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Abstract13

We study the partial duplication dynamic graph model, introduced by Bhan et al. in [3] in which a14

newly arrived node selects randomly an existing node and connects with probability p to its neighbors.15

Such a dynamic network is widely considered to be a good model for various biological networks16

such as protein-protein interaction networks. This model is discussed in numerous publications17

with only a few recent rigorous results, especially for the degree distribution. Recently Jordan [9]18

proved that for 0 < p < 1
e
the degree distribution of the connected component is stationary with19

approximately a power law. In this paper we rigorously prove that the tail is indeed a true power law,20

that is, we show that the degree of a randomly selected node in the connected component decays21

like C/kβ where C an explicit constant and β 6= 2 is a non-trivial solution of pβ−2 + β − 3 = 0. This22

holds regardless of the structure of the initial graph, as long as it is connected and has at least23

two vertices. To establish this finding we apply analytic combinatorics tools, in particular Mellin24

transform and singularity analysis.25
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1 Introduction34

Recent years have seen a growing interest in dynamic graph models [10]. These models are35

often claimed to describe well various real-world structures, such as social networks, citation36

networks and various biological data. For example, protein-protein are widely viewed as37

driven by an internal evolution mechanism based on duplication and mutation. In this case,38

new nodes are added to the network as copies of existing nodes together with some random39

divergence. It has been claimed that graphs generated from these models exhibit many40

properties characteristic for real-world networks such as power-law degree distribution, the41

large clustering coefficient, and a large amount of symmetry [4]. However, some of these42

results turned out not to be correct; in particular, the power-law degree distribution was43

disproved in [7]. In this paper we focus on the tail distribution of the connected component44

of such networks and show rigorously the existence of a power law improving and making45

more precise recent result of Jordan [9].46

The model analyzed in this paper is known as the partial (pure) duplication model, in47

which a new node selects an existing node and connects to its neighbors with probability p.48

More precisely, the model is defined formally as follows: let 0 < p ≤ 1 be the only parameter49

of the model. In discrete steps repeat the following procedure: first, choose a single vertex u50

uniformly at random. Then, add a new vertex v and for all vertices w such that uw is an51

edge (i.e., w is a neighbor of u) flip a coin independently at random (heads with probability52

p, tails with 1 − p) and add vw edge if and only if we got heads. The partial duplication53

model was defined by Bhan et al. in [3] and then was further studied in [1, 4, 7, 9, 8].54

The case when p = 1, also called the full duplication model, was analyzed recently in the55

context of graph compression in [13]. In particular, it was formally proved that the expected56

logarithm of the number of automorphisms (symmetries) for such graphs on n vertices is57

asymptotically Θ(n logn), which in turn lead us to an asymptotically efficient compression58

algorithm for such case.59

The partial duplication case 0 < p < 1 was given much more attention, however, with very60

few rigorous results. It was first and foremost analyzed to find the stationary distribution of61

the degree, that is,62

fk = lim
n→∞

fk(n) = lim
n→∞

Fk(n)
n

= lim
n→∞

Pr[deg(Un) = k],63
64

where fk(n) and Fk(n) are, respectively, the average fraction and the average number of65

vertices of degree k in a graph generated by this model and Un is a random variable denoting66

a vertex chosen uniformly at random from a graph on n vertices generated from the partial67

duplication model. Hermann and Pfaffelhuber in [7] proved that this process (fk(n))∞n=n0
68

converges always to the limit f0 = 1 and fk = 0 for all other k when p ≤ p∗ = 0.57 . . . (that69

is, p∗ being the unique root of pep = 1), regardless of the initial graph. They have also shown70

that if p > p∗ there exists only a defective distribution of the degrees with f0 = c < 1 for71

a certain constant c (depending on the initial graph) and fk = 0 for all other k. For the72

average degree distribution see also [14].73

This result, although it refuted the power law behavior of the whole graph claimed by74

[4, 2], also showed that asymptotically almost all vertices are isolated. This has still left the75

possibility that it might be the case that a graph generated by the partial duplication model76

with the isolated vertices removed exhibits such property. Note that by a simple inductive77

argument it is obvious that if a vertex is isolated at the time of its insertion, then it stays78

isolated forever, and if it was connected to other vertex, then it remains connected, so if the79

inital graph is connected, then there can only be one component containing all non-isolated80
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vertices. This was exactly the route pursued by Jordan in [9]. Using probabilistic tools such81

as the quasi-stationary distribution of a certain continuous time Markov chain embedding82

of the original discrete graph growth process, Jordan was able to prove that for 0 < p < 1
e83

there is an approximate power law behavior in the pure duplication graphs. More precisely,84

let us define for a vertex (denoted by Un) picked uniformly at random from a graph on n85

vertices generated from the duplication model the following conditional probability86

ak(n) = Pr[deg(Un) = k|deg(Un) 6= 0] = fk(n)∑∞
i=1 fi(n)

