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Abstract

Free-rider attacks against federated learning con-
sist in dissimulating participation to the federated
learning process with the goal of obtaining the
final aggregated model without actually contribut-
ing with any data. This kind of attacks is critical in
sensitive applications of federated learning, where
data is scarce and the model has high commer-
cial value. We introduce here the first theoretical
and experimental analysis of free-rider attacks
on federated learning schemes based on iterative
parameters aggregation, such as FedAvg or Fed-
Prox, and provide formal guarantees for these at-
tacks to converge to the aggregated models of the
fair participants. We first show that a straightfor-
ward implementation of this attack can be simply
achieved by not updating the local parameters dur-
ing the iterative federated optimization. As this
attack can be detected by adopting simple coun-
termeasures at the server level, we subsequently
study more complex disguising schemes based
on stochastic updates of the free-rider parame-
ters. We demonstrate the proposed strategies on
a number of experimental scenarios, in both iid
and non-iid settings. We conclude by providing
recommendations to avoid free-rider attacks in
real world applications of federated learning, es-
pecially in sensitive domains where security of
data and models is critical.

1 Introduction

Federated learning is a training paradigm that has gained
popularity in the last years as it enables different clients to
jointly learn a global model without sharing their respective
data. It is particularly suited for Machine Learning appli-
cations in domains where data security is critical, such as
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healthcare [4, 19]. The relevance of this approach is wit-
nessed by current large scale federated learning initiatives
under development in the medical domain, for instance for
learning predictive models of breast cancer1, or for drug
discovery and development2.

The participation to this kind of research initiatives is usually
exclusive and typical of applications where data is scarce
and unique in its kind. In these settings, aggregation re-
sults entail critical information beyond data itself, since a
model trained on exclusive datasets may have very high
commercial or intellectual value. For this reason, providers
may not be interested in sharing the model: the commer-
cialization of machine learning products would rather imply
the availability of the model as a service through web- or
cloud-based API. This is due to the need of preserving the
intellectual property on the model components, as well as
to avoid potential information leakage, for example by lim-
iting the maximum number of queries allowed to the users
[5, 6, 1].

This critical aspect can lead to the emergence of opportunis-
tic behaviors in federated learning, where ill-intentioned
clients may participate with the aim of obtaining the fed-
erated model, without actually contributing with any data
during the training process. In particular, the attacker, or
free-rider, aims at disguising its participation to federated
learning while ensuring that the iterative training process
ultimately converges to the wished target: the aggregated
model of the fair participants. Free-riding attacks performed
by ill-intentioned participants ultimately open federated
learning initiatives to intellectual property loss and data pri-
vacy breaches, taking place for example the form of model
inversion [7, 6].

The study of security and safety of federated learning is
an active research domain, and several kind of attacks are
matter of ongoing studies. For example, an attacker may
interfere during the iterative federated learning procedure
to degrade/modify models performances [2, 12, 23, 22, 18],
or retrieve information about other clients’ data [21, 9]. Yet,

1blogs.nvidia.com/blog/2020/04/15/
federated-learning-mammogram-assessment/

2www.imi.europa.eu/projects-results/
project-factsheets/melloddy
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free-riding for federated learning has been so far under-
investigated in the literature. Nevertheless, this kind of
attack is becoming critical as federated learning is rapidly
emerging as the standard training scheme in current coop-
erative learning initiatives. To the best of our knowledge,
the only investigation is in a preliminary work [15] focusing
on attack strategies operated on federated learning based on
gradient aggregation. However, no theoretical guarantees
are provided for the effectiveness of this kind of attacks.
Furthermore this setup is unpractical in many real world
applications, where federated training schemes based on
model averaging are instead more common, due to the re-
duced data exchange across the network. FedAvg [3] is the
most representative framework of this kind, as it is based
on the iterative averaging of the clients models’ parameters,
after updating each client model for a given number of train-
ing epochs at the local level. To improve the robustness of
FedAvg in non-iid and heterogeneous learning scenarios,
FedProx [14] extends FedAvg by including a regularization
term penalizing local departures of clients’ parameters from
the global model.

The contribution of this work consists in the development of
a theoretical framework for the study of free-rider attacks in
federated learning schemes based on model averaging, such
as in FedAvg and FedProx. The problem is here formalized
via the reformulation of federated learning as a stochastic
process describing the evolution of the aggregated parame-
ters across iterations. To this end, we build upon previous
works characterizing the evolution of model parameters in
Stochastic Gradient Descent (SGD) as a continuous time
process [16, 17, 13, 8]. A critical requirement for oppor-
tunistic free-rider attacks is to ensure the convergence of
the training process to the wished target represented by
the aggregated model of the fair clients. We show that the
proposed framework allows to derive explicit conditions to
guarantee the success of the attack. This is an important
theoretical feature as it is of primary interest for the attacker
to not interfere with the learning process.

We first derive in Section 2.4 a basic free-riding strategy
to guarantee the convergence of federated learning to the
model of the fair participants. This strategy simply consists
in returning at each iteration the received global parameters.
As this behavior could easily be detected by the server,
we build more complex strategies to disguise the free-rider
contribution to the optimization process, based on opportune
stochastic perturbations of the parameters. We demonstrate
in Section 2.5 that this strategy does not alter the global
model convergence, and in Section 3 we experimentally
demonstrate our theory on a number of learning scenarios
in both iid and non-iid settings. All proofs and additional
material are provided in the Appendix.

2 Methods

Before introducing in Section 2.2 the core idea of free-
rider attacks, we first recapitulate in Section 2.1 the general
context of parameter aggregation in federated learning.

2.1 Federated learning through model aggregation:
FedAvg and FedProx

In federated learning, we consider a set I of participat-
ing clients respectively owning datasets Di composed by
Mi samples. During optimization, it is generally as-
sumed that the D elements of the clients’ parameters vec-
tor θti = (θti,0, θ

t
i,1, ..., θ

t
i,D), and the global parameters

θt = (θt0, θ
t
1, ..., θ

t
D) are aggregated independently at each

iteration round t. Following this assumption, and for sim-
plicity of notation, in what follows we restrict our analysis
to a single parameter entry, that will be generally denoted
by θti and θt for clients and server respectively.

In this setting, to estimate a global model across clients,
FedAvg [3] is an iterative training strategy based on the
aggregation of local model parameters θti . At each iteration
step t, the server sends the current global model parameters
θt to the clients. Each client updates the model by mini-
mizing over E epochs the local cost function L(θt+1

i ,Di)
initialized with θt, and subsequently returns the updated
local parameters θt+1

i to the server. The global model pa-
rameters θt+1 at the iteration step t+ 1 are then estimated
as a weighted average:

θt+1 =
∑
i∈I

Mi

N
θt+1
i , (1)

where N =
∑
i∈IMi represents the total number of sam-

ples across distributed datasets. FedProx [14] builds upon
FedAvg by adding to the cost function a L2 regulariza-
tion term penalizing the deviation of the local parameters
θt+1
i from the global parameters θt. The new cost function

is LProx(θt+1
i ,Di, θt) = L(θt+1

i ,Di) + µ
2

∥∥θit+1 − θt
∥∥2

where µ is the hyperparameter monitoring the regulariza-
tion by enforcing proximity between local update θit+1 and
reference model θt.

