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Sketched learning for image denoising?
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Abstract. The Expected Patch Log-Likelihood algorithm (EPLL) and
its extensions have shown good performances for image denoising. It es-
timates a Gaussian mixture model (GMM) from a training database of
image patches and it uses the GMM as a prior for denoising. In this
work, we adapt the sketching framework to carry out the compressive
estimation of Gaussian mixture models with low rank covariances for im-
age patches. With this method, we estimate models from a compressive
representation of the training data with a learning cost that does not
depend on the number of items in the database. Our method adds an-
other dimension reduction technique (low-rank modeling of covariances)
to the existing sketching methods in order to reduce the dimension of
model parameters and to add flexibility to the modeling. We test our
model on synthetic data and real large-scale data for patch-based image
denoising. We show that we can produce denoising performance close to
the models estimated from the original training database, opening the
way for the study of denoising strategies using huge patch databases.

Keywords: Image denoising · Sketching · Optimisation · Machine learn-
ing.

1 Introduction

In image processing, non-local patch-based models have been producing state-
of-the art results for classic image denoising problems [2, 18, 24]. Patch-based
methods are also beneficial to other image inverse problems such as superreso-
lution [8, 12], inpainting [7] and deblurring [16]. Among these various non-local
methods, the Expected Patch Log-Likelihood algorithm (EPLL) [26] shows very
good restoration performances.

The EPLL method uses Gaussian mixture models (GMMs) as a prior model
for natural images. In order to maximize the redundancy of structural infor-
mation to estimate the best possible model parameter, we would want to use
a very large training database. However, estimating parameters from a large
database can be impractical for classic parameter estimation techniques such as
Expectation-Maximization (EM), as their memory consumption and computa-
tion time depend on the database size.
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Recent works [4, 13, 17] propose a scalable technique to learn model parame-
ters from a compressive representation: a sketch of the training data collection.
It leverages ideas from compressive sensing [11] and streaming algorithms [6] to
compress a large database into a size-fixed representation. Thus, space and time
complexity of the algorithm for the estimation of the model no longer depends
on the original database size, but only on the size of compressed data and on
the dimensionality of the model. Sketching has been used successfully for clus-
tering [4] and GMM estimation with diagonal covariances [17] using the greedy
Continuous Orthogonal Matching Pursuit (COMP) algorithm. Sketching pro-
duces accurate estimates while requiring fewer memory space and calculations.
Sketching also has the advantage to be suitable for distributed computing.

Estimating GMMs on image patches is a complex large-scale learning task.
The objective of this paper is to explore the sketching method in this context.
In this work, we estimate GMMs priors with non-diagonal covariances which is
an extension of previous works. Moreover, for a denoising task it has been shown
that the rank of covariance matrices can be reduced [20]. We implement a model
using low-rank modeling for GMMs covariances in order to manage the modeling
of the image patches in the most possible flexible way.

Contributions: The main contributions of this work are the following.

– We describe how we can learn a GMM prior from a compressed database of
patches in the context of image denoising.

– We extend the Continuous Orthogonal Matching Pursuit algorithm to be
able to estimate GMM models with non-diagonal and possibly low rank
covariances.

– We demonstrate the potential of the approach on real large-scale data (over
4 millions training samples) for the task of patch-based image denoising.
We show that we can obtain denoising performances with models trained
with the compressed database close to the performance of the denoising
with the model obtained with the classical EM algorithm. To the best of our
knowledge, this is also the first time that the sketching framework has been
applied for such high dimensional GMM (GMM in dimension 25).

Outline: The article is organized as follows. In Section 2, we recall the EPLL
framework for image denoising. In Section 3, we describe how sketching can be
implemented within the specific setting of patch based denoising and we give an
implementation with a low-rank technique for GMM estimation. In Section 4,
we provide experimental results both on synthetic data and real images showing
that our method has denoising performances close to the EM framework. Finally,
we discuss future works in the conclusion.

2 Model estimation and denoising with EPLL

2.1 Denoising with EPLL

Expected Patch Log-Likelihood (EPLL) algorithm is a patch-based image restora-
tion algorithm introduced by Zoran and Weiss [26]. It uses priors learned on
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patches extracted from a database of clean images. We consider the problem
of recovering an image u ∈ RN with N the number of pixels from a noisy ver-
sion v = u + w, where w ∼ N (0, σ2IN ) is a white Gaussian noise component.
The EPLL framework restores an image u by using the following maximum a
posteriori (MAP) estimation:

u∗ = arg min
u∈RN

P

2σ2
‖u− v‖2 −

N∑
i=1

log(p(Piu)) (1)

where Pi : RN −→ RP is the linear operator that extracts a patch with P pix-
els centered at the position i and p(.) is the density of the prior probability
distribution of the patches.

