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Free-rider Attacks on Model Agregation in Federated Learning

Free-rider attacks against federated learning consist in dissimulating participation to the federated learning process with the goal of obtaining the final aggregated model without actually contributing with any data. This kind of attacks is critical in sensitive applications of federated learning, where data is scarce and the model has high commercial value. We introduce here the first theoretical and experimental analysis of free-rider attacks on federated learning schemes based on iterative parameters aggregation, such as FedAvg or Fed-Prox, and provide formal guarantees for these attacks to converge to the aggregated models of the fair participants. We first show that a straightforward implementation of this attack can be simply achieved by not updating the local parameters during the iterative federated optimization. As this attack can be detected by adopting simple countermeasures at the server level, we subsequently study more complex disguising schemes based on stochastic updates of the free-rider parameters. We demonstrate the proposed strategies on a number of experimental scenarios, in both iid and non-iid settings. We conclude by providing recommendations to avoid free-rider attacks in real world applications of federated learning, especially in sensitive domains where security of data and models is critical.

Introduction

healthcare [START_REF] Brisimi | Federated learning of predictive models from federated electronic health records[END_REF][START_REF] Silva | Federated learning in distributed medical databases: Meta-analysis of largescale subcortical brain data[END_REF]. The relevance of this approach is witnessed by current large scale federated learning initiatives under development in the medical domain, for instance for learning predictive models of breast cancer 1 , or for drug discovery and development 2 .

The participation to this kind of research initiatives is usually exclusive and typical of applications where data is scarce and unique in its kind. In these settings, aggregation results entail critical information beyond data itself, since a model trained on exclusive datasets may have very high commercial or intellectual value. For this reason, providers may not be interested in sharing the model: the commercialization of machine learning products would rather imply the availability of the model as a service through web-or cloud-based API. This is due to the need of preserving the intellectual property on the model components, as well as to avoid potential information leakage, for example by limiting the maximum number of queries allowed to the users [START_REF] Carlini | The secret sharer: Evaluating and testing unintended memorization in neural networks[END_REF][START_REF] Fredrikson | Model inversion attacks that exploit confidence information and basic countermeasures[END_REF][START_REF] Ateniese | Hacking smart machines with smarter ones: How to extract meaningful data from machine learning classifiers[END_REF]. This critical aspect can lead to the emergence of opportunistic behaviors in federated learning, where ill-intentioned clients may participate with the aim of obtaining the federated model, without actually contributing with any data during the training process. In particular, the attacker, or free-rider, aims at disguising its participation to federated learning while ensuring that the iterative training process ultimately converges to the wished target: the aggregated model of the fair participants. Free-riding attacks performed by ill-intentioned participants ultimately open federated learning initiatives to intellectual property loss and data privacy breaches, taking place for example the form of model inversion [START_REF] Fredrikson | Privacy in pharmacogenetics: An endto-end case study of personalized warfarin dosing[END_REF][START_REF] Fredrikson | Model inversion attacks that exploit confidence information and basic countermeasures[END_REF].

The study of security and safety of federated learning is an active research domain, and several kind of attacks are matter of ongoing studies. For example, an attacker may interfere during the iterative federated learning procedure to degrade/modify models performances [START_REF] Bhagoji | Analyzing federated learning through an adversarial lens[END_REF][START_REF] Li | Data poisoning attacks on factorization-based collaborative filtering[END_REF]23,22,[START_REF] Shen | AUROR: Defending against poisoning attacks in collaborative deep learning systems[END_REF], or retrieve information about other clients' data [START_REF] Wang | Beyond Inferring Class Representatives: User-Level Privacy Leakage from Federated Learning[END_REF][START_REF] Hitaj | Deep Models under the GAN: Information leakage from collaborative deep learning[END_REF]. Yet, free-riding for federated learning has been so far underinvestigated in the literature. Nevertheless, this kind of attack is becoming critical as federated learning is rapidly emerging as the standard training scheme in current cooperative learning initiatives. To the best of our knowledge, the only investigation is in a preliminary work [START_REF] Lin | Free-riders in Federated Learning: Attacks and Defenses[END_REF] focusing on attack strategies operated on federated learning based on gradient aggregation. However, no theoretical guarantees are provided for the effectiveness of this kind of attacks. Furthermore this setup is unpractical in many real world applications, where federated training schemes based on model averaging are instead more common, due to the reduced data exchange across the network. FedAvg [START_REF] Brendan Mcmahan | Communicationefficient learning of deep networks from decentralized data[END_REF] is the most representative framework of this kind, as it is based on the iterative averaging of the clients models' parameters, after updating each client model for a given number of training epochs at the local level. To improve the robustness of FedAvg in non-iid and heterogeneous learning scenarios, FedProx [START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF] extends FedAvg by including a regularization term penalizing local departures of clients' parameters from the global model.

The contribution of this work consists in the development of a theoretical framework for the study of free-rider attacks in federated learning schemes based on model averaging, such as in FedAvg and FedProx. The problem is here formalized via the reformulation of federated learning as a stochastic process describing the evolution of the aggregated parameters across iterations. To this end, we build upon previous works characterizing the evolution of model parameters in Stochastic Gradient Descent (SGD) as a continuous time process [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF][START_REF] Orvieto | Continuous-time Models for Stochastic Optimization Algorithms[END_REF][START_REF] Li | Stochastic modified equations and adaptive stochastic gradient algorithms[END_REF][START_REF] He | Differential equations for modeling asynchronous algorithms[END_REF]. A critical requirement for opportunistic free-rider attacks is to ensure the convergence of the training process to the wished target represented by the aggregated model of the fair clients. We show that the proposed framework allows to derive explicit conditions to guarantee the success of the attack. This is an important theoretical feature as it is of primary interest for the attacker to not interfere with the learning process.

We first derive in Section 2.4 a basic free-riding strategy to guarantee the convergence of federated learning to the model of the fair participants. This strategy simply consists in returning at each iteration the received global parameters. As this behavior could easily be detected by the server, we build more complex strategies to disguise the free-rider contribution to the optimization process, based on opportune stochastic perturbations of the parameters. We demonstrate in Section 2.5 that this strategy does not alter the global model convergence, and in Section 3 we experimentally demonstrate our theory on a number of learning scenarios in both iid and non-iid settings. All proofs and additional material are provided in the Appendix.

Methods

Before introducing in Section 2.2 the core idea of freerider attacks, we first recapitulate in Section 2.1 the general context of parameter aggregation in federated learning.