2.2 Formalizing Free-rider attacks

Aiming at obtaining the aggregated model of the fair clients,
the strategy of a free-rider consists in participating to fed-
erated learning by dissimulating local updating through the
sharing of opportune counterfeited parameters. The free-
riding attacks investigated in this work are illustrated in
Algorithm 1, and analysed in the following sections from
both theoretical and experimental standpoints.

We denote by J the set of fair clients, i.e. clients following
the federated learning strategy of Section 2.1 and by K
the set of free-riders, i.e. malicious clients pretending to



Yann Fraboni1,2, Richard Vidal2, Marco Lorenzi1

Algorithm 1: Free-riding in federated learning

Input: learning rate λ, epochs E, initial model θ0,
batch size S

θ̃0 = θ0;
for each round t=0,...,T-1 do

Send the global model θ̃t to all the clients;
for each fair client j ∈ J do

θ̃t+1
j = ClientUpdate(θ̃t, E, λ);

Send θ̃t+1
j to the server;

for each free-rider k ∈ K do
if disguised free-rider then

θ̃t+1
k = θ̃t + ε, where ε ∼ N (0, σ2

k);
else

θ̃t+1
k = θ̃t

Send θ̃t+1
k to the server;

θ̃t+1 =
∑
j∈J

Mj

N θ̃t+1
j +

∑
k∈K

Mk

N θ̃t+1
k ;

participate to the learning process, such that I = J ∪K and
J 6= ∅. We denote by MK the number of samples declared
by the free-riders.

2.3 SGD perturbation of the fair clients local model

To describe the clients’ parameters observed during feder-
ated learning, we rely on the modeling of Stochastic Gradi-
ent Descent (SGD) as a continuous time stochastic process
[16, 17, 13, 8].

For a client j, let us consider the following form for the loss
function:

Lj(θj) =
1

Mj

Mj∑
n=1

ln,j(θj), (2)

where Mj is the number of samples owned by the client,
and ln,j is the contribution to the overall loss from a single
observation {xn,j ; yn,j}. The gradient of the loss function
is defined as gj(θj) ≡ ∇Lj(θj).

We represent SGD by considering a minibatch Sj,k, com-
posed by a set of S different indices drawn uniformly at
random from the set {1, ... ,Mj}, each of them indexing a
function ln,j(θj) and where k is the index of the minibatch.
Based on Sj,k, we form a stochastic estimate of the loss,

LSj,k(θj) =
1

S

∑
n∈Sj,k

ln,j(θj), (3)

where the corresponding stochastic gradient is defined as
gSj,k(θj) ≡ ∇LSj,k(θj).

By observing that gradient descent is a sum of S indepen-
dent and uniformly distributed samples, thanks to the central
limit theorem, gradients at the client level can thus be mod-

eled by a Gaussian distribution

gSj,k(θj) ∼ N (gj(θj),
1

S
σ2
j (θj)), (4)

where gj(θj) = Es
[
gSj,k(θj)

]
is the full gradient of the

loss function in equation (2) and σ2
j (θj) is the variance

associated with the loss function in equation (3).

SGD updates are expressed as:

θj(uj + 1) = θj(uj)− λgSj,k(θj(uj)), (5)

where uj is the SGD iteration index and λ is the learning
rate set by the server.

By defining ∆θj(uj) = θj(uj+1)−θj(uj), we can rewrite
the update process as

∆θj(uj) = −λgj(θj(uj)) +
λ√
S
σj(θj)∆Wj , (6)

where ∆Wj ∼ N (0, 1). The resulting continuous-time
model [16, 17, 13, 8] is

dθj = −λgj(θj)duj +
λ√
S
σj(θj)dWj . (7)

where Wj is a continuous time Wiener Process.

Similarly as in [16], we assume that σj(θj) is approximately
constant with respect to θj for the client’s stochastic gradi-
ent updates between t and t+ 1, and will therefore denote
σj(θj) = σtj . Following [16], we consider a local quadratic
approximation for the client’s loss, leading to a linear form
for the gradient gj(θj) ' rj [θj − θ∗j ], where rj ∈ R+ de-
pends on the approximation of the cost function around
the local minimum θ∗j . This assumption enables rewriting
equation (7) as an Ornstein-Uhlenbeck process [20]. Start-
ing from the initial condition represented by θt, the global
model received at the iteration t, we characterize the local
updating of the parameters through equation (7), and we
follow the evolution up to the time EMj

S , where E is the
number of epochs, and Mj is the number of samples owned
by the client. Assuming that Mj is a multiple of S, the
number of samples per minibatch, the quantity EMj

S repre-
sents the total number of SGD steps run by the client. The
updated model θt+1

j uploaded to the server therefore takes
the form:

θt+1
j = e−λrj

EMj
S [θt − θ∗j ] + θ∗j︸ ︷︷ ︸

θ̂t+1
j

+
λ√
S

∫ EMj
S

u=0

e
−λrj

(
EMj

S −u
)
σtjdWu. (8)

We note that the relative number of SGD updates for the
fair clients, EMj

S , influences the parameter ηj = e−λrj
EMj

S ,
which becomes negligible for large values of E.
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The variance introduced by SGD can be rewritten as

Var
[
θt+1
j |θt

]
=
λ

S
σtj

2 1

2rj

[
1− e−2λrj

EMj
S

]
︸ ︷︷ ︸

ρtj
2

, (9)

where we can see that the higher EMj

S , the lower the overall
SGD noise. The noise depends on the local loss function
rj , on the server parameters (number of epochs E, learning
rate λ, and number of samples per minibatch S), and on the
clients’ data specific parameters (SGD variance σtj

2 ).

Equation (8) shows that clients’ parameters observed dur-
ing federated learning can be expressed as θtj = θ̂tj + ρtjζj,t,
where, given θt, θ̂tj is a deterministic component correspond-
ing to the model obtained with EMj

S steps of gradient de-
scents, and ζj,t is a delta-correlated Gaussian white noise.
We consider in what follows a constant local noise vari-
ance σ2

j (this assumption will be relaxed in Section 2.5.3 to
consider instead time-varying noise functions ρtj).

Based on this formalism, in the next Section we study a
basic free-rider strategy simply consisting in returning at
each iteration the received global parameters. We call this
type of attack plain free-riding.

2.4 Plain free-riding

We denote by θ̃ and θ̃j respectively the global and local
model parameters obtained in presence of free-riders. The
plain free-rider returns the same model parameters as the
received ones, i.e. ∀k ∈ K, θ̃t+1

k = θ̃t. In this setting, the
server aggregation process (1) can be rewritten as:

θ̃t+1 =
∑
j∈J

Mj

N
θ̃t+1
j +

MK

N
θ̃t , (10)

where θ̃t is the global model and θ̃tj are the fair clients’ local
models uploaded to the server for free-riding.

2.4.1 Free-riders perturbation of the fair clients local
model

In this section, we investigate the effect of the free-riders on
the local optimization performed by the fair clients at every
server iteration. The participation of the free-riders to fed-
erated learning implies that the processes of the fair clients
are being perturbed by the attacks throughout training. In
particular, the initial conditions of the local optimization
problems are modified according to the perturbed aggrega-
tion of equation (10).

