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Abstract

We study the mean field Schrödinger problem (MFSP), that is the problem of finding
the most likely evolution of a cloud of interacting Brownian particles conditionally on the
observation of their initial and final configuration. Its rigorous formulation is in terms of an
optimization problem with marginal constraints whose objective function is the large deviation
rate function associated with a system of weakly dependent Brownian particles. We undertake
a fine study of the dynamics of its solutions, including quantitative energy dissipation estimates
yielding the exponential convergence to equilibrium as the time between observations grows
larger and larger, as well as a novel class of functional inequalities involving the mean field
entropic cost (i.e. the optimal value in (MFSP)). Our strategy unveils an interesting connection
between forward backward stochastic differential equations and the Riemannian calculus on the
space of probability measures introduced by Otto, which is of independent interest.
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1 Introduction and statement of the main results

In the seminal works [46, 47] E. Schrödinger addressed the problem of finding the most likely
evolution of a cloud of independent Brownian particles conditionally on the observation of their
initial and final configuration. In modern language this is an entropy minimization problem with
marginal constraints. The aim of this work is to take the first steps in the understanding of the
Mean Field Schrödinger Problem, obtained by replacing in the above description the independent
particles by interacting ones.

To obtain an informal description of the problem, considerN Brownian particles (Xi,N
t )t∈[0,T ],1≤i≤N

interacting through a pair potential W{
dXi,N

t = − 1
N

∑N
k=1∇W (Xi,N

t −Xk,N
t )dt+ dBit

Xi,N
0 ∼ µin.

(1)

Their evolution is encoded in the random empirical path measure

1
N

∑N
i=1 δXi,N· . (2)

At a given time T , the configuration of the particle system is visible to an external observer that
finds it close to an “unexpected” (écart spontané et considérable in [47]) probability measure µfin,
namely

1

N

N∑
i=1

δXi,NT
≈ µfin (3)
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It is a classical result [49, 20, 4] that the sequence of empirical path measures (2) obeys the large
deviations principle (LDP). Thus, the problem of finding the most likely evolution conditionally
on the observations is recast as the problem of minimizing the LDP rate function among all path
measures whose marginal at time 0 is µin and whose marginal at time T is µfin. This is the mean
field Schrödinger problem (MFSP). Extending naturally the classical terminology we say that an
optimal path measure is a mean field Schrödinger bridge (henceforth MFSB) and the optimal value
is the mean field entropic cost. The latter generalizes both the Wasserstein distance and the entropic
cost.

The classical Schrödinger problem has been the object of recent intense research activity (see
[36]). This is due to the computational advantages deriving from introducing an entropic penaliza-
tion in the Monge-Kantrovich problem [19] or to its relations with functional inequalities, entropy
estimates and the geometrical aspects of optimal transport. Our article contributes to this sec-
ond line of research, recently explored by the papers [17, 28, 34, 44, 32, 43]. Leaving all precise
statements to the main body of the introduction, let us give a concise summary of our contributions.

Dynamics of mean field Schrödinger bridges Our mean field version of the Schrödinger
problem stems from fundamental results in large deviations for weakly interacting particle systems
such as [49, 20] and shares some analogies with the control problems considered in [16] and with
the article [2] in which an entropic formulation of second order variational mean field games is
studied. Among the more fundamental results we establish for the mean field Schrödinger problem,
we highlight

• the existence of MFSBs and, starting from the original large deviations formulation, the
derivation of both an equivalent reformulation in terms of a McKean-Vlasov control problem
as well as a Benamou-Brenier formula,

• establishing that MFSBs solve forward backward stochastic differential equations (FBSDE)
of McKean-Vlasov type (cf. [10, 11]).

The proof strategy we adopt in this article combines ideas coming from large deviations and stochas-
tic calculus of variations, see [18, 52, 23]. Another interesting consequence of having a large devia-
tions viewpoint is that we can also exhibit some regularity properties of MFSBs, taking advantage
of Föllmer’s results [25] on time reversal. Building on [17, 28] we establish a link between FBSDEs
and the Riemannian calculus on probability measures introduced by Otto [41] that is of indepen-
dent interest and underlies our proof strategies. In a nutshell, the seminal article [31] established
that the heat equation is the gradient flow of the relative entropy w.r.t. the squared Wasserstein
distance. Thus, classical first order SDEs yield probabilistic representations for first order ODEs
in the Riemannian manifold of optimal transport. Our observation may be seen as the second
order counterpart to the results of [31]: indeed we will present an heuristic strongly supporting the
fact that Markov solutions of “second order” trajectorial equations (FBSDEs) yield probabilistic
representations for second order ODEs in the Riemannian manifold of optimal transport.

Ergodicity of Schrödinger bridges and functional inequalities Consider again (1) and
assume that W is convex so that the particle system is rapidly mixing and there is a well defined
notion of equilibrium configuration µ∞. If N and T are large, one expects that

(i) The configurations 1
N

∑N
i=1 δXit at times t = 0, T/2, T are almost independent.
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(ii) The configuration at T/2 is with high probability very similar to µ∞.

Because of (i), even when the external observer acquires the information (3), he/she still expects
(ii) to hold. Thus mean field Schrödinger bridges are to spend most of their time around the
equilibrium configuration. All our quantitative results originate in an attempt to justify rigorously
this claim.