Problem (1) is a large non-convex optimization problem as p(.) is chosen as
the density of a GMM prior. It can be extended to generalized Gaussian mixture
model (GGMM) [10] for a better performance. In the following we keep the
GMM model to simplify the description of the model and we leave the extension
to GGMM to future work. In the case of GMM, the denoising can be performed
with a simple patch by patch Wiener filter with the denoising parameter β.

û = (I +
βσ2

P

N∑
i=1

PTi Pi)−1(v +
βσ2

P

N∑
i=1

PTi x̂i) (2)

where the

x̂i = (Σk∗i +
1

β
IP )−1Σk∗i x̃i (3)

are denoised patches estimated from noisy patches x̃i which are attributed to
a Gaussian prior k∗i (see e.g.[10]). Note that these operations are applied a few
times with increasing β for best denoising performance.

2.2 EM

A classical technique to estimate the GMM is the Expectation-Maximization
(EM) algorithm. It is an iterative algorithm to find estimates of GMM parame-
ters, which carries out at each iteration two steps: the expectation step (E-Step),
which creates a function for the expectation of the log-likelihood evaluated using
the current estimate for the parameters; and the maximization step (M-Step),
which computes parameters maximizing the expected log-likelihood found on the
E-Step. These estimated parameters are then used to determine the distribution
of the latent variables in the next E-Step.

The EM algorithm’s average time complexity is O(K2n) when estimating a
K-components model on a database of n elements. Learning parameters using
EM technique face computational issues linked to the size of the data and the
number of parameters to estimate, which would make the use of (very) large
image patches databases impractical. Moreover, the EM algorithm is not guar-
anteed to lead us to the global optimum, it typically converges to a local one [1,
25]. It may be arbitrarily poor in high dimensions [9].
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3 Compressive GMM learning from large image patches
database with sketches

We begin by recalling the sketching method, then we show how to extend pre-
vious works to manage the case of GMM prior on image patches.

3.1 Compressive mixture estimation

In the sketching framework [14, 15], a measure f ∈ D (D is the set of probability
measures over Rd) is encoded with a linear sketching operator S : D −→ Cm into
a compressed representation z ∈ Rm:

z = Sf (4)

We call z a sketch of f . In practice we only have access to the empirical prob-
ability distribution y = 1

n

∑n
i=1 δxi where χ = {x1, ..., xn} ⊂ Rd is the training

database (δxi
is a unit mass at xi), which we compress into a sketched database

ỹ = 1
nS
∑n
i=1 δxi

. The goal of the sketching framework is to recover f from ỹ.
For some finite K ∈ N∗, we define a K-sparse model in D with the parameters

Θ = {θ1, ..., θK} and the weights α = {α1, ..., αK}:

fΘ,α =

K∑
k=1

αkfθk (5)

where fθk ∈ D are measures parametrized by θk, αk ∈ R+ for all components

and
∑K
k=1 αk = 1. The vector z can then be expressed as

z = SfΘ,α =

K∑
k=1

αkSfθk (6)

The objective of sketched learning algorithms is to minimize the energy be-
tween the compressed database and the sketch of the estimation. It corresponds
to the traditional parametric optimization Generalized Method of Moments. We
estimate the parameters with the following minimization

(Θ̂, α̂) = arg min
Θ∈RK

α∈RK ,αk>0,
∑K

k=1 αk=1

‖SfΘ,α − ỹ‖22, (7)

i.e. our aim is to find the probability distribution (the parameters α,Θ) whose
sketch is closest to the empirical sketch ỹ. It was shown in [15] that we can
theoretically guarantee the success of this estimation with a condition on the
sketch size. In particular, sketching uses the “lower restricted isometry property”
(LRIP) for the recovery guarantee. This property, is verified, for GMM with
sufficiently separated means and random Fourier sketching with high probability
as long as m ≥ O(k2dpolylog(k, d)), i.e. when the size of the sketch essentially
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depends on the number of parameters k, d (empirical results seem to indicate that
for Γ the number of parameters, a database size of the order of Γ is sufficient).
The excess risk of the GMM learning task is then controlled by the sum of
an empirical error term and a modeling error term. This guarantees that the
estimated GMM approximates well the distribution of the data.