Federated learning through model aggregation:

FedAvg and FedProx

In federated learning, we consider a set I of participating clients respectively owning datasets D i composed by M i samples. During optimization, it is generally assumed that the D elements of the clients' parameters vector θ t i = (θ t i,0 , θ t i,1 , ..., θ t i,D ), and the global parameters θ t = (θ t 0 , θ t 1 , ..., θ t D ) are aggregated independently at each iteration round t. Following this assumption, and for simplicity of notation, in what follows we restrict our analysis to a single parameter entry, that will be generally denoted by θ t i and θ t for clients and server respectively. In this setting, to estimate a global model across clients, FedAvg [START_REF] Brendan Mcmahan | Communicationefficient learning of deep networks from decentralized data[END_REF] is an iterative training strategy based on the aggregation of local model parameters θ t i . At each iteration step t, the server sends the current global model parameters θ t to the clients. Each client updates the model by minimizing over E epochs the local cost function L(θ t+1 i , D i ) initialized with θ t , and subsequently returns the updated local parameters θ t+1 i to the server. The global model parameters θ t+1 at the iteration step t + 1 are then estimated as a weighted average:

θ t+1 = i∈I M i N θ t+1 i , (1) 
where N = i∈I M i represents the total number of samples across distributed datasets. FedProx [START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF] builds upon FedAvg by adding to the cost function a L2 regularization term penalizing the deviation of the local parameters θ t+1 i from the global parameters θ t . The new cost function is

L P rox (θ t+1 i , D i , θ t ) = L(θ t+1 i , D i ) + µ 2 θ i t+1 -θ t 2
where µ is the hyperparameter monitoring the regularization by enforcing proximity between local update θ i t+1 and reference model θ t .

Formalizing Free-rider attacks

Aiming at obtaining the aggregated model of the fair clients, the strategy of a free-rider consists in participating to federated learning by dissimulating local updating through the sharing of opportune counterfeited parameters. The freeriding attacks investigated in this work are illustrated in Algorithm 1, and analysed in the following sections from both theoretical and experimental standpoints.

We denote by J the set of fair clients, i.e. clients following the federated learning strategy of Section 2.1 and by K the set of free-riders, i.e. malicious clients pretending to participate to the learning process, such that I = J ∪ K and J = ∅. We denote by M K the number of samples declared by the free-riders.

SGD perturbation of the fair clients local model

To describe the clients' parameters observed during federated learning, we rely on the modeling of Stochastic Gradient Descent (SGD) as a continuous time stochastic process [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF][START_REF] Orvieto | Continuous-time Models for Stochastic Optimization Algorithms[END_REF][START_REF] Li | Stochastic modified equations and adaptive stochastic gradient algorithms[END_REF][START_REF] He | Differential equations for modeling asynchronous algorithms[END_REF].

For a client j, let us consider the following form for the loss function:

L j (θ j ) = 1 M j Mj n=1 l n,j (θ j ), (2) 
where M j is the number of samples owned by the client, and l n,j is the contribution to the overall loss from a single observation {x n,j ; y n,j }. The gradient of the loss function is defined as g j (θ j ) ≡ ∇L j (θ j ).

We represent SGD by considering a minibatch S j,k , composed by a set of S different indices drawn uniformly at random from the set {1, ... , M j }, each of them indexing a function l n,j (θ j ) and where k is the index of the minibatch. Based on S j,k , we form a stochastic estimate of the loss,

L S j,k (θ j ) = 1 S n∈S j,k l n,j (θ j ), (3) 
where the corresponding stochastic gradient is defined as g S j,k (θ j ) ≡ ∇L S j,k (θ j ).

By observing that gradient descent is a sum of S independent and uniformly distributed samples, thanks to the central limit theorem, gradients at the client level can thus be mod-eled by a Gaussian distribution

g S j,k (θ j ) ∼ N (g j (θ j ), 1 S σ 2 j (θ j )), (4) 
where g j (θ j ) = E s g S j,k (θ j ) is the full gradient of the loss function in equation ( 2) and σ 2 j (θ j ) is the variance associated with the loss function in equation [START_REF] Brendan Mcmahan | Communicationefficient learning of deep networks from decentralized data[END_REF]. SGD updates are expressed as:

θ j (u j + 1) = θ j (u j ) -λg S j,k (θ j (u j )), (5) 
where u j is the SGD iteration index and λ is the learning rate set by the server.

By defining ∆θ j (u j ) = θ j (u j +1)-θ j (u j ), we can rewrite the update process as

∆θ j (u j ) = -λg j (θ j (u j )) + λ √ S σ j (θ j )∆W j , (6) 
where ∆W j ∼ N (0, 1). The resulting continuous-time model [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF][START_REF] Orvieto | Continuous-time Models for Stochastic Optimization Algorithms[END_REF][START_REF] Li | Stochastic modified equations and adaptive stochastic gradient algorithms[END_REF][START_REF] He | Differential equations for modeling asynchronous algorithms[END_REF] is

dθ j = -λg j (θ j )du j + λ √ S σ j (θ j )dW j . (7) 
where W j is a continuous time Wiener Process.

Similarly as in [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF], we assume that σ j (θ j ) is approximately constant with respect to θ j for the client's stochastic gradient updates between t and t + 1, and will therefore denote σ j (θ j ) = σ t j . Following [START_REF] Mandt | Stochastic gradient descent as approximate Bayesian inference[END_REF], we consider a local quadratic approximation for the client's loss, leading to a linear form for the gradient g j (θ j ) r j [θ j -θ * j ], where r j ∈ R + depends on the approximation of the cost function around the local minimum θ * j . This assumption enables rewriting equation [START_REF] Fredrikson | Privacy in pharmacogenetics: An endto-end case study of personalized warfarin dosing[END_REF] as an Ornstein-Uhlenbeck process [START_REF] Uhlenbeck | On the theory of the brownian motion[END_REF]. Starting from the initial condition represented by θ t , the global model received at the iteration t, we characterize the local updating of the parameters through equation ( 7), and we follow the evolution up to the time EMj S , where E is the number of epochs, and M j is the number of samples owned by the client. Assuming that M j is a multiple of S, the number of samples per minibatch, the quantity EMj S represents the total number of SGD steps run by the client. The updated model θ t+1 j uploaded to the server therefore takes the form:

θ t+1 j = e -λrj EM j S [θ t -θ * j ] + θ * j θt+1 j + λ √ S EM j S u=0 e -λrj EM j S -u σ t j dW u . (8) 
We note that the relative number of SGD updates for the fair clients, EMj S , influences the parameter η j = e -λrj EM j S , which becomes negligible for large values of E.

The variance introduced by SGD can be rewritten as

Var θ t+1 j |θ t = λ S σ t j 2 1 2r j 1 -e -2λrj EM j S ρ t j 2 , (9) 
where we can see that the higher EMj S , the lower the overall SGD noise. The noise depends on the local loss function r j , on the server parameters (number of epochs E, learning rate λ, and number of samples per minibatch S), and on the clients' data specific parameters (SGD variance σ t j 2 ).

