)/2.

Recall that over Fp there are exactly two quadratic forms in d variables.
They are uniquely determined by their discriminant in F×p /(F×p )2; see
[55, Thm. 3.8]. We note that the canonical map G(Fp)→ SO(m,n)(Fp)
has a two-element kernel and, as d ≥ 3, the image has index 2 in
SO(m,n)(Fp), thus |G(Fp)| = |SO(m,n)(Fp)|.

Case 1: d = 2` is even.
Let p be an odd prime number. By assumption m and n are even, hence
the discriminant det(bm,n) = 1. If a quadratic space (V, q) of dimension
d over Fp splits as an orthogonal sum of hyperbolic planes, then we say
that q is of ⊕-type. Otherwise, q has an anisotropic kernel of dimension
2 and we say that q is of 	-type.

Case 1a: d ≡ 0 mod 4.
In this case ` is even, thus det(bm,n) = 1 = (−1)` = det(H⊥`) where H
denotes the hyperbolic plane. We deduce that bm,n is of ⊕-type over

Fp. In this case |G(Fp)| = p`(`−1)(p` − 1)
∏`−1

j=1(p2j − 1); see [4, p. 147].
We obtain∏

p odd

|G(Fp)|−1pd(d−1)/2 =
∏
p odd

(1− p−`)−1

`−1∏
j=1

(1− p−2j)−1

= ζ(`)(1− 2−`)
`−1∏
j=1

ζ(2j)(1− 2−2j),

where ζ is the Riemann zeta function.
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Case 1b: d ≡ 2 mod 4.
In this case ` is odd and as in Case 1a) we see that bm,n is of ⊕-type
exactly if −1 is a square, i.e. p ≡ 1 mod 4. Let ψ denote the unique
primitive Dirichlet character modulo 4, then the order of the spin group
is |G(Fp)| = p`(`−1)(p` − ψ(p))

∏`−1
j=1(p2j − 1); see [4, p. 147]. Using this

we obtain∏
p odd

|G(Fp)|−1pd(d−1)/2 =
∏
p odd

(1− ψ(p)p−`)−1

`−1∏
j=1

(1− p−2j)−1

= L(ψ, `)
`−1∏
j=1

ζ(2j)(1− 2−2j),

where L(ψ, s) is the Dirichlet L-function attached to ψ.

Case 2: d = 2`+ 1 is odd.
In this case the order is |G(Fp)| = p`

2∏`
j=1(p

2j − 1); see [4, p. 147].
Consequently, we obtain the formula∏

p odd

|G(Fp)|−1pd(d−1)/2 =
∏̀
j=1

ζ(2j)(1− 2−2j),

Finally, we multiply the terms and simplify using the functional
equations of the Riemann zeta function and the Dirichlet L-function.
More precisely, the functional equation of the ζ-function [46, VII. (1.6)]
and the well-known identity Γ(1

2
− j)Γ(1

2
+ j) = (−1)jπ imply that

ζ(2j) π−2j/2Γ(
2j

2
) π−(2j+1)/2Γ(

2j + 1

2
) = |ζ(1− 2j)|.

This identity makes it possible to combine one factor of the product
in volB(Kf )

−1 with two consecutive factors of the product occuring in
volB(Gu)

−1. If d is even, there is a remaining term which needs to be
simplified. If d ≡ 0 mod 4, then ζ(`)π−`Γ(`) = 2`−1|ζ(1 − `)| as can
be seen using the functional equation. For the case d ≡ 2 mod 4 the
functional equation of the L-function [46, VII. (2.8)] yields

L(ψ, `)π−`Γ(`) = 2−`|L(ψ, 1− `)|.

Eventually, we use L(ψ, 1− `) = −Bψ,`
`

to express the special L-value
in terms of generalized Bernoulli numbers; see [46, VII. (2.9)]. �

Lemma 4.7. In the notation above, we have volB(K
(2)
m,n) = 4−d(d−1)/2.

Proof. We construct an explicit chart which will allow us to compute
the volume. The exponential series converges on 4C0(VZ2 , b) and defines
an analytic function with values in 1+4C0(VZ2 , b). Let x ∈ 4 Lie(G)(Z2).

