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1 INTRODUCTION

The Big Data era requires new processing architectures among
which the stream systems that have become well-known. Those
systems are able to summarize infinite data streams with aggregates
on the most recent data, allowing keeping a limited but meaningful
piece of the initial stream. However, up to now, only point events
have been considered and spanning events, which come with a
duration, have been let aside, restricted to the persistent databases
world only. In this paper, we propose a unified framework to deal
with such stream mechanisms on spanning events.

2 EXAMPLE

Let us consider a network monitoring system where we want to
evaluate the load of an antenna, with spanning transactions, e.g.,
phone calls, happening continuously. In a classical streaming sys-
tem, the load would be based either on the start or end time of the
event. With a spanning event stream the full event duration would
be interpreted.

Figure 1 models a series of calls: events a; as point events show
only their ending time, while b;’s as spanning events show the full-
call duration. We want to analyze the load of the antenna every five
minutes showed by windows W;’s. With spanning events, window
wy contains 4 events: {bs, by, bs, b7}, while point events would find
only 2 events for the same window {as, a4}. This results in more
accurate results for spanning events.

Of course, it would be possible to handle both start and end times
for each event and then, mimic the spanning event behavior with
current streaming systems. However, this would come with some
problems to solve: how to deal, for instance, with long-standing
events? Or lost messages (never-ending or un-started events)? Or
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even reversed bound messages (end, then start timestamps)? More-
over, natively modeling event duration allows detecting events
which have no bounds in the window, like event b7 crossing win-
dow wy and w3 on Figure 1. Spanning event stream hence allows
getting not only information about (dis)connections to/from the
antenna, but also to the full connection information.

Spanning events stream hence allows to modelize events in a
similar way than the way they were in the real world, providing
more accurate results than point events stream. Furthermore repro-
ducing spanning event behavior with current streaming systems
would be tricky and time consuming, thus the need for a specific
system. In this paper, we propose a unified framework to deal with
such stream mechanisms on spanning events.

3 SPANNING EVENT STREAM

A spanning event stream contains a possibly infinite number of
spanning events. Those events are composed of a transaction time,
a valid time and some data specific to the event.

The transaction time corresponds to the moment when the event
was received in the system, while the valid time is an interval
corresponding to when the event was happening in the real world.
Basically, a spanning event is a point event which valid time has
been changed to an interval instead of a timestamp.

4 WINDOWING

A common solution to overcome the infinite stream problem with
blocking operators, like aggregations, is to use windowing. Indeed,
windows extract from the infinite stream finite sub-stream to feed
the aggregation operators, which can then calculate results.

Those windows can be represented with intervals, and they are
created with measures which set their size and frequency. Those
measures can be independent of the stream, like a system clock
stored on the streaming system server, or depend on the various
parts of the events.

Windows are created with a function, which takes as input one
or several measures and output intervals. Then, a predicate is used
to fill them. It compares the event valid or transaction time with
the window interval to tell if an event is in the window or not.
For this, two predicates can be used, the first one comparing an
event timestamp to a window interval, the second one using Allen’s
algebra to compare two intervals.
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Figure 1: End time vs. full-time events aggregation in a window-based stream system.

5 ASSIGNING SPANNING EVENTS TO
WINDOWS

With the definition of spanning event stream and windows, the
impact of spanning events can now be clearly studied. A first remark
we should have is that normally a window is released as soon as its
upper bound is reached, but spanning events duration makes to us
no guarantee that we will receive an event before it ends (and in
fact we might often receive it only when it ends). Hence we need
to wait an additional time after the window has closed to actually
release the window. We call this time a Time-To-Postpone, and it
can as much be learned by the system as given by the user.

Once we know when to release the window, we still need to
study precisely how spanning events impacts windows. For this we
study here only the most common windows. Among them sliding
windows is a good candidate. Those windows advance with the
time, number of events received or data. Basically only the sliding
windows using time are impacted as they use the valid time of the
events to insert them into windows. Hence for them we need to
use Allen predicates which compare two intervals together.

Then we can have some look at session windows. Those windows
open with the arrival of an event and close when no event has been
received for a certain duration. With spanning events we propose
to adapt those windows to consider not only the end bound of the
event, but the full event duration as being in the session. However
we need to keep care of really long events, which could lead to two
impossible choices: reopening windows which have already been
released, or having overlapping session bounds. To avoid this, we
limit the event size to the Time-To-Postpone which makes us sure
to avoid clashes between the sessions which need to be created and
those which have been released.

6 EXPERIMENTS

Eventually, we validate the soundness of our new framework with
a set of experiments, based on a straightforward implementation.
In those experiments we show that not only spanning events are
more accurate than point events, but the Time-To-Postpone is also a
good measure to deal with event duration. This Time-To-Postpone
has on top only a limited impact on throughput. When comparing
throughput of points events and spanning events on a real-like data

set, we acknowledge a loss with spanning events which is, however,
low and can be compensated with further optimization techniques.

7 CONCLUSION

In conclusion, spanning events can be used in streaming system,
with a gain in accuracy for aggregation results. Indeed, they allow
us to modelize the events the same way they were in the real
world without making any truncation. However using spanning
events implies that we modify the way we use windows. For this,
the bound function needs to be adapted, in particular for session
windows to acknowledge for the full event duration. Then, the
insertion predicate needs to be adapted to compare two intervals
together instead of asserting that a timestamp is in an interval.
Finally, we need to postpone the window release to make sure we
have received all the events before releasing a window. For this, the
Time-To-Postpone answer to the question, but only partially, as we
do not allow to go further in past than the Time-To-Postpone.
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