In our case, the sketched GMM learning problem reduces to the estimation
of the sum of k zero-mean Gaussians with covariances Θ = (Σk)Kk=1, i.e fΘ,α =∑K
k=1 αkgΣk

where gΣ is the zero mean Gaussian measure with covariance Σ.
The mean is not needed in the denoising process and it is removed from the
patches before sketching and denoising. In this context, the notion of separation
used to prove guarantees in [15] does not hold. We still show empirically that
the sketching process is successful without this separation assumption.

Examples on synthetic data illustrate that a different notion of separation
might be more suitable, which opens interesting new theoretical questions.

3.2 Design of sketching operator: randomly sampling the
characteristic function

In [17], the sketch is a sampling of the characteristic function (i.e the Fourier
transform of the probability distribution f). The characteristic function ψf of a
distribution f is defined as:

ψf (ω) =

∫
Rd

e−iω
T xdf(x) ∀ω ∈ Rd (8)

The sketching operator is therefore expressed as:

Sf =
1√
m

[ψ(ω1), ..., ψ(ωm)]T (9)

where Ω = (ω1, ..., ωm) is a set of well chosen frequencies.
In the context of images, given a training set of n centered patches χ =

{x1, ..., xn} ⊂ RP , we define the empirical characteristic function with ψ̃(w) =
1
n

∑n
i=1 e

−iωT xi . Thus the empirical sketch is:

ỹ =
1√
m

[ψ̃(ω1), ..., ψ̃(ωm)]T (10)

In other words, a sample of the sketched database is a frequency component
calculated by averaging over patches

ψ̃(ωl) =
1

n

n∑
i=1

e−iω
T
l xi (11)

Thanks to the properties of the Fourier transform of Gaussians, the sketch of a
single zero-mean Gaussian component gΣ is

(S(gΣ))l = e−
1
2ω

T
l Σωl . (12)
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The choice of frequencies is essential to the success of sketching. Theoretical
estimation results are given with random Gaussian frequencies. In practice we
generate a Gaussian profile of the amplitude of the frequency using a small
sample of the database and we generate randomly the angle of the frequency [17].

3.3 Extension to low rank covariances

Bayesian MAP theory permits to use degenerate covariances as a denoising prior.
As we perform Wiener filtering, this is useful as we can reduce the number of
parameters by just truncating the component of noisy patches supported on the
lowest eigenvalues of Σ. A Gaussian covariance Σk is low-rank if there exists a
rank r such that we can write Σk = XkX

T
k with Xk a P × r matrix. Our goal is

to estimate covariances Θ∗ close to the optimal Θ̂. Remark that:

‖SfΘ∗ − SfΘ̂‖
2 = ‖

K∑
k=1

αkS(fΣ∗
k
− fΣ̂k

)‖2

=

m∑
l=1

e2l

(13)

where

el :=

∣∣∣∣∣
K∑
k=1

αk(e−
1
2ω

T
l Σ

∗
kωl − e− 1

2ω
T
l Σ̂kωl)

∣∣∣∣∣ (14)

We have, using the Taylor expansion of the exponential,∣∣∣e− 1
2ω

T
l Σ

∗
kωl − e− 1

2ω
T
l Σ̂kωl

∣∣∣ =
∣∣∣e− 1

2ω
T
l Σ

∗
kωl

(
1− e− 1

2ω
T
l (Σ̂k−Σ∗

k)ωl

)∣∣∣
= e−

1
2ω

T
l Σ

∗
kωlO(‖Σ̂k −Σ∗k‖F )

≤ CΘ,Ω‖Σ∗k − Σ̂k‖F .

(15)

Close to the minimizer, the energy (7) is close to the weighted sum of the Frobe-
nius distance between covariance matrices.

Following classical ideas in low-rank matrix estimation we parametrize Σk
by its factors Xk: Σk = XkX

T
k . This is often referred as the Burer-Monteiro

method [3, 5]. Assume that

X∗k ∈ arg min
X∈RP×r

‖XkX
T
k −Σk‖2F . (16)

A classical result is that X∗kX
∗,T
k = UkΛkU

T
k with Λk = diag(λ1, ..., λP ) and

λ1 ≥ λ2... ≥ λP are the ordered eigenvalues of Σk (Eckart and Young theo-
rem). Hence, minimizing the Frobenius distance with a reduced rank recovers
the largest components of Σk. Using this qualitative argument, we approximate
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minimization (7) by

(X̂, α̂) = arg min
(X1,...,Xk)∈RP×r

α∈RK ,αk>0,
∑K

k=1 αk=1

1√
m

m∑
l=1

∣∣∣∣∣ 1n
n∑
i=1

e−iω
T
l xi −

K∑
k=1

αke
− 1

2ω
T
l XkX

T
k ωl

∣∣∣∣∣
2

(17)

where X̂ = (X̂1, ..., X̂K) is the collection of factorized rank reduced covariances.