Equation [START_REF] He | Differential equations for modeling asynchronous algorithms[END_REF] shows that clients' parameters observed during federated learning can be expressed as θ t j = θt j + ρ t j ζ j,t , where, given θ t , θt j is a deterministic component corresponding to the model obtained with EMj S steps of gradient descents, and ζ j,t is a delta-correlated Gaussian white noise. We consider in what follows a constant local noise variance σ 2 j (this assumption will be relaxed in Section 2.5.3 to consider instead time-varying noise functions ρ t j ). Based on this formalism, in the next Section we study a basic free-rider strategy simply consisting in returning at each iteration the received global parameters. We call this type of attack plain free-riding.

Plain free-riding

We denote by θ and θj respectively the global and local model parameters obtained in presence of free-riders. The plain free-rider returns the same model parameters as the received ones, i.e. ∀k ∈ K, θt+1 k = θt . In this setting, the server aggregation process (1) can be rewritten as:

θt+1 = j∈J M j N θt+1 j + M K N θt , ( 10 
)
where θt is the global model and θt j are the fair clients' local models uploaded to the server for free-riding.

Free-riders perturbation of the fair clients local model

In this section, we investigate the effect of the free-riders on the local optimization performed by the fair clients at every server iteration. The participation of the free-riders to federated learning implies that the processes of the fair clients are being perturbed by the attacks throughout training. In particular, the initial conditions of the local optimization problems are modified according to the perturbed aggregation of equation [START_REF] Krizhevsky | Cifar-10 (canadian institute for advanced research[END_REF].

Back to the assumptions of Section 2.3 , the initial condition θt of the local optimization includes now the aggregated model of the fair clients and a perturbation coming from the free-riders. Thus, equation ( 8) in presence of free-riding can be written as

θt+1 j = η j [ θt -θ * j ] + θ * j + λ √ S EM j S u=0 e -λrj EM j S -u σt j dW u , (11) 
where σt j = σ t j ( θj ) is the SGD variance for free-riding. We consider that σt j = σ t j = σ j . This assumption will be relaxed in Section 2.5.3 to consider instead time-varying noise functions. With analogous considerations to those made in Section 2.3, the updated parameters take the form:

θt+1 j = η j [ θt -θ * j ] + θ * j + ρ j ζj,t , (12) 
where ζj,t is a delta-correlated Gaussian white noise. Similarly as for federated learning, E θt+1

j | θt = η j [ θt -θ * j ] + θ * j , and Var θt+1 j | θt = ρ 2 j .
We want to express the global optimization process θt due to free-riders in terms of a a perturbation of the equivalent stochastic process θ t obtained with fair clients only. Theorem 1 provides a recurrent form for the difference between these two processes.

Theorem 1. Under the assumptions of Section 2.3 and 2.4 for the local optimization processes resulting from federated learning with respectively only fair clients and with freeriders, the difference between the aggregation processes of formulas ( 1) and ( 10) takes the following recurrent form:

θt -θ t = t-1 i=0 + M K N t-i-1 f (θ i ) (13) 
+ t-1 i=0 + M K N t-i-1 (ν i -ν i ), with f (θ t ) = M K N θ t -j∈J Mj N -M K [η j (θ t -θ * j ) + θ * j ] , = j∈J Mj N η j , ν t = j∈J Mj N -M K ρ j ζ j,t and νt = j∈J Mj N ρ j ζj,t .
We note that in the special case with no free-riders (i.e. M K = 0), the quantity θt -θ t depends on the second term of equation ( 13) only, and represents the comparison between two different realizations of the stochastic process associated to the federated global model. Theorem 1 shows that in this case the variance across optimization results is non-zero, and depends on the intrinsic variability of the local optimization processes quantified by the variable ν t . We also note that in presence of free-riders the convergence to the model obtained with fair clients depends on the relative sample size declared by the free-riders M K N .

Convergence analysis of plain free-riding

Based on the relationship between the learning processes established in Theorem 1, we are now able to prove that federated learning with plain free-riders defined in equation [START_REF] Krizhevsky | Cifar-10 (canadian institute for advanced research[END_REF] converges in expectation to the aggregated model of the fair clients of equation ( 1).

Theorem 2 (Plain free-riding). Assuming FedAvg converges in expectation, and based on the assumption of Theorem 1, the following asymptotic properties hold:

E θt -θ t t→+∞ ----→ 0, (14) 
Var θt -θ t t→+∞ ----→

[ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -+ M K N 2 . ( 15 
)
As a corollary of Theorem 2, in Proof A.2 it is shown that the asymptotic variance is strictly increasing with the sample size M K declared by the free-riders. In practice, the smaller the total number of data points declared by the freeriders, the closer the final aggregation result approaches the model obtained with fair clients only. On the contrary, when the the sample size of the fair clients is negligible with respect to the the one declared by the free-riders, i.e. N M K , the variance tends to infinity. This is due to the ratio approaching to 1 in the geometric sum of the second term of equation ( 13). In the limit case when only freeriders participate to federated learning (J = ∅), we obtain instead the trivial result θt = θ 0 and Var θt = 0. In this case there is no learning throughout the training process. Finally, with no free-riders (M K = 0), we obtain Var θt

1 -θ t 2 t→+∞ ----→ 2 N 2 1 1-2 j∈J (M j ρ j )
2 , reflecting the variability of the fair aggregation process due to the stochasticity of the local optimization processes.

Disguised free-riding

Plain free-riders can be easily detected by the server, since for each iteration the condition [ θt+1

k -θt = 0] is true.
In what follows, we study improved attack strategies based on the sharing of opportunely disguised parameters, and investigate sufficient conditions on the disguising models to obtain the desired convergence behavior of free-rider attacks.

Additive noise to mimic SGD updates

A disguised free-rider with additive noise generalizes the plain one, and uploads parameters θt+1

k = θt + ϕ k (t) t .
Here, the perturbation t is assumed to be Gaussian white noise, and ϕ k (t) > 0 is a suitable time-varying perturbation compatible with the free-rider attack. As shown in equation ( 8), the parameters uploaded by the fair clients take the general form composed by an expected model corrupted by a stochastic perturbation due to SGD. Free-riders can mimic this update form by adopting a noise structure similar to the one of the fair clients:

ϕ 2 k (t) = λ S σ t k 2 1 2r k 1 -e -2λr k EM k S , (16) 
where r k and σ t k would ideally depend on the (non-existing) free-rider data distribution and thus need to be determined, while M k is the declared number of samples. Compatibly with the assumptions of constant SGD variance σ 2 j for the fair clients, we here assume that the free-riders noise is constant and compatible with the SGD form:

ϕ 2 k = λ S σ 2 k 1 2r k 1 -e -2λr k EM k S . ( 17 
)
Analogously as for the fair clients, this assumption will be relaxed in Section 2.5.3.