= fk(n)
1− f0(n) . (1)87

88

Jordan proved that ak(n) → ak as n → ∞ as long as the underlying process is positive89

recurrent which holds for p < 1
e [9]. Moreover, Jordan showed that for β(p) 6= 2 being the90

solution of pβ−2 + β − 3 = 0 the tail behavior of ak is approximately a power law in the91

sense that it is lighter than any heavier tailed power law (with any index β(p) + ε, ε > 0)92

and heavier than any lighter tailed power law (with index β(p)− ε, ε > 0). This is of vital93

interest in this area since β(p) ∈ (2, 3), which is exactly the range of the power law exponents94

for various real-world biological graphs, such as protein-protein newtorks [4].95

It is worth noting that it partially confirmed the non-rigorous result by Ispolatov et al.96

from [8], who claimed that the connected component exhibits a power-law distribution both97

for 0 < p < 1
e (with index β(p) as above), and for 1

e ≤ p <
1
2 (with index 2). Furthermore,98

by the virtue of (1) observe, following [9, 7], that f0(n) = 1− o(1) and fk(n) = o(1) for k ≥ 199

which begs the question of the asymptotic behavior of fk(n) for large k and n. Certainly100

fk(n) does not grow linearly with n as suggested in some papers (cf. [2]). We conjecture101

that fk(n) = O(n−α(p)k−β(p)) for some 1 < α(p) < 2 and β(p) > 2, but this problem is left102

for future research.103

In this paper we finally establish the precise behavior of the tail of the degree distribution104

for pure duplication model for 0 < p < 1
e completing the work of Jordan [9]. More precisely,105

we use tools of analytic combinatorics such as the Mellin transform and singularity analysis106

to prove in Theorem 2 that the tail of a node degree in the connect component of the partial107

duplication model decays as C/kβ(p) where C an explicit constant.108

The paper is organized as follows: in Section 2 we present a formal definition of the model,109

introduce the tracked vertex approach, and the quasi-stationary distribution as defined by110

Jordan in [9]. In Section 3 we state and establish our main results using Mellin transform111

and singularity analysis. In concluding Section 4 we indicate a possible extension of our112

findings and point to some further work.113

2 The model and Jordan’s approach114

We follow the standard graph-theoretical notation, e.g., from [5]. We consider only simple115

graphs, i.e., graphs without loops or parallel edges.116

Let us recall first the definition of the pure duplication model. Let Gn0 = (Vn0 , En0) be117

an initial graph with a set of vertices Vn0 and a set of edges En0 , such that |Vn0 | = n0 ≥ 2.118

Throughout the paper, let us assume that Gn0 is fixed and connected. For n = n0, n0 + 1, . . .119

we build Gn+1 = (Vn+1, En+1) from Gn = (Vn, En) in the following way:120

1. pick a vertex u ∈ Vn uniformly at random,121

2. create a new node vn+1 and let Vn+1 = Vn ∪ {vn+1}, En+1 = En,122

3. for every w ∈ Vn such that uw ∈ En add edge vn+1w to En+1 independently at random123

with probability p.124

We call the process G = (Gn)∞n=n0
the partial duplication graph.125

AofA 2020



7:4 Power-Law Degree Distribution. . .

Jordan in [9] introduced the continuous-time embedding of this process, defined as126

following: start at time t = 0 with a fixed connected graph Γ0 = Gn0 and let (Γt)t≥0 be127

a continuous time Markov chain on graphs, where each vertex is duplicated independently128

at times following a Poisson process of rate 1, with the rules for duplication as in the pure129

duplication model.130

Jordan also defined the so called vertex tracking approach: we pick a vertex from Γ0131

uniformly at random and then define the continuous-time process (Vt)t≥0 in the following132

way: at time t we jump to a vertex v if and only if the vertex Vt− was duplicated and its133