3.4 An algorithm for patch prior learning from sketch : LR-COMP
(Low Rank Continuous Orthogonal Matching Pursuit)

Problem (17) can be solved approximately using the greedy Continuous Orthog-
onal Matching Pursuit (COMP) algorithm (also called CL-OMP)[17]. We adapt
this algorithm in the GMMs context with our low-rank approximation (Alg. 1).

Algorithm 1: LR-COMP: Compressive GMM estimation with low-
rank covariances.
Data: Empirical sketch ỹ, sketching operator S, sparsity K, number of

iterations T ≥ K
Result: Support Θ, weights α
r̂ ←− ỹ; Θ ←− X;
for t = 1 to T do

Step 1: Find a X such that: X ←− arg maxX Re
〈
SfX
‖SfX‖2

, r̂
〉
2
, init = rand;

Step 2: X ←− Θ ∪ {X};
Step 3: Enforce sparsity by Hard Thresholding if needed;
if |Θ| > K then

η ←− arg minη≥0

∥∥∥ỹ −∑|Θ|k=1 ηk
SfXk
‖SfXk

‖2

∥∥∥2
2
;

Select K largest entries ηi1 , ..., ηiK ;
Reduce the support Θ ←− {Xi1 , ..., XiK};

Step 4: Project to find weights;

α←− arg minα≥0

∥∥∥ỹ −∑|Θ|k=1 αkSfXk

∥∥∥2
2
;

Step 5: Perform a gradient descent initialized with current parameters;

Θ,α←− arg minΘ,α≥0

∥∥∥ỹ −∑|Θ|k=1 αkSfXk

∥∥∥2
2
, init = (Θ,α);

Step 6: Update residual: r̂ ←− ỹ −
∑|Θ|
k=1 αkSfXk ;

Normalize α such that
∑K
k=1 αk = 1.

The main tool for the implementation of Alg. 1 is to compute the gradients
necessary to perform the gradients in Steps 1, 4 and 5. We define the vector
v(X) = [Re(SfX); Im(SfX)] ∈ R2m with

v(X) =

[
[Re( 1√

m
ψX(ωl))]l=1,...,m

[Im( 1√
m
ψX(ωl))]l=1,...,m

]
=

[
[ 1√
m
e−

1
2 (ω

T
l XX

Tωl)]l=1,...,m

0

]
(18)



8 H. Shi et al.

To calculate the gradient, we only need to be able to calculate, for a given vector
y ∈ R2m, the scalar products

〈∇Xv(X), y〉 = −B(v(X)1:m∗̇y1:m) (19)

where B ∈MJ,m(R), J = P × r is a block matrix with

B(j, :) = X(:, q)TW ∗̇W (s, :), ∀j = (q − 1)P + s (20)

where W = [ω1, ..., ωm] ∈ MP,m(R) the frequency matrix and ∗̇ the multiplica-
tion element by element.

4 Results and analysis

We first show experimental results on synthetic data in Section 4.1. Then we
provide results of image denoising with models learned from sketch, and we
compare them with models estimated by the EM algorithm in Section 4.2.

4.1 Experiments with synthetic data

We generate data with the following settings: n = 100000 items, dimension d = 4,
the sparsity level of GMM K = 8. The parameters of sketching are: the size of
sketch m = 500, the rank r = 2. We compare the estimation from sketch with
the estimation of the GMM with EM algorithm. Fig. 1 shows the reconstruction
(projected on the first 2 dimensions). We see that we are able to estimate an ac-
curate GMM model from the sketch of the data. This figure also illustrates that,
although Gaussians have zero mean, they have an angular separation instead
of a separation of the means (used to give estimation guarantees in [14]). This
opens the question of establishing recovery guarantees for zero mean Gaussians
using a different notion of separation.