Attacks based on fixed additive stochastic perturbations

In this new setting, we can rewrite the FedAvg aggregation process (1) for an attack with a single free-rider with perturbation ϕ:

θt+1 = j∈J M j N θt+1 j + M K N θt + M K N ϕ t . (18) 
Theorem 3 extends the results previously obtained for federated learning with plain free-riders to our new case with additive perturbations.

Theorem 3 (Single disguised free-rider). Analogously to Theorem 2, the aggregation process under free-riding described in equation [START_REF] Shen | AUROR: Defending against poisoning attacks in collaborative deep learning systems[END_REF] converges in expectation to the aggregated model of the fair clients of equation ( 1) :

E θt -θ t t→+∞ ----→ 0, (19) 
Var θt -θ t t→+∞ ----→

[ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -+ M K N 2 + 1 1 -+ M K N 2 M 2 K N 2 ϕ 2 . ( 20 
)
Theorem 3 shows that disguised free-riding converges to the final model of federated learning with fair clients, although with a higher variance resulting from the free-rider's perturbations injected at every iteration. The perturbation is proportional to M K N , the relative number of samples declared by the free-rider.

The extension of this result to the case of multiple freeriders requires to account in equation [START_REF] Shen | AUROR: Defending against poisoning attacks in collaborative deep learning systems[END_REF] for an attack of the form k∈K M k N ϕ k k,t , where M k is the total sample size declared by free-rider k. Corollary 1 follows from the linearity of this form.

Corollary 1 (Multiple disguised free-riders). Assuming a constant perturbation factor ϕ k for each free-rider k, the asymptotic expectation of Theorem 3 still holds, while the variance reduces to

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -+ M K N 2 + 1 1 -+ M K N 2 k∈K M 2 k N 2 ϕ 2 k . (21) 

Time-varying noise model of fair-clients evolution

To investigate more plausible parameters evolution in federated learning, in this section we relax the assumption made in Section 2.3 about the constant noise perturbation of the SGD process across iteration rounds.

We assume here that the standard deviation σ t j of SGD decreases at each server iteration t, approaching to zero over iteration rounds: σ t j t→+∞ ----→ 0. This assumption reflects the improvement of the fit of the global model θt to the local datasets over server iterations, and implies that the stochastic process of the local optimization of Section 2.3 has noise parameter ρ t j t→+∞ ----→ 0. We thus hypothesize that, to mimic the behavior of the fair clients, a suitable time-varying perturbation of the free-riders should follow a similar asymptotic behavior: ϕ k (t) t→+∞ ----→ 0. Under these assumptions, Corollary 2 shows that the asymptotic variance of model aggregation under free-rider attacks is zero, and that it is thus still possible to retrieve the fair client's model.

Corollary 2. Assuming that fair clients and free-riders evolve according to Section 2.3 to 2.5, if the conditions ρ t j t→+∞ ----→ 0 and ϕ k (t) t→+∞ ----→ 0 are met, the aggregation process of federated learning is such that the asymptotic variance of Theorems 2 and 3 reduce to

Var θt -θ t t→+∞ ----→ 0. ( 22 
)
We assumed in Corollary 2 that the SGD noise σ t j decreases at each server iteration and eventually converges to 0. In practice, the global model may not fit perfectly the dataset of the different clients D j and, after a sufficient number of optimization rounds, may keep oscillating around a local minima. We could therefore assume that σ t j t→+∞ ----→ σ j leading to ρ t j t→+∞ ----→ ρ j . In this case, to mimic the behavior of the fair clients, a suitable time-varying perturbation compatible with the free-rider attacks should converge to a fixed noise level such that ϕ k (t) t→+∞ ----→ ϕ k . Similarly as for Corollary 2, it can be shown that under these hypothesis federated learning follows the asymptotic behaviors of Theorem 2 and 3 for respectively plain and disguised free-riders.

FedProx

FedProx includes a regularization term for the local loss functions of the different clients ensuring the proximity between the updated models θ t+1 j and θ t . This regularization is usually defined as an additional L2 penalty term, and leads to the following form for the local gradient

g j (θ j ) r j [θ j -θ * j ] + µ[θ j -θ t ]
where µ is a trade-off parameter. Since the considerations in Section 2.3 still hold in this setting, we can express the local model contribution for FedProx with a formulation analogous to the one of equation [START_REF] He | Differential equations for modeling asynchronous algorithms[END_REF]. Hence, for FedProx, we obtain similar conclusions for Theorem 2 and 3, as well as for Corollary 1 and 2, proving that the convergence behavior with free-riders is equivalent to the one obtained with fair clients only, although with a different asymptotic variance (Appendix B).

Theorem 4. Assuming convergence in expectation for federated learning with fair clients only, under the assumptions of Theorem 1 the asymptotic properties of plain and disguised free-riding of Theorem 2, 3, and Corollary 1, 2, still hold with FedProx. In this case we have parameters:

ρ j 2 = λ S σ j 2 1 2(r j + µ) 1 -e -2λ(rj +µ) EM j S , (23) 
= j∈J M j N [γ j + µ 1 -γ j r j + µ ], (24) 
and γ j = e -λ(rj +µ) EM j S .

(

) 25 
We note that the asymptotic variance is still strictly increasing with the total number of free-riders samples. Moreover, the regularization term monitors the asymptotic variance: a higher regularization leads to a smaller noise parameter ρ 2 j and to a smaller , thus decreasing the asymptotic variances of Theorem 2, 3, and Corollary 1, 2.

Experiments

This experimental section focuses on a series of benchmarks for the proposed free-rider attacks. The methods being of general application, the focus here is to empirically demonstrate our theory on diverse experimental setups and model specifications. All code, data and experiments are available at URL.

Experimental Details

We consider 5 fair clients for each of the following scenarios, investigated in previous works on federated learning [START_REF] Brendan Mcmahan | Communicationefficient learning of deep networks from decentralized data[END_REF][START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF]:

MNIST (classification in iid and non-iid settings). We study a standard classification problem on MNIST [START_REF] Lecun | Proceedings of the IEEE[END_REF] and create two benchmarks: an iid dataset (MNIST iid) where we assign 600 training digits and 300 testing digits to each client, and a non-iid dataset (MNIST non-iid), where for Shakespeare (LSTM prediction). We study a LSTM model for next character prediction on the dataset of The Complete Works of William Shakespeare [START_REF] Brendan Mcmahan | Communicationefficient learning of deep networks from decentralized data[END_REF]. We randomly chose 5 clients with more than 3000 samples, and assign 70% of the dataset to training and 30% to testing. Each client has on average 6415.4 samples (±1835.6) . We use a twolayer LSTM classifier containing 100 hidden units with an 8 dimensional embedding layer. The model takes as an input a sequence of 80 characters, embeds each of the characters into a learned 8-dimensional space and outputs one character per training sample after 2 LSTM layers and a fully connected one.