In this work we obtain a number of precise quantitative energy dissipation estimates. These
lead us to the main quantitative results of the article:

• we characterize the long time behavior of MFSBs, proving exponential convergence to equi-
librium with sharp exponential rates,

• we derive a novel class of functional inequalities involving the mean field entropic cost. Pre-
cisely, we obtain a Talagrand inequality and an HWI inequality1 that generalize those previ-
ously obtained in [12] by Carrillo, McCann and Villani.

Regarding the second point above, we can in fact retrieve (formally) the inequalities in [12] by
looking at asymptotic regimes for the mean field Schrödinger problem. Besides the intrinsic interest
and their usefulness in establishing some of our main results, our functional inequalities may have
consequences in terms of concentration of measure and hypercontractivity of non linear semigroups,
but this is left to future work.

The fact that optimal curves of a given optimal control problem spend most of their time around
an equilibrium is known in the literature as the turnpike property. The first turnpike theorems have
been established in the 60’s for problems arising in econometry [39]; general results for determin-
istic finite dimensional problems are by now available, see [50]. In view of the McKean-Vlasov
formulation of the mean field Schrödinger problem, some of our results may be viewed as turnpike
theorems as well, but for a class of infinite dimensional and stochastic problems. An interesting
feature is that, by exploiting the specific structure of our setting, we are able to establish the turn-
pike property in a quantitative, rather than qualitative form. The McKean-Vlasov formulation also
connects our findings with the study of the long time behavior of mean field games [7, 8, 5, 9].

Concerning the proof methods, our starting point is Otto calculus and the recent rigorous
results of [17] together with the heuristics put forward in [28]. The first new ingredient of our
proof strategy is the above mentioned connection between FBSDEs and Otto calculus that plays
a key role in turning the heuristics into rigorous statements. It is worth remarking that using a
trajectorial approach does not just provide with a way of making some heuristics rigorous, but it
also permits to obtain a stronger form of some of the results conjectured in [28] which then simply
follow by averaging trajectorial estimates. The second new ingredient in our proofs involves a
conserved quantity that plays an analogous role to the total energy of a physical system. For such
quantity we derive a further functional inequality which seems to be novel already in the classical
Schrödinger problem (i.e. for independent particles) and allows to establish the turnpike property.

Structure of the article In the remainder introductory section we state and comment our main
results. In Section 2 we provide a geometrical interpretation sketching some interesting heuristic
connections between optimal transport and stochastic calculus. The material of this section is not
used later on; therefore the reader who is not interested in optimal transport may avoid it. Sections

1A Talagrand inequality states that a transportation cost is dominated by a divergence, whereas a HWI inequality
states that a divergence is dominated by a transportation cost and a Fisher information.
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3 and 4 contain the proofs of our main results, the former being devoted to the results concerning
the dynamics of MFSBs and the latter one dealing with the ergodic results. Finally an appendix
section contains some technical results.

1.1 Frequently used notation

• (Ω,Ft,FT ) is the canonical space of Rd-valued continuous paths on [0, T ], so {Ft}t≤T is the
coordinate filtration. Ω is endowed with the uniform topology.

• P(Ω) and P(Rd) denote the set of Borel probability measures on Ω and Rd respectively.

• (Xt)t∈[0,T ] is the canonical (i.e. identity) process on Ω.

• Rµ is the Wiener measure with starting distribution µ.

• H(P|Q) denotes the relative entropy of P with respect to Q, defined as EP

[
log
(

dP
dQ

)]
if

P� Q and +∞ otherwise.

• Pt denotes the marginal distribution of a measure P ∈ P(Ω) at time t.

• Pβ(Ω) is the set of measures on Ω for which supt≤T |Xt|β is integrable. Pβ(Rd) is the set of

measures on Rd for which the function | · |β is integrable.

• The β-Wasserstein distance on Pβ(Ω) is defined by

Pβ(Ω)2 3 (P,Q) 7→ Wβ(P,Q) :=
(

infY∼P,Z∼Q E
[
supt∈[0,T ] |Yt − Zt|β

])1/β

.

With a slight abuse of notation we also denote by Wβ the β-Wasserstein distance on Pβ(Rd)
defined analogously.

• For a given measurable marginal flow [0, T ] 3 t 7→ µt ∈ P(Rd), we denote by L2((µt)t∈[0,T ])

the space of square integrable functions from [0, T ] × Rd to Rd associated to the reference
measure µt(dx)dt and the corresponding almost-sure identification. We consider likewise the
Hilbert space

H−1((µt)t∈[0,T ]),

defined as the closure in L2((µt)t∈[0,T ]) of the smooth subspace{
Ψ : [0, T ]× Rd → Rd s.t. Ψ = ∇ψ, ψ ∈ C∞c ([0, T ]× Rd)

}
.

• γ and λ are respectively the standard Gaussian and Lebesgue measure in Rd.

• Cl,m([0, T ] × Rd;Rk) is the set of functions from [0, T ] × Rd to Rk which have l continuous
derivatives in the first (ie. time) variable and m continuous derivatives in the second (ie.
space) variable. The space Cm(Rd;Rk) is defined in the same way. C∞c ([0, T ] × Rd) is the
space of real-valued smooth functions on [0, T ]× Rd with compact support. The gradient ∇
and Laplacian ∆ act only in the space variable.