Back to the assumptions of Section 2.3 , the initial condition
θ̃t of the local optimization includes now the aggregated
model of the fair clients and a perturbation coming from the
free-riders. Thus, equation (8) in presence of free-riding can

be written as

θ̃t+1
j = ηj [θ̃

t − θ∗j ] + θ∗j

+
λ√
S

∫ EMj
S

u=0

e
−λrj

(
EMj

S −u
)
σ̃tjdWu, (11)

where σ̃tj = σtj(θ̃j) is the SGD variance for free-riding.
We consider that σ̃tj = σtj = σj . This assumption will be
relaxed in Section 2.5.3 to consider instead time-varying
noise functions. With analogous considerations to those
made in Section 2.3, the updated parameters take the form:

θ̃t+1
j = ηj [θ̃

t − θ∗j ] + θ∗j + ρj ζ̃j,t, (12)

where ζ̃j,t is a delta-correlated Gaussian white noise. Simi-
larly as for federated learning, E

[
θ̃t+1
j |θ̃t

]
= ηj [θ̃

t − θ∗j ] +
θ∗j , and Var

[
θ̃t+1
j |θ̃t

]
= ρ2j .

We want to express the global optimization process θ̃t due
to free-riders in terms of a a perturbation of the equivalent
stochastic process θt obtained with fair clients only. Theo-
rem 1 provides a recurrent form for the difference between
these two processes.

Theorem 1. Under the assumptions of Section 2.3 and 2.4
for the local optimization processes resulting from federated
learning with respectively only fair clients and with free-
riders, the difference between the aggregation processes of
formulas (1) and (10) takes the following recurrent form:

θ̃t − θt =

t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi) (13)

+

t−1∑
i=0

(
ε+

MK

N

)t−i−1
(ν̃i − νi),

with f(θt) = MK

N

[
θt −

∑
j∈J

Mj

N−MK
[ηj(θ

t − θ∗j ) + θ∗j ]
]
,

ε =
∑
j∈J

Mj

N ηj , νt =
∑
j∈J

Mj

N−MK
ρjζj,t and

ν̃t =
∑
j∈J

Mj

N ρj ζ̃j,t.

We note that in the special case with no free-riders (i.e.
MK = 0), the quantity θ̃t − θt depends on the second
term of equation (13) only, and represents the comparison
between two different realizations of the stochastic process
associated to the federated global model. Theorem 1 shows
that in this case the variance across optimization results is
non-zero, and depends on the intrinsic variability of the local
optimization processes quantified by the variable νt. We
also note that in presence of free-riders the convergence to
the model obtained with fair clients depends on the relative
sample size declared by the free-riders MK

N .

2.4.2 Convergence analysis of plain free-riding

Based on the relationship between the learning processes
established in Theorem 1, we are now able to prove that
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federated learning with plain free-riders defined in equation
(10) converges in expectation to the aggregated model of
the fair clients of equation (1).

Theorem 2 (Plain free-riding). Assuming FedAvg con-
verges in expectation, and based on the assumption of Theo-
rem 1, the following asymptotic properties hold:

E
[
θ̃t − θt

]
t→+∞−−−−→ 0, (14)

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J (Mjρj)

2

1−
(
ε+ MK

N

)2 .

(15)

As a corollary of Theorem 2, in Proof A.2 it is shown that
the asymptotic variance is strictly increasing with the sam-
ple size MK declared by the free-riders. In practice, the
smaller the total number of data points declared by the free-
riders, the closer the final aggregation result approaches
the model obtained with fair clients only. On the contrary,
when the the sample size of the fair clients is negligible
with respect to the the one declared by the free-riders, i.e.
N 'MK , the variance tends to infinity. This is due to the
ratio approaching to 1 in the geometric sum of the second
term of equation (13). In the limit case when only free-
riders participate to federated learning (J = ∅), we obtain
instead the trivial result θ̃t = θ0 and Var

[
θ̃t
]

= 0. In
this case there is no learning throughout the training pro-
cess. Finally, with no free-riders (MK = 0), we obtain
Var

[
θ̃t1 − θt2

]
t→+∞−−−−→ 2

N2
1

1−ε2
∑
j∈J (Mjρj)

2, reflecting
the variability of the fair aggregation process due to the
stochasticity of the local optimization processes.

2.5 Disguised free-riding

Plain free-riders can be easily detected by the server, since
for each iteration the condition [θ̃t+1

k − θ̃t = 0] is true. In
what follows, we study improved attack strategies based
on the sharing of opportunely disguised parameters, and
investigate sufficient conditions on the disguising models
to obtain the desired convergence behavior of free-rider
attacks.

2.5.1 Additive noise to mimic SGD updates

A disguised free-rider with additive noise generalizes the
plain one, and uploads parameters θ̃t+1

k = θ̃t + ϕk(t)εt.
Here, the perturbation εt is assumed to be Gaussian white
noise, and ϕk(t) > 0 is a suitable time-varying perturbation
compatible with the free-rider attack. As shown in equation
(8), the parameters uploaded by the fair clients take the
general form composed by an expected model corrupted by
a stochastic perturbation due to SGD. Free-riders can mimic
this update form by adopting a noise structure similar to the

one of the fair clients:

ϕ2
k(t) =

λ

S
σtk

2 1

2rk

[
1− e−2λrk

EMk
S

]
, (16)

where rk and σtk would ideally depend on the (non-existing)
free-rider data distribution and thus need to be determined,
while Mk is the declared number of samples. Compatibly
with the assumptions of constant SGD variance σ2

j for the
fair clients, we here assume that the free-riders noise is
constant and compatible with the SGD form:

ϕ2
k =

λ

S
σ2
k

1

2rk

[
1− e−2λrk

EMk
S

]
. (17)

Analogously as for the fair clients, this assumption will be
relaxed in Section 2.5.3.

2.5.2 Attacks based on fixed additive stochastic
perturbations

In this new setting, we can rewrite the FedAvg aggrega-
tion process (1) for an attack with a single free-rider with
perturbation ϕ:

θ̃t+1 =
∑
j∈J

Mj

N
θ̃t+1
j +

MK

N
θ̃t +

MK

N
ϕεt. (18)

Theorem 3 extends the results previously obtained for fed-
erated learning with plain free-riders to our new case with
additive perturbations.

Theorem 3 (Single disguised free-rider). Analogously to
Theorem 2, the aggregation process under free-riding de-
scribed in equation (18) converges in expectation to the
aggregated model of the fair clients of equation (1) :

E
[
θ̃t − θt

]
t→+∞−−−−→ 0, (19)

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J (Mjρj)

2

1−
(
ε+ MK

N

)2
+

1

1−
(
ε+ MK

N

)2 M2
K

N2
ϕ2. (20)

Theorem 3 shows that disguised free-riding converges to the
final model of federated learning with fair clients, although
with a higher variance resulting from the free-rider’s per-
turbations injected at every iteration. The perturbation is
proportional to MK

N , the relative number of samples declared
by the free-rider.