We train federated models following FedAvg and FedProx aggregation processes. In FedProx, the hyperparameter µ monitoring the regularization is chosen according to the best performing scenario reported in [START_REF] Li | Federated Optimization in Heterogeneous Networks[END_REF]: µ = 1 for MNIST (iid and non-iid), and µ = 0.001 for Shakespeare. For the free-rider we declare a number of samples equal to the average sample size across fair clients. We test federated learning with 5 and 20 local epochs using SGD optimization with learning rate λ = 0.001 for MNIST (iid and non-iid), λ = 0.001 for CIFAR-10, and λ = 0.5 for Shakespeare, and batch size of 100. Resulting figures for associated accuracy and loss can be found in Figure 1, Figure 2 and Appendix C.

Free-rider attacks: convergence and performances

In the following experiments, we investigate free-rider attacks taking the simple form ϕ(t) = σt -γ . The parameter γ is chosen among a panel of testing parameters γ ∈ {0.5, 1, 2}, while additional experimental material on the influence of γ on the convergence is presented in Appendix C. While the optimal tuning of disguised free-rider attacks is out of the scope of this study, in what follows the perturbations parameter σ is defined according to practical hypotheses on the parameters evolution during federated learning. After random initialization at the initial federated learning step, the parameter σ is opportunely estimated to mimic the extent of the distribution of the update ∆ θ0 = θ1 -θ0 observed between consecutive rounds of federated learning. We can simply model these increments as a zero-centered univariate Gaussian distribution, and assign the parameter σ to the value of the fitted standard deviation.

According to this strategy, the free-rider would return parameters θt k with perturbations distributed as the ones observed between two consecutive optimization rounds. Figure 1, top row, exemplifies the evolution of the models obtained with FedAvg (20 local training epochs) on the Shakespeare dataset with respect to different scenarios: 1) fair clients only, 2) plain free-rider, 3) disguised free-rider with decay parameter γ = 1, and estimated noise level σ, and 4) disguised free-rider with noise level increased to 3σ. For each scenario, we compare the federated model obtained under free-rider attacks with respect to the equivalent model obtained with the participation of the fair clients only. For this latter setting, to assess the model training variability, we repeated the training 30 times with different parameter initializations. The results show that, independently from the chosen free-riding strategy, the resulting models attains comparable performances with respect to the one of the model obtained with fair clients only (Figure 1, top row). Similar results are obtained for the setup with 5 local training epochs and different values of γ, as well as for FedProx with 5 and 20 local epochs (Appendix C).

We also investigate the same training setup under the influence of multiple free-riders (Figure 1, mid and bottom rows). In particular, we test the scenarios where the freeriders declare respectively 50% and 90% of the total training sample size. In practice, we maintain the same experimental setting composed by 5 fair clients, and we increase the number of free-riders to respectively 5 and 45, while declaring for each free-rider a sample size equal to the average number of samples of the fair clients. Independently from the magnitude of the perturbation function, the number of free-riders does not seem to affect the performance of the final aggregated model. However, the convergence speed is greatly decreased. Figure 2 shows that the convergence in these different settings is not identically affected by the free-riders. When the size of free-riders is moderate, e.g. up to 50% of the total sample size, the convergence speed of the loss is slightly slower than for federated learning with fair clients. The attacks can be still considered successful, as convergence is achieved within the pre-defined iteration budget. However, when the size of free-riders reaches 90%, convergence to the optimum is extremely slow and cannot be achieved anymore in a reasonable amount of iterations. This result is in agreement with our theory, for which the convergence speed inversely proportional to the relative size of the free-riders. Interestingly, we note that the final accuracy obtained in all the scenarios is similar (though a bit slower with 90% of free-riders), and falls within the variability observed in federated learning with fair-clients only (Figure 1). This result is achieved in spite of the incomplete convergence during training. This effect can be explained by observing that this accuracy level is already reached at the early training stages of federated learning with fair clients, while further training does not seem to improve the predictions. This result suggests that, in spite of the very low convergence speed, the averaging process with 90% of free-riders still achieves a reasonable minima compatible with the training path of the fair clients aggregation.

Analogous results and considerations can be derived from the set of experiments on the remaining datasets, training pa-rameters and FedProx as an aggregation scheme (Appendix C).

Conclusion and discussion

We introduced a theoretical framework for the study of freeriding attacks on model aggregation in federated learning. Based on the proposed methodology, we proved that simple strategies based on returning the global model at each iteration already lead to successful free-rider attacks (plain free-riding), and we investigated more sophisticated disguising techniques relying on stochastic perturbations of the parameters (disguised free-riding). The convergence of each attack was demonstrated through theoretical developments and experimental results.

This work opens the way to the investigation of optimal disguising and defense strategies for free-rider attacks, beyond the proposed heuristics. Our experiments show that inspection of the client's distribution should be established as a routine practice for the detection of free-rider attacks in federated learning. Further research directions are represented by the improvement of detection at the server level, through better modeling of the heterogeneity of the incoming clients' parameters. This study provides also the theoretical basis for the study of effective free-riding strategies, based on different noise model distributions and perturbation schemes. Finally, in this work we relied on a number of hypothesis concerning the evolution of the clients' parameters during federated learning. This choice provides us with a convenient theoretical setup for the formalization of the proposed theory which may be modified in the future, for example, for investigating more complex forms of variability and schemes for parameters aggregation.
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A Complete Proofs for FedAvg

A.1 Proof of Theorem 1

We prove with a reasoning by induction that:

θt -θ t = t-1 i=0 + M K N t-i-1 f (θ i ) + t-1 i=0 + M K N t-i-1 (ν i -ν i ), ( 26 
) with f (θ t ) = M K N θ t -j∈J Mj N -M K [η j (θ t -θ * j ) + θ * j ] , = j∈J Mj N η j , ν t = j∈J Mj N -M K ρ j ζ j,t and νt = j∈J Mj N ρ j ζj,t .
By definition of θ t+1 ,

E [f (θ t )] = M K N E [θ t ] -E θ t+1 .
Proof. Server iteration t = 1

Using the fair clients local model parameters evolution of Section 2.3 and the server aggregation process expressed in equation ( 10), the global model can be written as

θ 1 = j∈J M j N -M K η j θ 0 -θ * j + θ * j + ν 0 . (27) 
Similarly, the global model for federated learning with plain free-riders can be expressed as

θ1 = j∈J M j N η j θ 0 -θ * j + θ * j + M K N θ 0 + ν0 . ( 28 
)
By subtracting equation ( 27) to equation (28), we obtain:

θ1 -θ 1 = - M K N j∈J M j N -M K η j θ 0 -θ * j + θ * j + M K N θ 0 + ν0 -ν 0 (29)
Hence, θ1 -θ 1 follows the formalization.