• If f is a function and µ a measure, its convolution is x 7→ f ∗ µ(x) :=
∫
f(x− y)µ(dy).
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1.2 The mean field Schrödinger problem and its equivalent formulations

We are given a so-called interaction potential W : Rd → R, for which we assume

W is of class C2(Rd;R) and symmetric, i.e. W (·) = W (−·), (H1)

sup
z,v∈Rd,|v|=1

v · ∇2W (z) · v < +∞.

Besides the interaction potential, the data of the problem are a pair of probability measures µin, µfin

on which we impose
µin, µfin ∈ P2(Rd) and F̃(µin), F̃(µfin) < +∞ , (H2)

where the free energy or entropy functional F̃ is defined for µ ∈ P2(Rd) by

F̃(µ) =

{∫
Rd logµ(x)µ(dx) +

∫
RdW ∗ µ(x)µ(dx), if µ� λ

+∞, otherwise.
(4)

In the above, and in the rest of the article, we shall make no distinction between a measure and
its density against Lebesgue measure λ, provided it exists.

We recall that the McKean Vlasov dynamics is the non linear SDE{
dYt = −∇W ∗ µt(Yt)dt+ dBt,

Y0 ∼ µin, µt = Law(Yt), ∀t ∈ [0, T ].
(5)

Under the hypothesis (H1), it is a classical result (see e.g. [13, Thm 2.6]) that (5) admits a unique
strong solution whose law we denote PMKV. The functional F̃ plays a crucial role in the sequel.
For the moment, let us just remark that the marginal flow of the McKean-Vlasov dynamics may
be viewed as the gradient flow of 1

2 F̃ in the Wasserstein space (P2(Rd),W2(·, ·)).
If P ∈ P1(Ω) is given, then the stochastic differential equation{

dZt = −∇W ∗ Pt(Zt)dt+ dBt,
Z0 ∼ µin,

admits a unique strong solution (cf. Section 3.2) whose law we denote Γ(P). With this we can now
introduce the main object of study of the article:

Definition 1.1. The mean field Schrödinger problem2 is

inf
{
H(P|Γ(P)) : P ∈ P1(Ω), P0 = µin, PT = µfin

}
. (MFSP)

Its optimal value, denoted CT (µin, µfin), is called mean field entropic transportation cost. Its opti-
mizers are called mean field Schrödinger bridges (MFSB).

It is not difficult to provide existence of optimizers for (MFSP). In the classical case, uniqueness
is an easy consequence of the convexity of the entropy functional. However, the rate function
H(P|Γ(P)) is not convex in general.

2The choice ofW as interaction mechanism is a particular one. Thus (MFSP) is not the only mean field Schrödinger
problem of interest. It would have been easy to include in the dynamics a confinement (single-site) potential. However,
since one of the goals of this article is to understand the role of the pair potential W , we preferred not to do that, as
the single site potential may be the one that determines the long time behavior of mean field Schrödinger bridges.
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Proposition 1.1. Grant (H1),(H2). Then (MFSP) admits at least an optimal solution.

Remark 1.1. The dynamics of the McKean Vlasov dynamics for the particle system (1) displays
a wide array of different behaviors, including phase transitions, see [51] for example. Thus, we do
not expect uniqueness of mean field Schödinger bridges in general. However, in the case when W
is convex, although the rate function H(P|Γ(P)) is not convex in the usual sense, the entropy F
is displacement convex in the sense of McCann [38]. This observation was indeed used to prove
uniqueness of minimizers for F , and could be the starting point towards uniqueness for (MFSP).

1.2.1 Large deviations principle (LDP)

We start by deriving the LDP interpretation of (MFSP). Recall the interacting particle system

(Xi,N
t )t∈[0,T ],1≤i≤N of (1). The theory of stochastic differential equations guarantees the strong

existence and uniqueness for this particle system under (H1),(H2). In the next theorem we obtain
a LDP for the sequence of empirical path measures; in view of the classical results of [20], it is not
surprising that the LDP holds. However, even the most recent works on large deviations for weakly
interacting particle systems such as [4] do not seem to cover the setting and scope of Theorem 1.1.
Essentially, this is because in those references the LDPs are obtained for a topology that is weaker
than the W1-topology, that is what we need later on.

Theorem 1.1. In addition to (H1),(H2) assume that∫
Rd exp(r|x|)µin(dx) <∞ for all r > 0. (6)

Then the sequence of empirical measures{
1
N

∑N
i=1 δXi,N ;N ∈ N

}
,

satisfies the LDP on P1(Ω) equipped with the W1-topology, with good rate function given by

P1(Ω) 3 P 7→ I (P) :=

{
H(P|Γ(P)) ,P� Γ(P),
+∞ , otherwise.

(7)

In fact we will prove in Section 3 a strengthened version of Theorem 1.1 where the drift term is
much more general. For this, we will follow Tanaka’s elegant reasoning [49].

Remark 1.2. Having a rate function implies Prob[ 1
N

∑N
i=1 δXi,N· ≈ P] ≈ exp(−NI (P)) heuristi-

cally. Hence Problem (MFSP) has the desired interpretation of finding the most likely evolution of
the particle system conditionally on the observations (when N is very large).

1.2.2 McKean-Vlasov control and Benamou-Brenier formulation

We now reinterpret the mean field Schrödinger problem (MFSP) in terms of McKean-Vlasov
stochastic control (also known as mean field control).

Lemma 1.1. Let P be admissible for (MFSP). There exists a predictable process (αP
t )t∈[0,T ] s.t.