Fig. 1. Modeling on synthetic data with sketching(left) and EM(right)

4.2 Results with real images

We extract randomly 4× 106 patches of size P = 5× 5 from the training images
of Berkeley Segmentation Database (BSDS) [19]. We show the result of denoising
with a prior model estimated with EM (with covariances truncated to have rank
r) and with LR-COMP. We use K = 20 to demonstrate the capability of our
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algorithm. Our experiments show that we cannot reduce the rank too much
to keep good denoising performance. Setting a rank r = 20 shows no loss of
performance (for both EM and LR-COMP). We setm = 40K(P×r+1) ≈ 4×105,
i.e the compressed database is 10 times smaller than the original patch database.
We show results for noise levels σ2 = 15 (Fig. 2) and σ2 = 20 (Fig. 3). We observe
that we obtain similar denoising performances for most images, the worst case
being with the “barbara” image which has high contrast and high frequency
content. Better results are obtained for the satellite image.

5 Conclusion

In this work, we provide an implementation of the sketching method to estimate
a prior model from a compressed database for image denoising. It is shown that
a high-dimensional Gaussian mixture model can be learned from a compressed
database of patches, and then used for patch-based denoising. We achieve per-
formance close to state-of-the art model based methods.

This work opens several perspectives. We saw that performance is degraded
for a particular type of image. One possible explanation is that the sketching (i.e.
the choice of frequencies) “missed” these particular images as we used frequencies
from previous sketching literature. Adapting this choice to the case of zero mean
GMM is still an open question (theoretically and practically). We demonstrated
the feasibility of image denoising with sketches. Even if its complexity does not
depend on the size of the original database, the LR-COMP algorithm still has
computational issues. A possible direction is to extend algorithms proposed in
[21, 22] for the estimation of sums of Diracs to the case of GMM with potential
performance guarantees [23].
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ing of mixture models. Information and Inference: A Journal of the IMA 7(3),
447–508 (2018)

18. Lebrun, M., Buades, A., Morel, J.M.: A nonlocal bayesian image denoising algo-
rithm. SIAM Journal on Imaging Sciences 6(3), 1665–1688 (2013)

19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proceedings 8th International Conference on Computer
Vision. ICCV 2001. vol. 2, pp. 416–423. IEEE (2001)

20. Parameswaran, S., Deledalle, C.A., Denis, L., Nguyen, T.Q.: Accelerating gmm-
based patch priors for image restoration: Three ingredients for a 100× speed-up.
IEEE Transactions on Image Processing 28(2), 687–698 (2018)

21. Traonmilin, Y., Aujol, J.F.: The basins of attraction of the global minimizers of
the non-convex sparse spike estimation problem. Inverse Problems 36(4), 045003
(2020)

22. Traonmilin, Y., Aujol, J.F., Leclaire, A.: Projected gradient descent for non-convex
sparse spike estimation. IEEE Signal Processing Letters 27, 1110–1114 (2020)

23. Traonmilin, Y., Aujol, J.F., Leclaire, A.: The basins of attraction of the global
minimizers of non-convex inverse problems with low-dimensional models in infinite
dimension (2020)

24. Wang, Y.Q., Morel, J.M.: Sure guided gaussian mixture image denoising. SIAM
Journal on Imaging Sciences 6(2), 999–1034 (2013)

25. Wu, C.J.: On the convergence properties of the em algorithm. The Annals of statis-
tics pp. 95–103 (1983)

26. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image
restoration. In: 2011 International Conference on Computer Vision. pp. 479–486.
IEEE (2011)



Sketched learning for image denoising 11

24.6/.439 32.8/.848 32.8/.851

24.6/.534 30.9/.831 30.8/.828

24.6/.555 30.5/.822 30.3/.819

24.6/.490 30.9/.865 30.4/.865

24.6/.578 29.9/0.864 29.2/.856

24.6/.564 29.7/.895 29.5/896

24.6/.568 29.7/.788 30.0/787

(a) (b) (c) (d)

Fig. 2. Denoising results: (a) original, (b) noisy images with σ2 = 15, (c) results
with truncated EM model, (d) results LR-COMP model with PSNR/SSIM. Similar
denoising performances are obtained with LR-COMP with a compressed database ten
times smaller
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22.1/.339 31.1/.804 31.3/.813

22.1/.423 29.3/.784 29.3/.784

22.1/448 29.0/.777 28.9/.778
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Fig. 3. Denoising results: (a) original, (b) noisy images with σ2 = 20, (c) results
with truncated EM model, (d) results LR-COMP model with PSNR/SSIM. Similar
denoising performances are obtained with LR-COMP with a compressed database ten
times smaller.