From t to t + 1

We suppose the property true at a server iteration t. Hence, we get:

θt -θ t = t-1 i=0 + M K N t-i-1 f (θ i ) + t-1 i=0 + M K N t-i-1 (ν i -ν i ), (30) 
With the same reasoning as for t = 1, we get:

θ t+1 = j∈J M j N -M K η j θ t -θ * j + θ * j + ν t (31) and θt+1 = j∈J M j N η j θt -θ * j + θ * j + M K N θt + νt (32)
By using equation (30) for equation (32), we get:

θt+1 = j∈J M j N η j θ t -θ * j + θ * j + t-1 i=0 + M K N t-i-1 f (θ i ) + t-1 i=0 + M K N t-i-1 (ν i -ν i ) + M K N θ t + M K N t-1 i=0 + M K N t-i-1 f (θ i ) + M K N t-1 i=0 + M K N t-i-1 (ν i -ν i ) + νt (33) 
which can be rewritten as:

θt+1 = j∈J M j N η j θ t -θ * j + θ * j + [ + M K N ] t-1 i=0 + M K N t-i-1 f (θ i ) + [ + M K N ] t-1 i=0 + M K N t-i-1 (ν i -ν i ) + M K N θ t + νt , (34) 
leading to

θt+1 = j∈J M j N η j θ t -θ * j + θ * j + t-1 i=0 + M K N t-i f (θ i ) + t-1 i=0 + M K N t-i (ν i -ν i ) + M K N θ t + νt (35) 
By subtracting equation (35) to equation (31), we obtain:

θt+1 -θ t+1 = - M K N j∈J M j N -M K η j θ t -θ * j + θ * j + t-1 i=0 + M K N t-i f (θ i ) + t-1 i=0 + M K N t-i (ν i -ν i ) + M K N θ t + νt -ν t (36) Given that -M K N j∈J Mj N -M K η j θ t -θ * j + θ * j + M K N θ t = f (θ t )
, we get:

θt+1 -θ t+1 = t i=0 + M K N t-i f (θ i ) + t i=0 + M K N t-i (ν i -ν i ). (37) 
A.2 Proof of Theorem 2

Proof. Expected Value

Let us first have a look at the expected value. By definition, a sum of Gaussian distributions with 0 mean,

E [ν i ] = 0 and E [ν i ] = 0. We also notice that E [f (θ t )] = M K N E [θ t ] -E θ t+1
. Hence, we obtain

E θt -θ t = M K N t-1 i=0 + M K N n-i-1 E θ t -θ t+1 . (38) 
We consider that federated learning is converging, hence

| E [θ t ] -E θ t+1 | t→+∞
----→ 0, and for any positive α, there exists

N 0 such that | E θ t -θ t+1 | < α. Since η j ∈]0, 1[, we have ∈]0, N -M K N [ and + M K N ∈]0, 1[. Thus, we can rewrite equation (38) as | E θt -θ t | ≤ N0-1 i=0 + M K N t-i-1 | E θ t -E θ t+1 | + t-1 i=N0 + M K N t-i-1 α. (39) 
We define by

R α = max i∈[1,N0] | E [θ t ] -E θ t+1 |, and get: | E θt -θ t | ≤ N0-1 i=0 + M K N t-i-1 A R α + t-1 i=N0 + M K N t-i-1 B α. (40) 
• Expressing A.

A = N0-1 i=0 + M K N t-i-1 (41) 
= + M K N t-1 1 -+ M K N -N0 1 -+ M K N -1 (42) t→+∞ ----→ 0 (43) • Expressing B. B = t-1 i=N0 + M K N t-i-1 (44) 
= + M K N t-N0-1 1 -+ M K N -(t-N0) 1 -+ M K N -1 (45) 
= 1 -+ M K N t-N0 1 -+ M K N (46) t→+∞ ----→ 1 1 -+ M K N > 0 (47) 
Using equation ( 43) and (47) in equation (40), we get:

∀α lim t→+∞ | E θt -θ t | ≤ Bα, (48) 
which is equivalent to

lim t→+∞ E θt -θ t = 0. (49) 

Variance

The Wiener processes, ν i and νi are independent from the server models parameters θ i . Also, each Wiener process is independent with the other Wiener processes. Hence, we get:

Var θt -θ t = Var t-1 i=0 + M K N t-i-1 f (θ i ) E + t-1 i=0 + M K N 2(t-i-1) Var [ν i -ν i ] F , (50) 
Expressing E. Before getting a simpler expression for E, we need to consider Cov f (θ l ), f (θ m ) . To do so, we first consider f

(θ t ) -E [f (θ t )]. f (θ t ) -E f (θ t ) = M K N   1 - j∈J M j N -M K η j   G [θ t -E θ t ], (51) 
We can prove with a reasoning by induction that

θ t -E [θ t ] = n-1 i=0 j∈J Mj N -M K η j t-i-1 ν i = n-1 k=0 t-i-1 ν i .
All the ν i are independent across each others and have 0 mean, hence:

Cov [f (θ l ), f (θ m )] = G 2 min{l-1,m-1} i=0 l+m-2i-2 E ν 2 i (52) Considering that E ν 2 i = Var [ν i ] = j∈J Mj N -M K ρ j 2 , we get: Cov f (θ l ), f (θ m ) = G 2 j∈J M j N -M K ρ j 2 min{l-1,m-1} i=0 t-i-1 (53) 
We define

G = G 2 j∈J Mj N -M K ρ j 2
. Given that ∈ ]0, 1[, we get the following upper bound on E:

Cov f (θ l ), f (θ m ) ≤ G min{l, m} (54) 
By denoting H = + M K N , we can rewrite E as:

E = t-1 l=0 t-1 m=0 H 2(t-1)-l-m Cov f l (θ l ), f (θ m ) (55) ≤ t-1 l=0 t-1 m=0 H 2(t-1)-l-m G min{l, m} (56) 
Considering that min{l, m} ≤ l, we get:

E ≤ G t-1 l=0 t-1 m=0 H 2(t-1)-l-m l (57) = G H 2(t-1) t-1 l=0 H -l l t-1 m=0 H -m (58) = G H 2(t-1) t-1 l=0 H -l l 1 -H -n 1 -H -1 (59) = G H 2(t-1) 1 -H -n 1 -H -1 t-1 l=0 H -l l (60) 
Considering the power series