EP

[∫ T
0
|αP
t |2dt

]
< +∞ (8)
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and so that
Xt −

∫ t
0

(
−∇W ∗ Ps(Xs) + αP

s

)
ds (9)

has law Rµ
in

under P. The problem (MFSP) is equivalent to

inf
{

1
2EP

[∫ T
0
|αP
t |2dt

]
: P ∈ P1(Ω), P0 = µin, PT = µfin, αP as in (9)

}
, (10)

as well as to

inf 1
2EP

[∫ T
0
|Φt +∇W ∗ Pt(Xt)|2dt

]
s.t. P ∈ P1(Ω), P0 = µin, PT = µfin, P ◦

(
X· −

∫ ·
0

Φsds
)−1

= Rµ
in

.
(11)

The formulations (10)-(11) can be seen as McKean-Vlasov stochastic control problems. In the
first case one is steering through αP part of the drift of a McKean-Vlasov SDE. In the second case
one is controlling the drift Φ of a standard SDE but the optimization cost depends non-linearly on
the law of the controlled process. In both cases, the condition PT = µfin is rather unconventional.
By analogy with the theory of mean field games, one could refer to (10)-(11) as planning McKean-
Vlasov stochastic control problems, owing to this type of terminal condition.

The third and last formulation of (MFSP) we propose relates to the well known fluid dynamics
representation of the Monge Kantorovich distance due to Benamou and Brenier (cf. [53]) that has
been recently extended to the standard entropic transportation cost [27, 15]. The interest of this
formula is twofold: on the one hand it clearly shows that (MFSP) is equivalent and gives a rigorous
meaning to some of the generalized Schrödinger problems formally introduced in [28, 34]. On the
other hand, it allows to interpret (MFSP) as a control problem in the Riemannian manifold of
optimal transport. This viewpoint, that we shall explore in more detail in Section 2, provides with
a strong guideline towards the study of the long time behavior of Schrödinger bridges.

We define the set A as the collection of all absolutely continuous curves (µt)t∈[0,T ] ⊂ P2(Rd)
(cf. Section 4.2) such that µ0 = µin, µT = µfin and

(t, z) 7→ ∇ logµt(z) ∈ L2(dµtdt),

(t, z) 7→ ∇W ∗ µt(z) ∈ L2(dµtdt).

We then define

CBB
T (µin, µfin) := inf (µt)t∈[0,T ]∈A,

∂tµt+∇·(wtµt)=0

1
2

∫ T
0

∫
Rd
∣∣wt(z) + 1

2∇ logµt(z) +∇W ∗ µt(z)
∣∣2 µt(dz)dt.

(12)

Theorem 1.2. Let (H1),(H2) hold. Then

CT (µin, µfin) = CBB
T (µin, µfin).

If P is optimal for (MFSP) and the latter is finite, then (Pt)t∈[0,T ] is optimal in (12) and its
associated tangent vector field w is given by

−∇W ∗ Pt(z) + Ψt(z)− 1
2∇ log Pt,

where Ψ is as in Theorem 1.3 below.
Conversely, if (µt)t∈[0,T ] is optimal for CBB

T (µin, µfin) and the latter is finite, then there exists

an optimizer of CT (µin, µfin) whose marginal flow equals (µt)t∈[0,T ].
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1.3 Mean field Schrödinger bridges

Leveraging the stochastic control interpretation, and building on the stochastic calculus of variations
perspective, we obtain the following necessary optimality conditions for (MFSP).

Theorem 1.3. Assume (H1),(H2) and let P be optimal for (MFSP). Then there exist Ψ ∈
H−1((Pt)t∈[0,T ]) such that

(dt× dP-a.s.) αP
t = Ψt(Xt), (13)

where (αP
t )t∈[0,T ] is related to P as in Lemma 1.1. The process t 7→ Ψt(Xt) is continuous3 and the

process (Mt)t∈[0,T ] defined by

Mt := Ψt(Xt)−
∫ t

0
ẼP̃

[
∇2W (Xs − X̃s) · (Ψs(Xs)−Ψs(X̃s))

]
ds (14)

is a continuous martingale under P on [0, T [, where (X̃t)t∈[0,T ] is an independent copy of (Xt)t∈[0,T ]

defined on some probability space (Ω̃, F̃, P̃) and ẼP̃ denotes the expectation on (Ω̃, F̃, P̃).

We shall refer to Ψ as the corrector of P. Correctors will play an important role in the ergodic
results. In this part, we give an interpretation of Theorem 1.1 in terms of stochastic analysis
(FBSDEs) and partial differential equations.

1.3.1 Planning McKean-Vlasov FBSDE for MFSB

We consider the following McKean Vlasov forward-backward stochastic differential equation (FB-
SDE) in the unknowns (X,Y, Z):

dXt = −Ẽ[∇W (Xt − X̃t)]dt+ Ytdt+ dBt

dYt = Ẽ
[
∇2W (Xt − X̃t) · (Yt − Ỹt)

]
dt+ Zt · dBt

X0 ∼ µin, XT ∼ µfin.

(15)

As in the stochastic control interpretation of the mean field Schrödinger problem, here too the
terminal condition XT ∼ µfin is somewhat unconventional. We hence call this forward-backward
system the planning McKean-Vlasov FBSDE.