„child” is v. He proved that for any k ≥ 1 and for another continuous-time process (Ut)t≥0134

being defined as a uniform choice of vertices over Γt we have135

lim
t→∞

Pr[deg(Ut) = k]
Pr[deg(Vt) = k] = 1.136

137

Therefore, asymptotically the behavior of a tracked vertex approximates the behavior of a138

random vertex in Γt when t→∞, and therefore in Gn when n→∞.139

The tracked vertex approach allowed Jordan to construct the generatorQ of the continuous-140

time Markov chain (deg(Vt))t≥0, defined over the state space N0, with the following transitions141

qj,k =
(
j

k

)
pk(1− p)j−k for 0 ≤ k ≤ j − 1,142

qj,j = −jp−
(
1− pj

)
,143

qj,j+1 = jp.144
145

Then Jordan proceeded to the analysis of the quasi-stationary distribution (ak)∞k=1, i.e.,146

the left eigenvector of a subset of Q, defined as before. We relate this distribution to the147

eigenvalue −λ (see [11] for details of this approach) being the solution of the equation148

AQ = −λQ, where A = (ak)∞k=1. This leads us to the following equation:149

∞∑
j=k

aj

(
j

k

)
pk(1− p)j−k = −(k − 1)pak−1 − (λ− kp− 1) ak (2)150

151

for k = 1, 2, 3, . . ..152

Using (2) and the generating function A(z) =
∑∞
k=0 akz

k Jordan found the following153

differential-functional equation154

A(pz + 1− p) = (1− λ)A(z) + pz(1− z)A′(z) +A(1− p). (3)155
156

Notice that the above equation implies that A(0) = 0. Since it is a sum of limits for157

probability distributions, by Fatou’s lemma |A(z)| ≤ 1 for |z| ≤ 1. By letting z → 1− in (3)158

and assuming finite A′(1) we get A(1− p) = λA(1).159

Furthermore with the identity160

A′(z) = A(pz + 1− p)−A(1)
pz(1− z) − (1− λ)A(z)−A(1)

pz(1− z) (4)161

and letting z → 1− Jordan found162

A′(1) = −A′(1) + 1− λ
p

A′(1),163

164

namely, if A′(1) is non-zero and finite, then λ = 1− 2p. Finally, using the assumptions that165

the distribution (ak)∞k=0 is non-degenerate (i.e.,
∑∞
k=0 ak = A(1) = 1) and that the mean166
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degree A′(1) is finite, Jordan found that for 0 < p < 1
e the quasi-stationary distribution ak167

does not have q-th moment for pq−2 + q − 3 < 0.168

In summary Jordan proved the following result.169

I Theorem 1 ([9, Theorem 2.1(3)]). Assume 0 < p < 1
e . Let β(p) > 2 be the solution of170

pβ−2 + β − 3 = 0. Then the tail behaviour of (ak)∞k=0 has a power law of index β(p), in the171

sense that as k →∞,172

lim
k→∞

ak
kq

= 0 for q < β(p),173

lim
k→∞

ak
kq

=∞ for q > β(p).174
175

In the next section we present our refinement of this theorem and provide precise176

asymptotics for (ak)∞k=0.177

3 Main results178

In this section we state and prove the main result of our paper that is a refinement of179

Theorem 1.180

I Theorem 2. If 0 < p < 1
e , then the stationary distribution (ak)∞k=0 of the pure duplication181

model has the following asymptotic tail behavior as k →∞:182

ak
kβ(p) = 1

E(1)− E(∞) ·
p−

1
2 (β(p)− 3

2 )2Γ(β(p)− 2)
D(β(p)− 2)(p−β(p)+2 + ln(p))Γ(−β(p) + 1)

(
1 +O

(
1
k

))
(5)183

184

where β(p) > 2 is the non-trivial solution of pβ−2 + β − 3 = 0, Γ(s) is the Euler gamma185

function and186

D(s) =
∞∏
i=0

(
1 + p1+i−s(s− i− 2)

)
, (6)187

E(1)− E(∞) = 1
2πi

∫
Re(s)=c

p−
1
2 (s− 1

2 )2 Γ(s)
D(s) ds, for c ∈ (0, 1).188

189

In Figure 1 numerical values of the functions involved in the formula above. It clear that190

that all coefficients in (5) are positive for 0 < p < 1
e .191

The rest of this section is devoted to the proof of our main result. We will accomplish192

it by a series of lemmas. The main idea is as follows: we take (3) and apply a series of193

substitutions to obtain a functional equation which is in suitable form for applying Mellin194

transform. Observe that we cannot apply directly Mellin transform to the functional equation195