The extension of this result to the case of multiple free-
riders requires to account in equation (18) for an attack of
the form

∑
k∈K

Mk

N ϕkεk,t, where Mk is the total sample
size declared by free-rider k. Corollary 1 follows from the
linearity of this form.
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Corollary 1 (Multiple disguised free-riders). Assuming a
constant perturbation factor ϕk for each free-rider k, the
asymptotic expectation of Theorem 3 still holds, while the
variance reduces to

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J (Mjρj)

2

1−
(
ε+ MK

N

)2
+

1

1−
(
ε+ MK

N

)2 ∑
k∈K

M2
k

N2
ϕ2
k. (21)

2.5.3 Time-varying noise model of fair-clients
evolution

To investigate more plausible parameters evolution in feder-
ated learning, in this section we relax the assumption made
in Section 2.3 about the constant noise perturbation of the
SGD process across iteration rounds.

We assume here that the standard deviation σtj of SGD
decreases at each server iteration t, approaching to zero over
iteration rounds: σtj

t→+∞−−−−→ 0. This assumption reflects
the improvement of the fit of the global model θ̃t to the
local datasets over server iterations, and implies that the
stochastic process of the local optimization of Section 2.3
has noise parameter ρtj

t→+∞−−−−→ 0. We thus hypothesize
that, to mimic the behavior of the fair clients, a suitable
time-varying perturbation of the free-riders should follow a
similar asymptotic behavior: ϕk(t)

t→+∞−−−−→ 0. Under these
assumptions, Corollary 2 shows that the asymptotic variance
of model aggregation under free-rider attacks is zero, and
that it is thus still possible to retrieve the fair client’s model.

Corollary 2. Assuming that fair clients and free-riders
evolve according to Section 2.3 to 2.5, if the conditions
ρtj

t→+∞−−−−→ 0 and ϕk(t)
t→+∞−−−−→ 0 are met, the aggregation

process of federated learning is such that the asymptotic
variance of Theorems 2 and 3 reduce to

Var
[
θ̃t − θt

]
t→+∞−−−−→ 0. (22)

We assumed in Corollary 2 that the SGD noise σtj decreases
at each server iteration and eventually converges to 0. In
practice, the global model may not fit perfectly the dataset
of the different clients Dj and, after a sufficient number of
optimization rounds, may keep oscillating around a local
minima. We could therefore assume that σtj

t→+∞−−−−→ σj

leading to ρtj
t→+∞−−−−→ ρj . In this case, to mimic the behav-

ior of the fair clients, a suitable time-varying perturbation
compatible with the free-rider attacks should converge to
a fixed noise level such that ϕk(t)

t→+∞−−−−→ ϕk. Similarly
as for Corollary 2, it can be shown that under these hypoth-
esis federated learning follows the asymptotic behaviors
of Theorem 2 and 3 for respectively plain and disguised
free-riders.

2.6 FedProx

FedProx includes a regularization term for the local loss
functions of the different clients ensuring the proximity
between the updated models θt+1

j and θt. This regulariza-
tion is usually defined as an additional L2 penalty term,
and leads to the following form for the local gradient
gj(θj) ' rj [θj − θ∗j ] +µ[θj − θt] where µ is a trade-off pa-
rameter. Since the considerations in Section 2.3 still hold in
this setting, we can express the local model contribution for
FedProx with a formulation analogous to the one of equation
(8). Hence, for FedProx, we obtain similar conclusions for
Theorem 2 and 3, as well as for Corollary 1 and 2, proving
that the convergence behavior with free-riders is equivalent
to the one obtained with fair clients only, although with a
different asymptotic variance (Appendix B).

Theorem 4. Assuming convergence in expectation for fed-
erated learning with fair clients only, under the assumptions
of Theorem 1 the asymptotic properties of plain and dis-
guised free-riding of Theorem 2, 3, and Corollary 1, 2, still
hold with FedProx. In this case we have parameters:

ρj
2 =

λ

S
σj

2 1

2(rj + µ)

[
1− e−2λ(rj+µ)

EMj
S

]
, (23)

ε =
∑
j∈J

Mj

N
[γj + µ

1− γj
rj + µ

], (24)

and γj = e−λ(rj+µ)
EMj

S . (25)

We note that the asymptotic variance is still strictly increas-
ing with the total number of free-riders samples. Moreover,
the regularization term monitors the asymptotic variance: a
higher regularization leads to a smaller noise parameter ρ2j
and to a smaller ε, thus decreasing the asymptotic variances
of Theorem 2, 3, and Corollary 1, 2.

3 Experiments

This experimental section focuses on a series of benchmarks
for the proposed free-rider attacks. The methods being of
general application, the focus here is to empirically demon-
strate our theory on diverse experimental setups and model
specifications. All code, data and experiments are available
at URL.

3.1 Experimental Details

We consider 5 fair clients for each of the following scenarios,
investigated in previous works on federated learning [3, 14]:

MNIST (classification in iid and non-iid settings). We study
a standard classification problem on MNIST [11] and create
two benchmarks: an iid dataset (MNIST iid) where we
assign 600 training digits and 300 testing digits to each
client, and a non-iid dataset (MNIST non-iid), where for
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Figure 1: Plots for Shakespeare and E = 20. Accuracy
performances for FedAvg and FedProx according to the
number of free-riders participating in the learning process:
15% (top), 50% (middle), and 90% (bottom) of the total
amount of clients. The shaded blue region indicates the
variability of federated learning model with fair clients only,
estimated from 30 different training initialization.

each digit we create two shards with 150 training samples
and 75 testing samples, and allocate 4 shards for each client.
For each scenario, we use a logistic regression predictor.

CIFAR-10[10] (image classification). The dataset consists
of 10 classes of 32x32 images with three RGB channels.
There are 50000 training examples and 10000 testing ex-
amples which we partitioned into 5 clients each containing
10000 training and 2000 testing samples. The model archi-
tecture was taken from [3] which consists of two convolu-
tional layers and a linear transformation layer to produce
logits.

Shakespeare (LSTM prediction). We study a LSTM model
for next character prediction on the dataset of The Complete
Works of William Shakespeare [3]. We randomly chose
5 clients with more than 3000 samples, and assign 70%
of the dataset to training and 30% to testing. Each client
has on average 6415.4 samples (±1835.6) . We use a two-
layer LSTM classifier containing 100 hidden units with
an 8 dimensional embedding layer. The model takes as
an input a sequence of 80 characters, embeds each of the
characters into a learned 8-dimensional space and outputs
one character per training sample after 2 LSTM layers and
a fully connected one.

We train federated models following FedAvg and FedProx
aggregation processes. In FedProx, the hyperparameter µ
monitoring the regularization is chosen according to the best
performing scenario reported in [14]: µ = 1 for MNIST
(iid and non-iid), and µ = 0.001 for Shakespeare. For
the free-rider we declare a number of samples equal to the
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Figure 2: Plots for Shakespeare and E = 20. Loss perfor-
mances for FedAvg and FedProx according to the number of
free-riders participating in the learning process: 15% (top),
50% (middle), and 90% (bottom) of the total amount of
clients.

average sample size across fair clients. We test federated
learning with 5 and 20 local epochs using SGD optimization
with learning rate λ = 0.001 for MNIST (iid and non-iid),
λ = 0.001 for CIFAR-10, and λ = 0.5 for Shakespeare, and
batch size of 100. Resulting figures for associated accuracy
and loss can be found in Figure 1, Figure 2 and Appendix
C.