Thanks to the results in Section 1.2.2 we can actually solve (15). If P is optimal for (MFSP)
with associated Ψ as recalled in Theorem 1.3 above, all we need to do is take Yt := Ψt(Xt) and
reinterpret (9) for the dynamics of the canonical process X and (14) for the dynamics of Y (in the
latter case using martingale representation).

One remarkable aspect of this connection between Schrödinger problems and FBSDEs is that
one can prove existence of solutions to such FBSDEs by a purely variational method. Indeed, we
remark that (15) is beyond the scope of existing FBSDE theory, such as Carmona and Delarue’s
[11, Theorem 5.1]. Further, we also obtained for free an extra bit of information: the constructed
process Y lives in H−1((Pt)t∈[0,T ]). This is in tandem with the usual heuristic relating FBSDEs and
PDEs (where Y is conjectured to be an actual gradient) as explained in Carmona and Delarue’s [10,
Remark 3.1]. In fact, if we make the additional assumption that Yt = ∇ψt(Xt) for some potential

3More precisely, it has a continuous version adapted to the P-augmented canonical filtration.
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ψt(x), and we set µt = (Xt)#P, then after some computations we arrive at the PDE system4:
∂tµt(x)− 1

2∆µt(x) +∇ · ((−∇W ∗ µt(x) +∇ψt(x))µt(x)) = 0

∂t∇ψt(x) + 1
2∇∆ψt(x) +∇2ψt(x) ·

(
−∇W ∗ µt(x) +∇ψt(x)

)
=
∫
Rd ∇

2W (x− x̃) · (∇ψt(x)−∇ψt(x̃))µt(dx̃),

µ0(x) = µin(x), µT (x) = µfin(x).

(16)

1.3.2 Schrödinger potentials and the mean field planning PDE system

The PDE system (16) is the literal translation of the planning McKean-Vlasov FBSDE in the case
when the process Y is an actual gradient, Y = ∇ψ. In the next corollary we show that if this is the
case, and if ψ is sufficiently regular, then (16) can be rewritten as a system of two coupled PDEs, the
first being a Hamilton-Jacobi-Bellman equation for ψ, and the second one being a Fokker-Planck
equation. This type of PDE system is the prototype of a planning mean field game [33].

Corollary 1.1. Let P be an optimizer for (MFSP), Ψ·(·) be as in Theorem 1.3 and set µt = Pt
for all t ∈ [0, T ]. If µ·(·) is everywhere positive and of class C1,2([0, T ] × Rd;R) and Ψ·(·) is of
class C1,2([0, T ] × Rd;Rd) then there exists ψ : [0, T ] × Rd → R such that Ψt(x) = ∇ψt(x) for all
(t, x) ∈ [0, T ]× Rd. Moreover, (ψ·(·), µ·(·)) form a classical solution of

∂tψt(x) + 1
2∆ψt(x) + 1

2 |∇ψt(x)|2 =
∫
Rd ∇W (x− x̃) · (∇ψt(x)−∇ψt(x̃))µt(dx̃),

∂tµt(x)− 1
2∆µt(x) +∇ · ((−∇W ∗ µt(x) +∇ψt(x))µt(x)) = 0,

µ0(x) = µin(x), µT (x) = µfin(x)

(17)

A fundamental result [57][26] concerning the structure of optimizers in the classical Schrödinger
problem is that their density takes a product form, i.e.

µt = exp(ψt + ϕt),

where ϕt(x), ψt(x) solve respectively the forward and backward Hamilton Jacobi Bellman equation{
∂tψ + 1

2∆ψ + 1
2 |∇ψ|

2 = 0,

−∂tϕ+ 1
2∆ϕ+ 1

2 |∇ϕ|
2 = 0.

(18)

It is interesting to see that this structure is preserved in (MFSP), at least formally. The effect of
having considered interacting Brownian particles instead of independent ones is reflected in the fact
that the two Hamilton Jacobi Bellman PDEs are coupled not only through the boundary conditions
but also through their dynamics.

Corollary 1.2. Using the same notation and under the same hypotheses of Corollary 1.1, if we
define ϕ : [0, T ]× Rd → R via

µt = exp(−2W ∗ µt + ϕt + ψt)

then (ψ·(·), ϕ·(·)) solves{
∂tψt(x) + 1

2∆ψt(x) + 1
2 |∇ψt(x)|2 =

∫
∇W (x− x̃) · (∇ψt(x)−∇ψt(x̃))µt(dx̃),

−∂tϕt(x) + 1
2∆ϕt(x) + 1

2 |∇ϕt(x)|2 =
∫
∇W (x− x̃) · (∇ϕt(x)−∇ϕt(x̃))µt(dx̃).

4The Laplacian of a vectorial function is defined coordinate-wise.
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1.4 Convergence to equilibrium and functional inequalities

Our aim is to show that MFSBs spend most of their time in a small neighborhood of the equilib-
rium configuration µ∞, to study their long time behavior, and to derive a new class of functional
inequalities involving the mean field entropic cost CT (µin, µfin).

Throughout this section we make the assumption that W is uniformly convex, ie. that

∃κ > 0 s.t. ∀z ∈ Rd, ∇2W (z) ≥ κId×d, (H3)

where the inequality above has to be understood as an inequality between quadratic forms. Under
(H3) the McKean Vlasov dynamics associated with the particle system (1) converges in the limit
as T → +∞ to an equilibrium measure µ∞, that is found by minimizing the functional F̃ over
the elements of P2(Rd) whose mean is the same as µin. Existence and uniqueness of µ∞ has been
proven in [38].