(5) due to the term A(pz + 1− p).196

It is already known from [9] that A′(1) is non-zero and finite, hence λ = 1− 2p. First, let197

us substitute z = 1− v and B(v) = A(1− v) in (3). Thus198

A(1− pv) = 2pA(1− v) + pv(1− v)A′(1− v) +A(1− p),199

B(pv) = 2pB(v)− pv(1− v)B′(v) +A(1− p).200
201

Observe now that the functional equation on B(v) is suitable for the Mellin transform. To202

ease some computation let w = 1
v and C(w) = B

( 1
w

)
. Then203

B
( p
w

)
= 2pB

(
1
w

)
− p

w

(
1− 1

w

)
B′
(

1
w

)
+A(1− p),204

AofA 2020



7:6 Power-Law Degree Distribution. . .

(a) β(p) (b) E(1)− E(∞)

(c) D(β(p)− 2) (d) p−
1
2 (β(p)− 3

2 )2
Γ(β(p)−2)

(p−β(p)+2+ln(p))Γ(−β(p)+1)

Figure 1 Numerical values of different parts of (3) for 0 < p < 1
e
.

C

(
w

p

)
= 2pC(w) + p(w − 1)C ′(w) +A(1− p). (7)205

206

Therefore, we are essentially looking at the solution of (7) with boundary conditions207

C(1) = A(0) = 0 and limw→∞ C(w) = A(1) (which is equal to 1, as pointed out in [9]).208

Our objective is to find an asymptotic expansion for C(w) when w →∞. Notice that it209

is equivalent to finding the asymptotic expansion of A(z) when z → 1 by inferior values. For210

this purpose we will use the Mellin transform which is a powerful tool for extracting accurate211

asymptotic expansions [12]. Unfortunately we cannot directly apply the Mellin transform212

over function C(w) since the behavior of C(w) for w → 0 is yet unknown. To circumvent this213

problem we search for a similar function E(w) defined by the following functional equation214

E

(
w

p

)
= 2pE(w) + p(w − 1)E′(w) +K (8)215

216

for some constant K for which we shall postulate that the Mellin transform217

E∗(s) =
∫ ∞

0
ws−1E(w) dw218

219

exists in some fundamental strip.220
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To connect E(w) with our function C(w) we notice that it holds necessarily that C(1) = 0221

which corresponds to the fact that A(0) = 0. Clearly, if E(w) is the solution of (8) with222

finite values of both E(1) and E(∞) = limw→∞E(w) (which will be shown later to be the223

case), then it is also true that224

C(w) = A(1) E(w)− E(1)
E(∞)− E(1) (9)225

226

is the solution of (7) with C(1) = 0 which also satisfies limw→∞ C(w) = A(1) = 1.227

Let us now proceed through definition and lemmas. We first define228

E∗(s) = p−
1
2 (s− 1

2 )2 Γ(s)
D(s) (10)229

for D(s) =
∏∞
j=0

(
1 + p1+j−s(s− j − 2)

)
defined already in (6).230

Now notice that D(s) = 0 implies 1 +p1+j−s(s− j−2) = 0 for some j ∈ N. This equation231

for 0 < p < 1
e has only two solutions: s = j+ 1 and s = j+ 1 + s∗, where s∗ is the non-trivial232

(i.e. other than s = 0) solution of ps + s− 1 = 0.233

Therefore, E∗(s) has only simple, isolated poles of three types:234

for s = 0,−1,−2, . . ., introduced by Γ(s),235

for s = 1, 2, 3, . . ., introduced by 1
D(s) ,236

for s = s∗ + 1, s∗ + 2, s∗ + 3, . . ., introduced by 1
D(s) .237

Moreover, if we omit these poles, then D(s) converges to a non-zero finite value when238

Re(s) < 0 because pi−s exponentially decays. We summarize it in the next lemma.239

I Lemma 3. For Re(s) ∈ (−1, 0) and 0 < p < 1
e it holds that 1

|D(s)| is absolutely convergent.240

Due to its technical intricacies, the proof of Lemma 3 was moved to the Appendix. In241

Figure 2 we present an example plot of values of 1
|D(s)| .242

Figure 2 Numerical values of 1
|D(c+it)| for p = 0.2 and c = −0.5.