+∞ k=0 nx n = x (1-x) 2 , we get that t-1 l=0 H -l l = H -1 (1-H -1 ) 2 .
Hence, E's upper bound goes to 0. Given that E is non-negative, we get:

E t→+∞ ----→ 0 (61) 
Expressing F . Let us first consider the noise coming from the SGD steps. All the νi are independent with ν i . Hence, we have

F = Var [ν i ] -Var [ν i ] (62) = Var   j∈J M j N ρ j ζj,i - j∈J M j N -M K ρ j ζ j,i   (63) = [ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 (64)
Replacing (64) in equation ( 50), we can express the variance as

Var θt -θ t = E + F t-1 i=0 H 2(t-i-1) (65) 
= E + F H 2(t-1) t-1 i=0 H -2i (66) 
= E + F H 2(t-1) 1 -H -2t 1 -H -2 (67) 
= E + F 1 -H 2t 1 -H 2 (68) 
By replacing F and H with their respective expression, we can conclude that

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -+ M K N 2 (69) 
Note 1: The asymptotic variance is strictly increasing with the number of data points declared by the free-riders M K .

While M j and ρ j are constants and independent from the number of free-riders and from their respective number of data points, N and depend on the total number of free-riders' samples M K . We first rewrite = 1 N α with α = j∈J M j η j not depending on M K and we get:

+ M K N = 1 N [α + M K ]. (70) 
By defining M J = j∈J M j , we get:

1 - + M K N 2 = 1 N 2 [M 2 J + 2M K [M J -α] -α 2 ], (71) 
with M J -α > 0 because η j ∈]0, 1[. Also, considering that

1 N 2 + 1 (N -M K ) 2 = 1 N 2 [ M 2 K M 2 J + 2 M K M J + 2], (72) 
we can rewrite

1 N 2 + 1 (N -M K ) 2 1 -+ M K N 2 = M 2 K M 2 J + 2 M K M J + 2 M 2 J + 2M K [M J -α] -α 2 (73)
As the numerator is a polynomial of order 2 in M K and the denominator is a polynomial of order 1 in M K , the asymptotic variance is increasing with M K .

Note 2: When considering that the SGD noise variance is different for federated learning with and without free-riders, we get: 

F = 1 N 2 j∈J (M j ρj ) 2 + 1 (N -M K ) 2 j∈J (M j ρ j )
θt -θ t = t-1 i=0 + M K N t-i-1 f (θ i ) (75) 
+ t-1 i=0 + M K N t-i-1 (ν i -ν i ) (76) 
+ t-1 i=0 + M K N t-i-1 M K N ϕ t , (77) 

Expected value

t is a delta-correlated Gaussian White noise which implies that E [ t ] = 0. Following the same reasoning steps as in Proof A.2, we get:

lim t→+∞ E θt -θ t = 0.
(78)

Variance

All the t are independent Gaussian white noises implying Var [ t ] = 1. Following the same reasoning steps as in Proof A.2, we get:

Var t-1 i=0 + M K N t-i-1 M K N ϕ t = t-1 i=0 + M K N 2(t-i-1) M 2 K N 2 ϕ 2 (79) = + M K N 2(t-1) 1 -+ M K N -2t 1 -+ M K N -2 M 2 K N 2 ϕ 2 (80) = 1 -+ M K N 2t 1 -+ M K N 2 M 2 K N 2 ϕ 2 (81) t→+∞ ----→ 1 1 -+ M K N 2 M 2 K N 2 ϕ 2 (82) 
As for equation ( 50), all the t are independent from ν t , from νt , and from the global model parameters θ t . Hence, for one disguised free-rider we get the following asymptotic variance:

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -+ M K N 2 + 1 1 -+ M K N 2 M 2 K N 2 ϕ 2 . (83) 
A.4 Proof of Corollary 1

Proof. Relation between federated learning with and without free-riders global model With a reasoning by induction similar to Proof A.1, we get:

θt -θ t = t-1 i=0 + M K N t-i-1 f (θ i ) (84) + t-1 i=0 + M K N t-i-1 (ν i -ν i ) (85) 
+ k∈K t-1 i=0 + M K N t-i-1 M k N ϕ k k,t , (86) 
Expected value k,t are delta-correlated Gaussian White noises which implies that E [ k,t ] = 0. Following the same reasoning steps as in Proof A.2, we get:

lim t→+∞ E θt -θ t = 0.
(87)

Variance

All the k,t are independent Gaussian white noises over server iterations t and free-riders indices k implying Var [ t ] = 1. Following the same reasoning steps as in Proof A.2, we get:

Var t-1 i=0 + M K N t-i-1 M k N ϕ k k,t t→+∞ ----→ 1 1 -+ M K N 2 M 2 k N 2 ϕ 2 k ( 88 
)
Like for equation ( 50), all the k,t are independent from ν t , νt and the global model parameters θ t . Hence, for multiple disguised free-rider we get the following asymptotic variance:

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J (M j ρ j ) 2 1 -+ M K N 2 + 1 1 -+ M K N 2 k∈K M 2 k N 2 ϕ 2 k . (89) 
A.5 Proof of Corollary 2

Proof. Relation between federated learning with and without free-riders global model

The relation remains the same for Theorem 2, Theorem 3, and Corollary 1 by replacing η j with η j (t) = j ∈ J Mj N ρ j (t) and ϕ k by ϕ k (t) for disguised free-riding.

Expected value

With ρ t j and ϕ(t) the properties for νt , ν t , t and k,t remain identical. Hence, they still are delta-correlated Gaussian White noises implying that

E [ν t ] = E [ν t ] = E [ t ] = E [ k,t ] = 0.
Hence, for Theorem 2, Theorem 3, and Corollary 1, we get:

lim t→+∞ E θt -θ t = 0. ( 90 
)

Variance

Variance asymptotic behaviour proven in Proof A.2, A.3, and A.4 can be reduced to the one in Proof A.2. Hence, F , equation (64), need to be reexpressed to take into account ρ j (t). All the νi are still independent with ν i . Hence, we have:

F = Var [ν i (t) -ν i (t)] (91) = Var   j∈J M j N ρ t j ζj,i - j∈J M j N -M K ρ t j ζ j,i   (92) 
Considering that ρ t j t→+∞ ----→ 0, we get:

F t→+∞ ----→ 0 (93)
Using the same reasoning as the one used for the expected value convergence in Proof A.2, we get that the SGD noise contribution linked to F goes to 0 at infinity.