We shall often assume that µin and µfin have the same mean:∫
Rd xµ

in(dx) =
∫
Rd xµ

fin(dx). (H4)

Remark 1.3. Assumption (H3) is a classical one ensuring exponential convergence rates for the
McKean-Vlasov dynamics. It may be weakened in various ways, see the work [12] by Carrillo,
McCann and Villani or the more recent [3] by Bolley, Gentil and Guillin, for instance. It is an
interesting question to determine which of the results of this section still hold in the more general
setup. Hypothesis (H4) can be easily removed using the fact that the mean evolves linearly along
any Schrödinger bridge (see Lemma 4.2 below). We insist that the only key assumption is (H3).

Long time behavior of mean field games: The articles [7, 8, 5, 9] study the asymptotic be-
haviour of dynamic mean field games showing convergence towards an ergodic mean field game with
exponential rates. Following [33], we can associate to (17) an ergodic PDE system with unknowns
(λ, ψ, µ). Such PDE system expresses optimality conditions for the ergodic control problem corre-
sponding to (10). It is easy to see that (0, 0, µ∞) is a solution of that ergodic system. Therefore, we
are addressing the same questions studied in the above mentioned articles. However, the equations
we are looking at are quite different. A fundamental difference is that the coupling terms in (10)
are not monotone in the sense of [6, Eq.(7) pg. 8].

1.4.1 Exponential convergence to equilibrium and the turnpike property

A key step towards the forthcoming quantitative estimates is to consider the time-reversed version
of our mean field Schrödinger problem. For Q ∈ P(Ω) the time reversal Q̂ is the law of the time
reversed process (XT−t)t∈[0,T ]. In Lemma 4.5 we prove that if P is an optimizer for (MFSP), then

P̂ optimizes

inf
{
H(Q|Γ(Q)) : Q ∈ P1(Ω), Q0 = µfin, QT = µin

}
. (19)

The optimality of P̂ implies the existence of an associated process Ψ̂ as described in Theorem
1.3. We show at Theorem 1.6 below that the function

[0, T ] 3 t 7→ EP[Ψt(Xt) · Ψ̂T−t(X̂T−t)] (20)
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is a constant, that we denote EP(µin, µfin) and call the conserved quantity. Naturally this quantity
depends also on T but we omit this from the notation.

Theorem 1.4 confirms the intuition that mean field Schrödinger bridges are localized around µ∞
providing an explicit upper bound for F(Pt) along any MFSB, where

F(µ) = F̃(µ)− F̃(µ∞). (21)

We recall that µ∞ is found by minimizing F̃ among all elements of P2(Rd) whose mean is the
same as µ. If F̃ is thought of as a free energy, then F should be thought of as a divergence (from
equilibrium). A graphical illustration of Theorem 1.4 and the turnpike property is provided in the
appendix.

Theorem 1.4. Assume (H1)-(H4) and let P be an optimizer for (MFSP). For all t ∈ [0, T ] we
have

F(Pt) ≤ sinh(2κ(T−t))
sinh(2κT )

(
F(µin)− EP(µin,µfin)

2κ

)
+ sinh(2κt)

sinh(2κT )

(
F(µfin)− EP(µin,µfin)

2κ

)
+ EP(µin,µfin)

2κ . (22)

Moreover, for all fixed θ ∈ (0, 1) there exists a decreasing function B(·) such that

F(PθT ) ≤ B(κ)(F(µin) + F(µfin)) exp(−2κmin{θ, 1− θ}T ) (23)

uniformly in T ≥ 1.

In particular, since F(PθT ) dominates W2(PθT , µ∞) (see e.g. [12, (ii), Thm 2.2 1]), we obtain
that PθT converges exponentially to µ∞ with exponential rate proportional to κ. The proof of (22)
is done by bounding the second derivative of the function t 7→ F(Pt) along Schrödinger bridges
with the help of the logarithmic Sobolev inequality established in [12]. To obtain (23) from (22) we
use a functional inequality for the conserved quantity and a Talagrand inequality for CT (µin, µfin),
that are the content of Theorem 1.6 and Corollary 1.3 below. It is worth mentioning that the
estimates (22),(23) (as well as (32) below) appear to be new even for the classical Schrödinger
bridge problem and have not been anticipated by the heuristic articles [28, 34]. Conversely, the
above mentioned estimates admit a geometrical interpretation in the framework of Otto calculus
that allows to formally extend their validity to the whole class of problems studied in [28].

Remark 1.4. The exponential rate in (23) has a sharp dependence on κ. To see this, fix µin and
choose µfin = PMKV

T . Then it is easy to see that the restriction of PMKV to the interval [0, T ] is an
optimizer for (MFSP). Setting θ = 1/2 and considering (23) for T = 2t we arrive at

∀t ≥ 1/2, F(PMKV

t ) ≤ B(κ) exp(−2κt)

Thus, we obtain the same exponential rate as in [12]5, that is easily seen to be optimal under the
assumption that W is κ-convex. A similar argument can be used to show the optimal dependence
of the rate in θ.

In the previous theorem we showed that, when looking at a timescale that is proportional to T ,
the marginal distribution of any Schrödinger bridge is exponentially close to µ∞. Here we show that
for a fixed value of t, we have an exponential convergence towards the law of the McKean-Vlasov
dynamics PMKV, see (5).