AofA 2020
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I Lemma 4. For 0 < p < 1
e it holds that243

E∗(s) = p(s− 1)
ps + ps− 2pE

∗(s− 1).244

Proof. We have the identity245

p
1
2 (s− 1

2 )2

Γ(s) E∗(s) = p
1
2 (s− 3

2 )2

Γ(s− 1)E
∗(s− 1) 1

1 + p1−s(s− 2) .246

Thus247

E∗(s) = p−
1
2 (s− 1

2 )2+ 1
2 (s− 3

2 )2

1 + p1−s(s− 2)
Γ(s)

Γ(s− 1)E
∗(s− 1) = p1−s

1 + p1−s(s− 2)(s− 1)E∗(s− 1)248

249

since Γ(s)
Γ(s−1) = s − 1. Multiplying by numerator and denominator by ps completes the250

proof. J251

We now define for any given c ∈ (−1, 0)252

E(w) = 1
2πi

∫
Re(s)=c

E∗(s)w−s ds = 1
2πi

∫
Re(s)=c

p−
1
2 (s− 1

2 )2 Γ(s)
D(s)w

−s ds. (11)253

Notice that this integral converges for any complex value of w with Im(w)→ ±∞ because254

from Lemma 3 it follows that 1
|D(s)| is bounded by a constant and Γ(s)p− 1

2 (s− 1
2 )2 decays255

faster than any polynomial. Furthermore the value of E(w) does not depend on the value of256

quantity c thanks to Cauchy’s theorem.257

I Lemma 5. The function E(w) has function E∗(s) as its Mellin transform with its funda-258

mental strip being {s : Re(s) ∈ (−1, 0)}.259

Proof. We have260

|E(w)| ≤ |w|
−c

2π

∫ +∞

−∞
|E∗(c+ it)| exp(arg(w)t) dt.261

Now, it is easy to spot that E(c+ it) = O
(

exp
(
− t

2

2

))
since ln(p) < −1, thus the integral262 ∫ +∞

−∞ |E
∗(c + it)| exp(arg(w)t) dt absolutely converges and it follows that E(w) = O(w−c).263

Since it is true for any values of c ∈ (−1, 0) when w → 0 and w → ∞, then the Mellin264

transforms of function E(w) exists with the fundamental strip {s : Re(s) ∈ (−1, 0)}.265

Furthermore, its Mellin transform is E∗(s) because (11) is exactly the inverse Mellin266

transform formula. J267

I Lemma 6. There exists a value K independent of w such that268

R(w) = −Res
[
E∗(s− 1)p(s− 1)w−s, s = 0

]
= −K.269

270

Proof. The expression271

R(w) = E

(
w

p

)
− 2pE(w)− p(w − 1)E′(w)272

273

can be also expressed via an integral as274

R(w) = 1
2πi

∫
Re(s)=c

E∗(s)
(
psw−s − 2pw−s + spw−s − spw−s−1) ds275
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which can be rewritten as follows276

R(w) = 1
2πi

∫
Re(s)=c

E∗(s) (ps − 2p+ ps)w−s ds277

− 1
2πi

∫
Re(s)=c+1

E∗(s− 1)p(s− 1)w−s ds278

= 1
2πi

∫
Re(s)=c

((ps + ps− 2p)E∗(s)− p(s− 1)E∗(s− 1))w−s ds279

− Res[p(s− 1)E∗(s− 1), s = 0]280
281

since282 ∫
Re(s)=c+1

p(s− 1)E∗(s− 1)w−s ds−
∫

Re(s)=c
p(s− 1)E∗(s− 1)w−s ds283

284

define a contour path which encircles a simple pole at s = 0 in the counter-clockwise (i.e.,285

positive) direction.286

Furthermore from Lemma 3 it follows that287

(ps + ps− 2p)E∗(s)− p(s− 1)E∗(s− 1) = 0,288

therefore the integral vanishes and finally R(w) = −Res[p(s− 1)E∗(s− 1), s = 0] = −K for289

some constant K independent of w. J290

I Lemma 7. It holds that291

K = −p
− 1

8 (1− 2p)
D(0) , E(∞) = p−

1
8

D(0) .292

293

Furthermore,294

E(∞)− E(1) = − 1
2πi

∫
Re(s)=c

E∗(s) ds, for c ∈ (0, 1). (12)295

296

Proof. From Lemma 6 we have297

K = Res[p(s− 1)E∗(s− 1), s = 0] = p−
1
8

D(−1) .298

299

Moreover, from the definition D(0) = (1− 2p)D(−1), which establishes the first identity.300

To find an expression for E(∞) is a little more delicate. Indeed from (11) we find301