3.2 Free-rider attacks: convergence and
performances

In the following experiments, we investigate free-rider
attacks taking the simple form ϕ(t) = σt−γ . The pa-
rameter γ is chosen among a panel of testing parameters
γ ∈ {0.5, 1, 2}, while additional experimental material on
the influence of γ on the convergence is presented in Ap-
pendix C. While the optimal tuning of disguised free-rider
attacks is out of the scope of this study, in what follows
the perturbations parameter σ is defined according to prac-
tical hypotheses on the parameters evolution during fed-
erated learning. After random initialization at the initial
federated learning step, the parameter σ is opportunely esti-
mated to mimic the extent of the distribution of the update
∆θ̃0 = θ̃1− θ̃0 observed between consecutive rounds of fed-
erated learning. We can simply model these increments as a
zero-centered univariate Gaussian distribution, and assign
the parameter σ to the value of the fitted standard deviation.
According to this strategy, the free-rider would return param-
eters θ̃tk with perturbations distributed as the ones observed
between two consecutive optimization rounds. Figure 1,
top row, exemplifies the evolution of the models obtained
with FedAvg (20 local training epochs) on the Shakespeare
dataset with respect to different scenarios: 1) fair clients
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only, 2) plain free-rider, 3) disguised free-rider with decay
parameter γ = 1, and estimated noise level σ, and 4) dis-
guised free-rider with noise level increased to 3σ. For each
scenario, we compare the federated model obtained under
free-rider attacks with respect to the equivalent model ob-
tained with the participation of the fair clients only. For
this latter setting, to assess the model training variability,
we repeated the training 30 times with different parameter
initializations. The results show that, independently from
the chosen free-riding strategy, the resulting models attains
comparable performances with respect to the one of the
model obtained with fair clients only (Figure 1, top row).
Similar results are obtained for the setup with 5 local train-
ing epochs and different values of γ, as well as for FedProx
with 5 and 20 local epochs (Appendix C).

We also investigate the same training setup under the in-
fluence of multiple free-riders (Figure 1, mid and bottom
rows). In particular, we test the scenarios where the free-
riders declare respectively 50% and 90% of the total training
sample size. In practice, we maintain the same experimen-
tal setting composed by 5 fair clients, and we increase the
number of free-riders to respectively 5 and 45, while declar-
ing for each free-rider a sample size equal to the average
number of samples of the fair clients. Independently from
the magnitude of the perturbation function, the number of
free-riders does not seem to affect the performance of the
final aggregated model. However, the convergence speed
is greatly decreased. Figure 2 shows that the convergence
in these different settings is not identically affected by the
free-riders. When the size of free-riders is moderate, e.g. up
to 50% of the total sample size, the convergence speed of
the loss is slightly slower than for federated learning with
fair clients. The attacks can be still considered successful,
as convergence is achieved within the pre-defined iteration
budget. However, when the size of free-riders reaches 90%,
convergence to the optimum is extremely slow and cannot
be achieved anymore in a reasonable amount of iterations.
This result is in agreement with our theory, for which the
convergence speed inversely proportional to the relative size
of the free-riders. Interestingly, we note that the final ac-
curacy obtained in all the scenarios is similar (though a bit
slower with 90% of free-riders), and falls within the vari-
ability observed in federated learning with fair-clients only
(Figure 1). This result is achieved in spite of the incomplete
convergence during training. This effect can be explained
by observing that this accuracy level is already reached
at the early training stages of federated learning with fair
clients, while further training does not seem to improve the
predictions. This result suggests that, in spite of the very
low convergence speed, the averaging process with 90% of
free-riders still achieves a reasonable minima compatible
with the training path of the fair clients aggregation.

Analogous results and considerations can be derived from
the set of experiments on the remaining datasets, training pa-

rameters and FedProx as an aggregation scheme (Appendix
C).

4 Conclusion and discussion

We introduced a theoretical framework for the study of free-
riding attacks on model aggregation in federated learning.
Based on the proposed methodology, we proved that sim-
ple strategies based on returning the global model at each
iteration already lead to successful free-rider attacks (plain
free-riding), and we investigated more sophisticated dis-
guising techniques relying on stochastic perturbations of the
parameters (disguised free-riding). The convergence of each
attack was demonstrated through theoretical developments
and experimental results.

This work opens the way to the investigation of optimal dis-
guising and defense strategies for free-rider attacks, beyond
the proposed heuristics. Our experiments show that inspec-
tion of the client’s distribution should be established as a
routine practice for the detection of free-rider attacks in fed-
erated learning. Further research directions are represented
by the improvement of detection at the server level, through
better modeling of the heterogeneity of the incoming clients’
parameters. This study provides also the theoretical basis
for the study of effective free-riding strategies, based on dif-
ferent noise model distributions and perturbation schemes.
Finally, in this work we relied on a number of hypothesis
concerning the evolution of the clients’ parameters during
federated learning. This choice provides us with a conve-
nient theoretical setup for the formalization of the proposed
theory which may be modified in the future, for example,
for investigating more complex forms of variability and
schemes for parameters aggregation.
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A Complete Proofs for FedAvg

A.1 Proof of Theorem 1

We prove with a reasoning by induction that:

θ̃t − θt =

t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi)

+

t−1∑
i=0

(
ε+

MK

N

)t−i−1
(ν̃i − νi), (26)

with f(θt) = MK

N

[
θt −

∑
j∈J

Mj

N−MK
[ηj(θ

t − θ∗j ) + θ∗j ]
]
,

ε =
∑
j∈J

Mj

N ηj , νt =
∑
j∈J

Mj

N−MK
ρjζj,t and

ν̃t =
∑
j∈J

Mj

N ρj ζ̃j,t. By definition of θt+1,
E [f(θt)] = MK

N

[
E [θt]− E

[
θt+1

]]
.

Proof. Server iteration t = 1

Using the fair clients local model parameters evolution of
Section 2.3 and the server aggregation process expressed in
equation (10), the global model can be written as

θ1 =
∑
j∈J

Mj

N −MK

[
ηj
(
θ0 − θ∗j

)
+ θ∗j

]
+ ν0. (27)

Similarly, the global model for federated learning with plain
free-riders can be expressed as

θ̃1 =
∑
j∈J

Mj

N

[
ηj
(
θ0 − θ∗j

)
+ θ∗j

]
+
MK

N
θ0 + ν̃0. (28)

By subtracting equation (27) to equation (28), we obtain:

θ̃1 − θ1 = −MK

N

∑
j∈J

Mj

N −MK

[
ηj
(
θ0 − θ∗j

)
+ θ∗j

]
+
MK

N
θ0 + ν̃0 − ν0 (29)

Hence, θ̃1 − θ1 follows the formalization.