5Some doubt on the numeric value of the exponential rates may arise from the fact that in our definition of F̃ ,
there is no 1/2 in front of W , as it is the case in [12, Eq. 1.3]. However, as we pointed out before, the McKean-Vlasov
dynamics for the particle system (1) is the gradient flow of 1/2F̃ and not of F̃ .
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Theorem 1.5. Assume (H1)-(H4) and let P be an optimizer for (MFSP). For all t ∈ [0, T ] we
have

W2
2 (Pt,P

MKV

t ) ≤ 2t

(
F(µin)

exp(2κT )− 1
+

exp(2κT )− exp(2κ(T − t))
exp(2κ(T − t))− 1

F(µfin)

exp(2κT )− 1

)
(24)

In particular, the above theorem tells that W2
2 (Pt,P

MKV
t ) decays asymptotically at least as fast

as exp(−2κT ) when T is large.

1.4.2 Functional inequalities for the mean field entropic cost

It is well known that analysing the evolution of entropy-like functionals along the so-called dis-
placement interpolation of optimal transport has far reaching consequences in terms functional
inequalities [55]. Since (MFSP) provides with an alternative way of interpolating between prob-
ability measures, it is tempting to see if it leads to new functional inequalities involving the cost
CT (µin, µfin). Here, we present a Talagrand and an HWI inequality that we used in order to study
the long time behavior of MFSBs. They generalize their respective counterparts in [48],[42]. Both
inequalities are based on another upper bound for the evolution of F along MFSBs, whose presen-
tation we postpone to Theorem 4.1.

The following Talagrand inequality tells that the mean field entropic cost grows at most linearly
with F :

Corollary 1.3 (A Talagrand Inequality). Assume (H1)-(H4). Then for all T > 0 we have

∀t ∈ (0, T ), CT (µin, µfin) ≤ 1

exp(2κt)− 1
F(µin) +

exp(2κ(T − t))
exp(2κ(T − t))− 1

F(µfin). (25)

In particular, choosing µfin = µ∞ leads to

CT (µin, µ∞) ≤ 1

exp(2κT )− 1
F(µin). (26)

Unlike the classical case, in the entropic HWI inequality the Wasserstein distance is replaced by
the conserved quantity EP in the first term on the rhs and by the mean field entropic cost in the
second term. An extra positive contribution 1

4IF is present in the first term. Our interpretation is
that this compensates for the fact that in the “gain” term we put the cost CT , that is larger than
the squared Wasserstein distance. In order to state the HWI inequality, we introduce the non linear
Fisher information functional IF defined for µ ∈ P2(Rd) by

IF (µ) =


∫
Rd

∣∣∣∇ logµ+ 2∇W ∗ µ(x)
∣∣∣2µ(dx), if ∇ logµ ∈ L2

µ

+∞ otherwise.
(27)

where by ∇ logµ ∈ L2
µ we mean µ � λ and that logµ is an absolutely continuous function on

Rd whose derivative is in L2
µ. The non linear Fisher information can be seen to be equal to the

derivative of the free energy F̃ along the marginal flow of the McKean Vlasov dynamics.
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Corollary 1.4 (An HWI Inequality). Assume (H1)-(H3) and choose µfin = µ∞. If P is an
optimizer for (MFSP) and t 7→ IF (Pt) is continuous6 in a right neighbourhood of 0, then

F(µin) ≤ 1− exp(−2κT )

2κ

(
IF (µin)

(
1

4
IF (µin)− EP(µin, µ∞)

))1/2

−(1−exp(−2κT ))CT (µin, µ∞).

(28)

It is worth noticing that by letting T → +∞ in the above HWI inequality we obtain the
logarithmic Sobolev inequality [12, Thm 2.2]. Indeed, CT (µin, µ∞) is always non negative and we
shall see at Thoerem 1.6 below that EP(µin, µ∞) → 0. The short time regime is also interesting.
Indeed, if W = 0, CT (µin, µ∞) is the standard entropic cost and we have under suitable hypothesis
on µin (see [40])

limT→0 TCT (µin, µ∞) = 1
2W

2
2 (µin, µ∞). (29)

The heuristic arguments put forward in [28] tell that (29) is expected to be true even when W is a
general potential satisfying (H1). Following again (29), one also expects that

limT→0
T 2

4 IF (µin)− T 2EP(µin, µ∞) =W2
2 (µin, µ∞). (30)

Putting (29) and (30) together we obtain an heuristic justification of the fact that in the limit as
T → 0 (28) becomes the classical HWI inequality put forward in [12], namely

F(µin) ≤ W2(µin, µ∞)IF (µin)1/2 − κW2
2 (µin, µ∞).

Our last result is a functional inequality that establishes a hierarchical relation between the
conserved quantity and the mean field entropic cost: the former is exponentially small in T and
κ in comparison with the latter. We may refer to this as an energy-transport inequality since the
conserved quantity may be geometrically interpreted as the total energy of a physical system (cf
[17, Corollary 1.1]).

Theorem 1.6. Assume (H1)-(H4) and let P be an optimizer. Then the function

[0, T ] 3 t 7→ EP[Ψt(Xt) · Ψ̂T−t(X̂T−t)] (31)

is constant. Denoting this constant by EP(µin, µfin), we have

|EP(µin, µfin)| ≤ 4κ

exp(κT )− 1

(
CT (µin, µfin)CT (µfin, µin)

)1/2
. (32)

In general the term CT (µin, µfin)CT (µfin, µin) in (32) cannot be simplified further, since typically
CT (µin, µfin) 6= CT (µfin, µin). E.g. CT (δ0, ν) = 0 if ν is the law of the unconstrained McKean-Vlasov
SDE at time T started at zero, whereas CT (ν, δ0) > 0, as it takes effort to drive such SDE to zero.