E(w) = −Res
[
E∗(s)w−s, s = 0

]
+ 1

2πi

∫
Re(s)=c′

E∗(s)w−s ds302

by assuming the contour path is moved right to origin for some c′ ∈ (0, 1). It turns out that303

0 is the simple pole encountered in the move, as D(s) 6= 0 for all other s with Re(s) ∈ (0, 1).304

Furthermore, the integral on Re(s) = c′ is in O(w−c′) as w →∞, which allows to conclude305

that E(w) = −Res[E∗(s)w−s, s = 0] +O(w−c′) with c′ ∈ (0, 1), thus306

E(∞) = lim
w→∞

E(w) = − lim
w→∞

Res
[
E∗(s)w−s, s = 0

]
= −Res[E∗(s), s = 0] = − p−

1
8

D(0) .307

Finally,308

E(∞)− E(1) = −Res[E(s), s = 0]− 1
2πi

∫
Re(s)=c

E∗(s) ds = − 1
2πi

∫
Re(s)=c′

E∗(s) ds309
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Re(s)

Im(s)

−3 −2 −1 0 1 2 3

−3

−2

−1

1

2

3

Figure 3 Example integration area for E∗(s) and E(w) with s∗ = 0.7 and M = 2.5.

310

for, respectively, c ∈ (−1, 0) and c′ ∈ (0, 1) since311

1
2πi

∫
Re(s)=c′

E∗(s) ds− 1
2πi

∫
Re(s)=c

E∗(s) ds = Res[E(s), s = 0].312

313

This completes the proof. J314

Note that D(0) > 0 since every element in the product is positive for 0 < p < 1
e . Therefore315

K > 0 and E(∞) < 0.316

Finally we proceed with the proof of the main theorem.317

Proof of Theorem 2. Recall the observation that E∗(s) has poles for s ∈ {1, 2, . . .} ∪ {s∗ +318

1, s∗ + 2, . . .} ∪ {0,−1,−2, . . .}, for s∗ – the non-zero solution of ps + s− 1 = 0. Note that if319

0 < p < 1
e , then s

∗ > 0.320

Therefore, for any c ∈ (−1, 0) and a rectangle as presented in Figure 3, we are in position321

to write322

C(w) = 1
E(∞)− E(1)

1
2πi

∫
Re(s)=c

E∗(s)w−s ds− E(1)
E(∞)− E(1)323

= − 1
E(∞)− E(1)

(
E(1) + Res[E∗(s), s = 0] + Res

[
E∗(s)w−s, s = 1

])
324

− 1
E(∞)− E(1)

(
Res
[
E∗(s)w−s, s = 2

]
+ Res

[
E∗(s)w−s, s = s∗ + 1

])
325

+ 1
E(∞)− E(1)

1
2πi

∫
Re(s)=M

E∗(s)w−s ds (13)326

327

for any number M ∈ (2, 2 + s∗).328

The quantity329

1
2πi

∫
Re(s)=M

E∗(s)w−s ds = O(w−M )330
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331

since w−s = w−Mw− Im(s) and the integral in E∗(s)w− Im(s) absolutely converge. Again this332

holds by a similar argument that was used in Lemma 3: p− 1
2 (s− 1

2 )2 decays exponentially333

faster than Γ(s)
D(s)w

Im(s) for complex s.334

By virtue of the residue theorem335

C(w) = − 1
E(∞)− E(1)

(
E(1) + Res[E∗(s), s = 0] + Res[E∗(s), s = 1]w−1)

336

− 1
E(∞)− E(1)

(
Res[E∗(s), s = 2]w−2 + Res[E∗(s), s = s∗ + 1]w−1−s∗

)
337

+O(w−M ). (14)338
339

This formula gives us an asymptotic expansion of C(w) up to order w−M whereM ∈ (2, 2+s∗).340

In fact, for more precise computations it is possible an expansion to any desired value M ,341

just by including all the residues of the poles in k (k ∈ N) and k + s∗ (k ∈ N+) which are342

smaller than M as for 0 < p < 1
e all poles are simple.343

Next, there are computed the first residues, e.g.,344

Res
[
E∗(s)w−s, s = 0

]
=
[
p−

1
2 (s− 1

2 )2 w−s

D(s)

]
s=0

= p−
1
8

D(0) = −E(∞),345

Res
[
E∗(s)w−s, s = 1

]
=
[

p−
1
2 (s− 1

2 )2Γ(s)
p1−s − (s− 2)p1−s ln(p)

w−s

D(s− 1)