From t to t+ 1

We suppose the property true at a server iteration t. Hence,
we get:

θ̃t − θt =

t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi)

+

t−1∑
i=0

(
ε+

MK

N

)t−i−1
(ν̃i − νi), (30)

With the same reasoning as for t = 1, we get:

θt+1 =
∑
j∈J

Mj

N −MK

[
ηj
(
θt − θ∗j

)
+ θ∗j

]
+ νt (31)

and

θ̃t+1 =
∑
j∈J

Mj

N

[
ηj

(
θ̃t − θ∗j

)
+ θ∗j

]
+
MK

N
θ̃t + ν̃t

(32)

By using equation (30) for equation (32), we get:

θ̃t+1 =
∑
j∈J

Mj

N

[
ηj
(
θt − θ∗j

)
+ θ∗j

]
+ ε

t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi)

+ ε

t−1∑
i=0

(
ε+

MK

N

)t−i−1
(ν̃i − νi)

+
MK

N
θt

+
MK

N

t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi)

+
MK

N

t−1∑
i=0

(
ε+

MK

N

)t−i−1
(ν̃i − νi)

+ ν̃t (33)

which can be rewritten as:

θ̃t+1 =
∑
j∈J

Mj

N

[
ηj
(
θt − θ∗j

)
+ θ∗j

]
+ [ε+

MK

N
]

t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi)

+ [ε+
MK

N
]

t−1∑
i=0

(
ε+

MK

N

)t−i−1
(ν̃i − νi)

+
MK

N
θt + ν̃t, (34)

leading to

θ̃t+1 =
∑
j∈J

Mj

N

[
ηj
(
θt − θ∗j

)
+ θ∗j

]
+

t−1∑
i=0

(
ε+

MK

N

)t−i
f(θi)

+

t−1∑
i=0

(
ε+

MK

N

)t−i
(ν̃i − νi)

+
MK

N
θt + ν̃t (35)
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By subtracting equation (35) to equation (31), we obtain:

θ̃t+1 − θt+1 = −MK

N

∑
j∈J

Mj

N −MK

[
ηj
(
θt − θ∗j

)
+ θ∗j

]
+

t−1∑
i=0

(
ε+

MK

N

)t−i
f(θi)

+

t−1∑
i=0

(
ε+

MK

N

)t−i
(ν̃i − νi)

+
MK

N
θt + ν̃t − νt (36)

Given that −MK

N

∑
j∈J

Mj

N−MK

[
ηj
(
θt − θ∗j

)
+ θ∗j

]
+

MK

N θt = f(θt), we get:

θ̃t+1 − θt+1 =

t∑
i=0

(
ε+

MK

N

)t−i
f(θi)

+

t∑
i=0

(
ε+

MK

N

)t−i
(ν̃i − νi). (37)

A.2 Proof of Theorem 2

Proof. Expected Value

Let us first have a look at the expected value. By def-
inition, a sum of Gaussian distributions with 0 mean,
E [νi] = 0 and E [ν̃i] = 0. We also notice that E [f(θt)] =
MK

N

[
E [θt]− E

[
θt+1

]]
. Hence, we obtain

E
[
θ̃t − θt

]
=
MK

N

t−1∑
i=0

(
ε+

MK

N

)n−i−1
E
[
θt − θt+1

]
.

(38)

We consider that federated learning is converging, hence
|E [θt]−E

[
θt+1

]
| t→+∞−−−−→ 0, and for any positive α, there

exists N0 such that |E
[
θt − θt+1

]
| < α. Since ηj ∈]0, 1[,

we have ε ∈]0, N−MK

N [ and ε+ MK

N ∈]0, 1[. Thus, we can
rewrite equation (38) as

|E
[
θ̃t − θt

]
| ≤

N0−1∑
i=0

(
ε+

MK

N

)t−i−1
|E
[
θt
]
− E

[
θt+1

]
|

+

t−1∑
i=N0

(
ε+

MK

N

)t−i−1
α. (39)

We define by Rα = maxi∈[1,N0] |E [θt] − E
[
θt+1

]
|, and

get:

|E
[
θ̃t − θt

]
| ≤

N0−1∑
i=0

(
ε+

MK

N

)t−i−1
︸ ︷︷ ︸

A

Rα

+

t−1∑
i=N0

(
ε+

MK

N

)t−i−1
︸ ︷︷ ︸

B

α. (40)

• Expressing A.

A =

N0−1∑
i=0

(
ε+

MK

N

)t−i−1
(41)

=

(
ε+

MK

N

)t−1 1−
(
ε+ MK

N

)−N0

1−
(
ε+ MK

N

)−1 (42)

t→+∞−−−−→ 0 (43)

• Expressing B.

B =

t−1∑
i=N0

(
ε+

MK

N

)t−i−1
(44)

=

(
ε+

MK

N

)t−N0−1 1−
(
ε+ MK

N

)−(t−N0)

1−
(
ε+ MK

N

)−1
(45)

=
1−

(
ε+ MK

N

)t−N0

1−
(
ε+ MK

N

) (46)

t→+∞−−−−→ 1

1−
(
ε+ MK

N

) > 0 (47)

Using equation (43) and (47) in equation (40), we get:

∀α lim
t→+∞

|E
[
θ̃t − θt

]
| ≤ Bα, (48)

which is equivalent to

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (49)

Variance

The Wiener processes, νi and ν̃i are independent from the
server models parameters θi. Also, each Wiener process is
independent with the other Wiener processes. Hence, we
get:

Var
[
θ̃t − θt

]
= Var

[
t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi)

]
︸ ︷︷ ︸

E

+

t−1∑
i=0

(
ε+

MK

N

)2(t−i−1)

Var [ν̃i − νi]︸ ︷︷ ︸
F

,

(50)
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Expressing E. Before getting a simpler expression for E,
we need to consider Cov

[
f(θl), f(θm)

]
. To do so, we first

consider f(θt)− E [f(θt)].

f(θt)− E
[
f(θt)

]
=
MK

N

1−
∑
j∈J

Mj

N −MK
ηj


︸ ︷︷ ︸

G

[θt − E
[
θt
]
], (51)

We can prove with a reasoning by induction that

θt − E [θt] =
∑n−1
i=0

(∑
j∈J

Mj

N−MK
ηj

)t−i−1
νi =∑n−1

k=0 ε
t−i−1νi. All the νi are independent across each

others and have 0 mean, hence:

Cov [f(θl), f(θm)] = G2

min{l−1,m−1}∑
i=0

εl+m−2i−2 E
[
ν2i
]

(52)

Considering that E
[
ν2i
]

= Var [νi] =
∑
j∈J

(
Mj

N−MK
ρj

)2
,

we get:

Cov
[
f(θl), f(θm)

]
= G2

∑
j∈J

(
Mj

N −MK
ρj

)2 min{l−1,m−1}∑
i=0

εt−i−1 (53)

We define G′ = G2
∑
j∈J

(
Mj

N−MK
ρj

)2
. Given that ε ∈

]0, 1[, we get the following upper bound on E:

Cov
[
f(θl), f(θm)

]
≤ G′min{l,m} (54)

By denoting H = ε+ MK

N , we can rewrite E as:

E =

t−1∑
l=0

t−1∑
m=0

H2(t−1)−l−m Cov
[
fl(θ

l), f(θm)
]

(55)

≤
t−1∑
l=0

t−1∑
m=0

H2(t−1)−l−mG′min{l,m} (56)

Considering that min{l,m} ≤ l, we get:

E ≤ G′
t−1∑
l=0

t−1∑
m=0

H2(t−1)−l−ml (57)

= G′H2(t−1)
t−1∑
l=0

H−ll

t−1∑
m=0

H−m (58)

= G′H2(t−1)
t−1∑
l=0

H−ll
1−H−n

1−H−1
(59)

= G′H2(t−1) 1−H−n

1−H−1
t−1∑
l=0

H−ll (60)