For the disguised free-riders, k,t are still independent Gaussian white noises implying Var [ k,t ] = 1. Hence, following a reasoning similar to the on in Proof A.2, we get:

Var t-1 i=0 + M K N t-i-1 M K N ϕ k (t) k,t = t-1 i=0 + M K N 2(t-i-1) M 2 K N 2 ϕ 2 k (t) (94) 
Considering that ϕ k (t) t→+∞ ----→ 0, by using the same reasoning as for the proof of the expected value for free-riders, Section XX, we get:

Var t-1 i=0 + M K N t-i-1 M K N ϕ k (t) k,t t→+∞ ----→ 0 (95) 
Hence, we can conclude that Var θt -θ t t→+∞ ----→ 0.

(96)

B Complete Proofs for FedProx

FedProx is a generalization of FedAvg. As such, we use the proof done for FedAvg to prove convergence of freeriders attack using FedProx as an optimization solver. The L2 norm monitored by µ changes the gradient as g j (θ j )

r j [θ j -θ * j ] + µ[θ j -θ t ].
Using equation ( 7), we then get:

dθ j = -λ r j [θ j -θ * j ] + µ[θ j -θ t ] + λ √ S σ j (θ j )dW j , (97) 
leading to

θ j (u) = e -λ[rj +µ]u θ j (0) + r j θ * j + µθ t r j + µ [1 -e -λ(rj +µ)u ] + λ √ S u x=0 e -λ(rj +µ)(u-x) σ j (θ j )dW x . ( 98 
) considering that θ j (0) = θ t , θ j ( EMj S ) = θ t+1 j
, and σ j (θ j ) = σ t j , we get:

θ t+1 j = γ j θ t + r j θ * j + µθ t r j + µ [1 -γ j ] (99) 
+ λ √ S EM j S x=0 e -λ(rj +µ)( EM j S -x) σ t j dW x , (100) 
where γ j = e -λ[rj +µ] EM j S . We can reformulate this as

θ t+1 j = [γ j + µ 1 -γ j r j + µ ]θ t + r j r j + µ [1 -γ j ]θ * j (101) + λ √ S EM j S x=0 e -λ(rj +µ)( EM j S -x) σ t j dW x , (102) 
The SGD noise variance between two server iterations for FedProx is:

Var θ t+1 j |θ t = λ S σ t j 2 1 2(r j + µ) 1 -e -2λ(rj +µ) EM j S ρ t j 2 , (103) 
We also define η j = γ j + µ 1-γj rj +µ and δ j = rj rj +µ [1 -γ j ]. For FedAvg, µ = 0, we get η j = η j and δ j = 1 -η j . By property of the exponential, γ j ∈]0, 1[. As r j and µ are non negative, then η j ∈]0, 1[ like η j for FedAvg.

Theorem 1 for FedProx

We consider ρ j 2 = λ S σ j 2 1 2(rj +µ) 1 -e -2λ(rj +µ) EM j

S

Using the same reasoning by induction as in Proof A.1, we get:

θt -θ t = t-1 i=0 + M K N t-i-1 g(θ i ) + t-1 i=0 + M K N t-i-1 (ν i -ν i ), ( 104 
) with g(θ t ) = M K N θ t -j∈J Mj N -M K [η j θ t + δ j θ * j ] , = j∈J Mj N η j , ν t = j∈J Mj N -M K ρ j ζ j,t and ν t = j∈J Mj N ρ j ζj,t . Theorem 2

for FedProx

Like for FedAvg, we make the assumption that federated learning without free-riders using FedProx converge. In addition, ν t and ν t are also independent delta-correlated Gaussian white noises. Following the same proof as in Proof A.2, we thus get:

lim t→+∞ E θt -θ t = 0. (105) 
and

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J M j ρ j 2 1 - + M K N 2
(106) The asymptotic variance still strictly increases with M K . Note: We introduce x = λ(r j + µ) EMj S . By taking the partial derivative of ρ j with respect to µ, we get:

δρ j δµ = λ 2S σ 2 j 1 (r j + µ) 2 [-1 + (1 + 2x)e -2x ], (107) 
which is strictly negative for a positive µ considering that all the other constants are positive. Hence, the SGD noise variance ρ j is inversely proportional with the regularization factor µ.

Similarly, for , by considering that η j can be rewritten as η j = γ j rj rj +µ + µ rj +µ , the partial derivative of η j with respect to µ can be expressed as:

δη j δµ = r j (r j + µ) 2 [1 -(1 -x)e -x ], (108) 
which is strictly positive. Hence η j is strictly increasing with the regularization µ and so is .

Considering the behaviours of and ρ j with respect to the regularization term µ, the more regularization is asked by the server and the smaller the asymptotic variance is, leading to more accurate free-riding attacks.

Theorem 3 for FedProx

The free-riders mimic the behaviour of the fair clients. Hence, we get:

ϕ k 2 = λ S σ k 2 1 2(r j + µ) 1 -e -2λ(r k +µ) EM j S (109) leading to Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J M j ρ j 2 1 - + M K N 2 + 1 1 - + M K N 2 M 2 K N 2 ϕ 2 . ( 110 
)
For disguised free-riders, the variance is also inversely proportional to the regularization parameter µ.

Corollary 1 for FedProx

Similarly, for many free-riders, we get: 

Var θt -θ t t→+∞ ----→ [ 1 N 2 + 1 (N -M K ) 2 ] j∈J M j ρ j 2 1 - + M K N 2 + 1 1 - + M K N 2 M 2 K N 2 k∈K ϕ 2 k . (111) 

Federated

  learning is a training paradigm that has gained popularity in the last years as it enables different clients to jointly learn a global model without sharing their respective data. It is particularly suited for Machine Learning applications in domains where data security is critical, such as Proceedings of the 24 th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021, San Diego, California, USA. PMLR: Volume 130. Copyright 2021 by the author(s).

Algorithm 1 :=

 1 Free-riding in federated learningInput: learning rate λ, epochs E, initial model θ 0 , batch size S θ0 = θ 0 ; for each round t=0,...,T-1 doSend the global model θt to all the clients; for each fair client j ∈ J do θt+1 j ClientU pdate( θt , E, λ); Send θt+1 j to the server; for each free-rider k ∈ K do if disguised free-rider then θt+1 k = θt + , where ∼ N (0,
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 1 Figure 1: Plots for Shakespeare and E = 20. Accuracy performances for FedAvg and FedProx according to the number of free-riders participating in the learning process: 15% (top), 50% (middle), and 90% (bottom) of the total amount of clients. The shaded blue region indicates the variability of federated learning model with fair clients only, estimated from 30 different training initialization.
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 2 Figure 2: Plots for Shakespeare and E = 20. Loss performances for FedAvg and FedProx according to the number of free-riders participating in the learning process: 15% (top), 50% (middle), and 90% (bottom) of the total amount of clients.
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C Additional experimental results

C.1 Accuracy Performances

Free-rider Attacks on Model Agregation in Federated Learning