Then x = −x commutes with x, thus exp(x)exp(x) = exp(x− x) = 1.

Moreover, we claim that exp(x)vexp(x) ∈ VZ2 for every v ∈ VZ2 . Indeed,
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consider the endomorphism adx of VZ2 defined by adx(v) = xv − vx.
Then a short calculation yields

exp(x) v exp(x) = exp(adx)(v) ∈ VZ2 .

We deduce that the exponential function maps 4 Lie(G)(Z2) to the group

K
(2)
m,n. Similarly, the logarithmic series L(1 + a) =

∑∞
k=1

(−1)k−1

k
ak con-

verges on K
(2)
m,n and with similar arguments one verifies that L(K

(2)
m,n) ⊆

4 Lie(G)(Z2). Since exp and L are inverses of each other, we deduce
that

exp: 4 Lie(G)(Z2)→ K(2)
m,n

is an analytic isomorphism. It is straightforward to check that the

pullback of the volume density on K
(2)
m,n via the exponential map to

4 Lie(G)(Z2) yields the standard volume. As a consequence we obtain

volB(K
(2)
m,n) = 4− dimG. �

Example 4.8. As discussed in the introduction our methods do not
suffice to prove Theorem 1.1 for S-arithmetic groups. The sign of
the Euler characteristic of an arithmetic group depends only on the
archimedean place, whereas for S-arithmetic groups the sign depends
on all places in S. This makes it necessary to understand the subtle
interplay between the places. One class of examples which illustrates this
behavior quite well are special linear groups over quaternion algebras.
Other intruiging examples arise from S-arithmetic spin groups, as we
will see now.

We consider the set S = {2,∞} of places of the field Q and the two
groups Spin(b4,1) and Spin(b2,3). The quadratic forms b4,1 and b2,3 are
equivalent over Zp for every prime p > 2. Indeed, for odd primes b3,0

is isotropic over Zp; see [15, Lemma 1.7, p.41]. Hence b3,0 splits into
a hyperbolic plane and a b0,1. This proves the assertion, since b1,1 is
equivalent to the hyperbolic plane over Zp. We note further that b3,0

is anisotropic over Q2 ([15, Lemma 2.5, p.59]) and we deduce that the
Witt index of b4,1 is 1 over Q2.

The rank of a spin group over a field of characteristic 6= 2 is the Witt
index of the defining quadratic form. We deduce that

rkS Spin(b4,1) = rkR Spin(b4,1) + rkQ2 Spin(b4,1) = 1 + 1 = 2,

rkS Spin(b2,3) = rkR Spin(b2,3) + rkQ2 Spin(b2,3) = 2 + 2 = 4.

In particular, the S-arithmetic groups ∆1 = Spin(b4,1)(Z[1/2]) and
∆2 = Spin(b2,3)(Z[1/2]) have the congruence subgroup property (cf. [31,
Theorem 5]) and are hence profinitely isomorphic.

The symmetric space X1 associated to Spin(4, 1) has dimension 4,
whereas the symmetric space X2 of Spin(2, 3) has dimension 6. In
particular, dimX1 6≡ dimX2 mod 4 and the useful Theorem 2 fails in
the S-arithmetic case. However, the Euler characteristics of ∆1 and ∆2
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have nevertheless the same sign. Using Serre’s description of the Euler-
Poincaré measure [56] we see that the sign of the Euler characteristic of
∆1 is

sign(χ(∆1)) = (−1)dim(X1)/2 · (−1)rkQ(Spin(b4,1)) = −1

and the sign of the Euler characteristic of ∆2 is

sign(χ(∆2)) = (−1)dim(X2)/2 · (−1)rkQ(Spin(b2,3)) = −1.

The problem dimX1 6≡ dimX2 mod 4 is repaired by the change of the
Q2-rank modulo 2, i.e. rkQ2 Spin(b4,1) 6≡ rkQ2 Spin(b2,3) mod 2.
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par A. Douady et L. Hérault.
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