Considering the power series
∑+∞
k=0 nx

n = x
(1−x)2 , we get

that
∑t−1
l=0 H

−ll = H−1

(1−H−1)2 . Hence, E’s upper bound
goes to 0. Given that E is non-negative, we get:

E
t→+∞−−−−→ 0 (61)

Expressing F . Let us first consider the noise coming from
the SGD steps. All the ν̃i are independent with νi. Hence,
we have

F = Var [ν̃i]−Var [νi] (62)

= Var

∑
j∈J

Mj

N
ρj ζ̃j,i −

∑
j∈J

Mj

N −MK
ρjζj,i

 (63)

= [
1

N2
+

1

(N −MK)2
]
∑
j∈J

(Mjρj)
2 (64)

Replacing (64) in equation (50), we can express the variance
as

Var
[
θ̃t − θt

]
= E + F

t−1∑
i=0

H2(t−i−1) (65)

= E + FH2(t−1)
t−1∑
i=0

H−2i (66)

= E + FH2(t−1) 1−H−2t

1−H−2
(67)

= E + F
1−H2t

1−H2
(68)

By replacing F and H with their respective expression, we
can conclude that

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J (Mjρj)

2

1−
(
ε+ MK

N

)2
(69)

Note 1: The asymptotic variance is strictly increasing with
the number of data points declared by the free-riders MK .

While Mj and ρj are constants and independent from the
number of free-riders and from their respective number
of data points, N and ε depend on the total number of
free-riders’ samples MK . We first rewrite ε = 1

N α with
α =

∑
j∈JMjηj not depending on MK and we get:

ε+
MK

N
=

1

N
[α+MK ]. (70)

By defining MJ =
∑
j∈JMj , we get:

1−
(
ε+

MK

N

)2

=
1

N2
[M2

J + 2MK [MJ − α]− α2],

(71)
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with MJ − α > 0 because ηj ∈]0, 1[.

Also, considering that

1

N2
+

1

(N −MK)2
=

1

N2
[
M2
K

M2
J

+ 2
MK

MJ
+ 2], (72)

we can rewrite

1
N2 + 1

(N−MK)2

1−
(
ε+ MK

N

)2 =

M2
K

M2
J

+ 2MK

MJ
+ 2

M2
J + 2MK [MJ − α]− α2

(73)

As the numerator is a polynomial of order 2 in MK and
the denominator is a polynomial of order 1 in MK , the
asymptotic variance is increasing with MK .

Note 2: When considering that the SGD noise variance is
different for federated learning with and without free-riders,
we get:

F =
1

N2

∑
j∈J

(Mj ρ̃j)
2

+
1

(N −MK)2

∑
j∈J

(Mjρj)
2

(74)

A.3 Proof of Theorem 3

Proof. Relation between federated learning with and
without free-riders global model

With a reasoning by induction similar to Proof A.1, we get:

θ̃t − θt =

t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi) (75)

+

t−1∑
i=0

(
ε+

MK

N

)t−i−1
(ν̃i − νi) (76)

+

t−1∑
i=0

(
ε+

MK

N

)t−i−1
MK

N
ϕεt, (77)

Expected value

εt is a delta-correlated Gaussian White noise which implies
that E [εt] = 0. Following the same reasoning steps as in
Proof A.2, we get:

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (78)

Variance

All the εt are independent Gaussian white noises implying
Var [εt] = 1. Following the same reasoning steps as in

Proof A.2, we get:

Var

[
t−1∑
i=0

(
ε+

MK

N

)t−i−1
MK

N
ϕεt

]

=

t−1∑
i=0

(
ε+

MK

N

)2(t−i−1)
M2
K

N2
ϕ2 (79)

=

(
ε+

MK

N

)2(t−1) 1−
(
ε+ MK

N

)−2t
1−

(
ε+ MK

N

)−2 M2
K

N2
ϕ2 (80)

=
1−

(
ε+ MK

N

)2t
1−

(
ε+ MK

N

)2 M2
K

N2
ϕ2 (81)

t→+∞−−−−→ 1

1−
(
ε+ MK

N

)2 M2
K

N2
ϕ2 (82)

As for equation (50), all the εt are independent from νt,
from ν̃t, and from the global model parameters θt. Hence,
for one disguised free-rider we get the following asymptotic
variance:

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J (Mjρj)

2

1−
(
ε+ MK

N

)2
+

1

1−
(
ε+ MK

N

)2 M2
K

N2
ϕ2. (83)

A.4 Proof of Corollary 1

Proof. Relation between federated learning with and
without free-riders global model

With a reasoning by induction similar to Proof A.1, we get:

θ̃t − θt =

t−1∑
i=0

(
ε+

MK

N

)t−i−1
f(θi) (84)

+

t−1∑
i=0

(
ε+

MK

N

)t−i−1
(ν̃i − νi) (85)

+
∑
k∈K

t−1∑
i=0

(
ε+

MK

N

)t−i−1
Mk

N
ϕkεk,t, (86)

Expected value

εk,t are delta-correlated Gaussian White noises which im-
plies that E [εk,t] = 0. Following the same reasoning steps
as in Proof A.2, we get:

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (87)

Variance
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All the εk,t are independent Gaussian white noises over
server iterations t and free-riders indices k implying
Var [εt] = 1. Following the same reasoning steps as in
Proof A.2, we get:

Var

[
t−1∑
i=0

(
ε+

MK

N

)t−i−1
Mk

N
ϕkεk,t

]
t→+∞−−−−→ 1

1−
(
ε+ MK

N

)2 M2
k

N2
ϕ2
k (88)

Like for equation (50), all the εk,t are independent from
νt, ν̃t and the global model parameters θt. Hence, for mul-
tiple disguised free-rider we get the following asymptotic
variance:

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J (Mjρj)

2

1−
(
ε+ MK

N

)2
+

1

1−
(
ε+ MK

N

)2 ∑
k∈K

M2
k

N2
ϕ2
k. (89)

A.5 Proof of Corollary 2

Proof. Relation between federated learning with and
without free-riders global model

The relation remains the same for Theorem 2, Theo-
rem 3, and Corollary 1 by replacing ηj with ηj(t) =∑
j ∈ JMj

N ρj(t) and ϕk by ϕk(t) for disguised free-riding.

Expected value

With ρtj and ϕ(t) the properties for ν̃t, νt, εt and εk,t remain
identical. Hence, they still are delta-correlated Gaussian
White noises implying that E [ν̃t] = E [νt] = E [εt] =
E [εk,t] = 0. Hence, for Theorem 2, Theorem 3, and Corol-
lary 1, we get:

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (90)

Variance

Variance asymptotic behaviour proven in Proof A.2, A.3,
and A.4 can be reduced to the one in Proof A.2. Hence, F ,
equation (64), need to be reexpressed to take into account
ρj(t). All the ν̃i are still independent with νi. Hence, we
have:

F = Var [ν̃i(t)− νi(t)] (91)

= Var

∑
j∈J

Mj

N
ρtj ζ̃j,i −

∑
j∈J

Mj

N −MK
ρtjζj,i

 (92)

Considering that ρtj
t→+∞−−−−→ 0, we get:

F
t→+∞−−−−→ 0 (93)

Using the same reasoning as the one used for the expected
value convergence in Proof A.2, we get that the SGD noise
contribution linked to F goes to 0 at infinity.