]
s=1

346

= p−
1
8

1 + ln(p)
w−1

D(0) ,347

Res
[
E∗(s)w−s, s = s∗ + 1

]
=
[

p−
1
2 (s− 1

2 )2Γ(s)
p1−s − (s− 2)p1−s ln(p)

w−s

D(s− 1)

]
s=s∗+1

348

= p−
1
2 (s∗+ 1

2 )2Γ(s∗)
p−s∗ − (s∗ − 1)p−s∗ ln(p)

w−s
∗−1

D(s∗)349

= p−
1
2 (s∗+ 1

2 )2Γ(s∗)
p−s∗ + ln(p)

w−s
∗−1

D(s∗) .350

351

Observe that in the formulas above both 1 and s∗+1 are not the zeros of p1−s−(s−2)p1−s ln(p),352

so all the presented expressions have finite value.353

Now it is the moment to use the classic Flajolet-Odlyzko transfer theorem [6] to (9) and354

(14) and obtain355

A(z) = 1− 1
E(∞)− E(1)

p−
1
8

1 + ln(p)
1− z
D(0)356

− 1
E(∞)− E(1)

p−
1
2 (s∗+ 1

2 )Γ(s∗)
p−s∗ + ln(p)

(1− z)1+s∗

D(s∗)357

− 1
E(∞)− E(1) Res[E∗(s), s = 2](1− z)2

358

− 1
E(∞)− E(1) Res[E∗(s), s = s∗ + 2](1− z)s

∗+2 + o((1− z)2+s∗).359

360

Finally, (1− z)α for α ∈ N is a polynomial and does not contribute to the asymptotics.361

And for α ∈ R+ \ N [6] it holds that362

[zk](1− z)α = k−α−1

Γ(−α)

(
1 +O

(
1
k

))
,363
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[zk]o(1− z)α = o(k−α−1).364
365

This leads to the final result, which holds for large k:366

ak = [zk]A(z)367

= − 1
E(∞)− E(1)

p−
1
2 (s∗+ 1

2 )2Γ(s∗)
(p−s∗ + ln(p))Γ(−s∗ − 1)

1
D(s∗)k

−s∗−2
(

1 +O

(
1
k

))
.368

369

Note that since s∗ is the non-trivial real solution of ps + s − 1 = 0, equivalently the370

exponent may be written as β(p) = s∗ + 2 – the the non-trivial (i.e., other than 2) real371

solution of the equation pβ−2 + β − 3 = 0.372

Putting all the results together we obtain (5) of Theorem 2. Now it is sufficient to confirm373

that if 0 < p < 1
e , then the tail exponent β(p) > 2, which means that A′(1) is indeed finite.374

This proves Theorem 2. J375

4 Discussion376

We proved rigorously the power-law behavior for asymptotic degree distribution of the377

connected component of the duplication graph 0 < p < 1
e . There remains therefore an open378

question whether the similar results may be obtained for p ≥ 1
e .379

On the one hand, recall the non-rigorous claim in [8] that for 1
e ≤ p <

1
2 the index of the380

power law is equal to 2. Interestingly, β = 2 is the largest solution of pβ−2 + β − 3 = 0 for381

p ≥ 1
e .382

On the other hand, Jordan [9, Proposition 3.7] has shown that the dual Markov chain383

with respect to the eigenvalue λ = 1− 2p is transient for all p > 1
e – which suggests that the384

eventual proof should rely on other value of λ. This problem is left for future research.385
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A Proof of Lemma 3417

We now proceed to the proof of Lemma 3. First, let us introduce f(s) = ps + ps− 2p, so that418

D(s) =
∞∏
i=0

f(s− i)p−(s−i).419

420

Observe that f(s) has only two roots, given by Lambert function W , which is the inverse421

of function xex: W−1(x) = xex. There are only two roots for real numbers which corresponds422

to two branches W0 and W−1 of the function W . Therefore, any chosen c < 0 is smaller than423

the roots of f(s) and the distance between c and any root is at least 1.424

I Lemma 8. For all 0 < ε < 1 and c < 0 it holds that minRe(s)=c |f(s)| ≥ Θ(p(1−ε)(c−1)) > 0.425

Proof. We have f ′(s) = ps ln(p) + p and f ′′(s) = ps ln2(p).426

Let us consider a complex disk of radius R = p−ε(c−1) (R < 1) centered on s. For427

θ ∈ (0, 2π) by virtue of Taylor-Young theorem we have:428

f(s+Reiθ) = f(s) + f ′(s)eiθR+
∫ R

0
f ′′(s+ ρeiθ)e2iθρdρ.429

430

Now observe that431 ∣∣∣∣∣
∫ R

0
f ′′(s+ ρeiθ)e2iθρ dρ

∣∣∣∣∣ =

∣∣∣∣∣ps ln2(p)e2iθ
∫ R

0
pρ exp(iθ)ρdρ

∣∣∣∣∣432

=
∣∣∣ps (eR exp(iθ) ln(p) [R exp(iθ) ln(p)− 1] + 1

)∣∣∣433

= O
(∣∣psR2e2iθ∣∣) = O

(
pcR2) ,434

435

where the last line follows from the fact that asymptotically ex(x− 1) + 1 = O(x2) for x→ 0.436

When θ varies the quantity f ′(s)eiθR describes a circle of radius |f ′(s)|R = (−pc ln(p) +437

O(p))R around f(s). The error term bound implies that each point of f(s + Reiθ) is at438

distance O(pcR2) of this circle. Thus the image by f of the disk with center s and radius R439

contains the disk of center f(s) and radius440

R|f ′(s)| −O(R2pc) = −p−ε(c−1)pc ln(p)−O(p1−ε(c−1))−O
(
p−2ε(c−1)pc

)
441

= p(1−ε)(c−1)
(
−p ln(p)−O(p1−c)−O(p−ε(c−1))

)
= Θ(p(1−ε)(c−1)).442

443

The point s = 0 cannot be in this disk, otherwise the function f(s) would have other444

roots than the expected ones, thus necessarily |f(s)| ≥ Θ(p(1−ε)(c−1)). J445

Let now g(s) = p−sf(s) so that446

D(s) =
∞∏
i=0

g(s− i).447

448

I Lemma 9. For t real and c < 0, the following inequality holds

|g(c+ it)| ≥ |1− p1−c(2− c)− p1−c|t||.

Proof. We have449

|g(c+ it)| = |p−cf(c+ it)| = |pit + p1−c(c− 2) + p1−cit|450

≥ ||pit| − |p1−c(c− 2)| − |p1−cit||.451
452

But now observe that |pit| = 1, which completes the proof. J453
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I Lemma 10. For c ∈ (−1, 0) and for all real number t outside any neighborhood of 0, for454

all ε > 0 it is true that 1
D(c+it) = O(exp

(
−(log2

p |t|/2 +O(log |t|)
)
.455

Proof. From Lemmas 8 and 9, it follows that:

|D(c+ it)| ≥
∏
k≥0

max{Bp−ε(1−c),
∣∣1− (|t|+ 2 + k − c)pk+1−c∣∣}

For a given real number t, we denote k(t) the largest integer k such that (|t|+2+k−c)pk+1−c >456

1, and we split the product at k = k(t):457

|D(c+ it)| ≥
∏

k<k(t)

(
(|t|+ 2 + k − c) pk+1−c − 1

)
458

B′|t|−ε
∏

k>k(t)

(
1− (|t|+ 2 + k − c) pk+1−c)

459

≥

 ∏
k<k(t)

(
pk−k(t)

(
1− (k(t)− k) pk(t)+1−c

)
− 1
)460

B′|t|−ε
∏

k>k(t)

(
1− pk−k(t)

(
1− (k(t)− k) pk(t)−c

))
461

462

Now ∏
k>k(t)

(
1− pk−k(t)

(
1− (k(t)− k) pk(t)−c

))
≥
∏
k>0

(1− pk).

Furthermore
∏
k<k(t) p

k−k(t) ≥ pk(t)(k(t)−1)/2, thus∏
k<k(t)

(
pk−k(t)

(
1− (k(t)− k) pk(t)+1−c − 1

))
≥ pk(t)(k(t)−1)/2

∏
k>0

(1− pk).

Finally, p−k(t) = |t|p−c and therefore

|D(c+ it)| ≥ pk(t)(k(t)−1)/2B′|t|−ε
∏
k>0

(1− pk)2 = B′′
|t|−ε

(|t|p−c)(k(t)−1)/2 .

We conclude, since k(t) = c− logp |t|. J463

Notice that D(c+ it) tends to infinity when |t| → ∞. To conclude the proof of Lemma 3464

it is sufficient to observe that the function 1/D(s) for s is any compact set containing a465

neighborhood of Re(s) and away from the roots of f(s) is naturally bounded by dominated466

convergence of the product.467
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