For the disguised free-riders, εk,t are still independent Gaus-
sian white noises implying Var [εk,t] = 1. Hence, following
a reasoning similar to the on in Proof A.2, we get:

Var

[
t−1∑
i=0

(
ε+

MK

N

)t−i−1
MK

N
ϕk(t)εk,t

]

=

t−1∑
i=0

(
ε+

MK

N

)2(t−i−1)
M2
K

N2
ϕ2
k(t) (94)

Considering that ϕk(t)
t→+∞−−−−→ 0, by using the same rea-

soning as for the proof of the expected value for free-riders,
Section XX, we get:

Var

[
t−1∑
i=0

(
ε+

MK

N

)t−i−1
MK

N
ϕk(t)εk,t

]
t→+∞−−−−→ 0

(95)

Hence, we can conclude that

Var
[
θ̃t − θt

]
t→+∞−−−−→ 0. (96)

B Complete Proofs for FedProx

FedProx is a generalization of FedAvg. As such, we use
the proof done for FedAvg to prove convergence of free-
riders attack using FedProx as an optimization solver. The
L2 norm monitored by µ changes the gradient as gj(θj) '
rj [θj − θ∗j ] + µ[θj − θt].

Using equation (7), we then get:

dθj = −λ
[
rj [θj − θ∗j ] + µ[θj − θt]

]
+

λ√
S
σj(θj)dWj ,

(97)

leading to

θj(u) = e−λ[rj+µ]uθj(0) +
rjθ
∗
j + µθt

rj + µ
[1− e−λ(rj+µ)u]

+
λ√
S

∫ u

x=0

e−λ(rj+µ)(u−x)σj(θj)dWx. (98)

considering that θj(0) = θt, θj(
EMj

S ) = θt+1
j , and
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σj(θj) = σtj , we get:

θt+1
j = γjθ

t +
rjθ
∗
j + µθt

rj + µ
[1− γj ] (99)

+
λ√
S

∫ EMj
S

x=0

e−λ(rj+µ)(
EMj

S −x)σtjdWx, (100)

where γj = e−λ[rj+µ]
EMj

S . We can reformulate this as

θt+1
j = [γj + µ

1− γj
rj + µ

]θt +
rj

rj + µ
[1− γj ]θ∗j (101)

+
λ√
S

∫ EMj
S

x=0

e−λ(rj+µ)(
EMj

S −x)σtjdWx, (102)

The SGD noise variance between two server iterations for
FedProx is:

Var
[
θt+1
j |θt

]
=
λ

S
σtj

2 1

2(rj + µ)

[
1− e−2λ(rj+µ)

EMj
S

]
︸ ︷︷ ︸

ρtj
2

,

(103)

We also define η′j = γj + µ
1−γj
rj+µ

and δj =
rj

rj+µ
[1 − γj ].

For FedAvg, µ = 0, we get η′j = ηj and δj = 1 − ηj . By
property of the exponential, γj ∈]0, 1[. As rj and µ are non
negative, then η′j ∈]0, 1[ like ηj for FedAvg.

Theorem 1 for FedProx

We consider ρ′j
2

= λ
Sσj

2 1
2(rj+µ)

[
1− e−2λ(rj+µ)

EMj
S

]
Using the same reasoning by induction as in Proof A.1, we
get:

θ̃t − θt =
t−1∑
i=0

(
ε′ +

MK

N

)t−i−1
g(θi)

+

t−1∑
i=0

(
ε′ +

MK

N

)t−i−1
(ν̃′i − ν′i), (104)

with g(θt) = MK

N

[
θt −

∑
j∈J

Mj

N−MK
[η′jθ

t + δjθ
∗
j ]
]
,

ε′ =
∑
j∈J

Mj

N η′j , ν
′
t =

∑
j∈J

Mj

N−MK
ρ′jζj,t and ν̃′t =∑

j∈J
Mj

N ρ′j ζ̃j,t.

Theorem 2 for FedProx

Like for FedAvg, we make the assumption that federated
learning without free-riders using FedProx converge. In
addition, ν̃′t and ν′t are also independent delta-correlated
Gaussian white noises. Following the same proof as in
Proof A.2, we thus get:

lim
t→+∞

E
[
θ̃t − θt

]
= 0. (105)

and

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J

(
Mjρ

′
j

)2
1−

(
ε′ + MK

N

)2
(106)

The asymptotic variance still strictly increases with MK .

Note: We introduce x = λ(rj + µ)
EMj

S . By taking the
partial derivative of ρ′j with respect to µ, we get:

δρ′j
δµ

=
λ

2S
σ2
j

1

(rj + µ)2
[−1 + (1 + 2x)e−2x], (107)

which is strictly negative for a positive µ considering that
all the other constants are positive. Hence, the SGD noise
variance ρ′j is inversely proportional with the regularization
factor µ.

Similarly, for ε′, by considering that η′j can be rewritten
as η′j = γj

rj
rj+µ

+ µ
rj+µ

, the partial derivative of η′j with
respect to µ can be expressed as:

δη′j
δµ

=
rj

(rj + µ)2
[1− (1− x)e−x], (108)

which is strictly positive. Hence η′j is strictly increasing
with the regularization µ and so is ε′.

Considering the behaviours of ε′ and ρ′j with respect to the
regularization term µ, the more regularization is asked by
the server and the smaller the asymptotic variance is, leading
to more accurate free-riding attacks.

Theorem 3 for FedProx

The free-riders mimic the behaviour of the fair clients.
Hence, we get:

ϕk
′2 =

λ

S
σk

2 1

2(rj + µ)

[
1− e−2λ(rk+µ)

EMj
S

]
(109)

leading to

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J

(
Mjρ

′
j

)2
1−

(
ε′ + MK

N

)2
+

1

1−
(
ε′ + MK

N

)2 M2
K

N2
ϕ′2. (110)

For disguised free-riders, the variance is also inversely pro-
portional to the regularization parameter µ.

Corollary 1 for FedProx

Similarly, for many free-riders, we get:

Var
[
θ̃t − θt

]
t→+∞−−−−→

[ 1
N2 + 1

(N−MK)2 ]
∑
j∈J

(
Mjρ

′
j

)2
1−

(
ε′ + MK

N

)2
+

1

1−
(
ε′ + MK

N

)2 M2
K

N2

∑
k∈K

ϕ′2k . (111)
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C Additional experimental results

C.1 Accuracy Performances
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Figure 3: Accuracy performances for FedAvg and 20 epochs in the different experimental scenarios.
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Figure 4: Accuracy performances for FedAvg and 5 epochs in the different experimental scenarios.
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Figure 5: Accuracy performances for FedProx and 20 epochs in the different experimental scenarios.
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Figure 6: Accuracy performances for FedProx and 5 epochs in the different experimental scenarios.
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Figure 7: Loss performances for FedAvg and 20 epochs in the different experimental scenarios.
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Figure 8: Loss performances for FedAvg and 5 epochs in the different experimental scenarios.
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Figure 9: Loss performances for FedProx and 20 epochs in the different experimental scenarios.
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Figure 10: Loss performances for FedProx and 5 epochs in the different experimental scenarios.
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