2 Connections with optimal transport

In this section we shall see how the results of this article relate to the Riemannian calculus on
P2(Rd) introduced by Otto [41], at least formally. The reader not interested in optimal transport

6We were not able to conclude that in general (H1) and (H2) imply this, although we could establish the continuity
of IF (Pt) on any open subinterval of [0, T ].
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per se is encouraged to skip this section in a first reading. The link is rooted in a seemingly novel
connection between (McKean-Vlasov) FBSDEs and second order ODEs in the Riemannian manifold
of optimal transport that we find of independent interest. To better understand this connection,
let us begin by recalling that in the seminal article [31] it is proven that the marginal flow of the
trajectorial SDE

dXt = −∇U(Xt)dt+ dBt (33)

can be interpreted as the gradient flow of the entropy functional

µ 7→ 1
2

∫
Rd logµ(x)µ(dx) +

∫
Rd U(x)µ(dx)

w.r.t. the 2-Wasserstein metric. Thus, first order Itô SDEs provide with probabilistic representations
for first order ODEs in the Riemannian manifold of optimal transport. Of course, since a path
measure is not fully determined by its one time marginals, the SDE (33) contains more information
than the gradient flow equation. It has been shown in [17] that the marginal flow of a classical
Schrödinger bridge satisfies a second order ODE, more precisely a Newton’s law in which the
acceleration field is the Wasserstein gradient of the Fisher information functional. The natural
question is then: What trajectorial (second order) SDE governs the dynamics of a Schrödinger
bridge and yields a probabilistic representation for the associated Newton’s law? In order to answer
this, let us first recall some notions of Otto calculus.

2.1 Second order calculus on P2(Rd).

In the next lines, we sketch the ideas behind the Riemannian calculus on P2(Rd). It would be
impossible to provide a self-contained introduction in this work and we refer to [53] or [29] for
detailed accounts. The main idea is to equip P2(Rd) with a Riemannian metric such that the
associated geodesic distance is W2(·, ·). To do this, one begins by identifying the tangent space
TµP2 at µ ∈ P2(Rd) as the space closure in L2

µ of the subspace of gradient vector fields

TµP2 = {∇ϕ,ϕ ∈ C∞c (Rd)}
L2
µ
.

The velocity (first derivative) of a sufficiently regular curve [0, T ] 3 t 7→ µt ∈ P2(Rd) is then defined
by looking at the only solution vt(x) of the continuity equation

∂tµt +∇ · (vtµt) = 0

such that vt ∈ TµtP2 for all t ∈ [0, T ]. Finally, the Riemannian metric (Otto metric) 〈·, ·〉TµP2
is

defined by

〈∇ϕ,∇ψ〉TµP2
=

∫
Rd
∇ϕ · ∇ψ(x)µ(dx). (34)

It can be seen that the constant speed geodesic curves associated to the Riemannian metric
we have introduced coincide with the displacement interpolations of optimal transport and that
the corresponding geodesic distance is indeed W2(·, ·). This makes it possible to carry out several
explicit calculations. In particular, we can compute the gradient gradW2F and the Hessian HessW2F
of a smooth functional F : P2(Rd)→ R. At least formally, we have

〈gradW2F ,∇ϕ〉TµP2
= d

dhF((id+ h∇ϕ)#µ)
∣∣∣
h=0

〈∇ϕ,HessW2
µ F(∇ϕ)〉TµP2 = d2

dh2F((id+ h∇ϕ)#µ)
∣∣∣
h=0

,
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where we used the notation # for the push forward. In particular, setting W = 0 for simplicity
in (27) we obtain that the classical Fisher information functional I has a gradient that can be
computed with the rules above. One obtains that (cf. [54])

gradW2I(µ) = −2∇∆ logµ−∇|∇ logµ|2.

The Levi-Civita connection associated to the Riemannian metric (34) can also be explicitly
computed with the help of the orthogonal projection operator Πµ : L2

µ → TµP2. To do this, consider
a regular curve (µt)t∈[0,T ] with velocity (vt)t∈[0,T ] and a tangent vector field t 7→ ut ∈ TµtP2 along

(µt)t∈[0,T ]. It turns out that if one defines the covariant derivative D
dtut of (ut)t∈[0,T ] along (µt)t∈[0,T ]

as the vector field
D
dtut = Πµt (∂tut + Dut · vt)

then this covariant derivative satisfies the compatibility with the metric and the torsion-free identity,
i.e. it is the Levi-Civita connection. The acceleration of the curve (µt)t∈[0,T ] is then the covariant
derivative of the velocity along the curve, i.e.

D
dtvt = ∂tvt + 1

2∇|vt|
2. (35)

2.2 Newton’s laws and FBSDEs

According to the above discussion the Newton’s law in (P2(Rd), 〈., .〉T·P2
){

D
dtvt = 1

8gradW2I(µt)

µ0 = µin, µT = µfin
(36)

provides with a geometrical interpretation for the PDE system (see [17] for more details)
∂tµt(x) +∇ · (∇φt(x)µt(x)) = 0

∂t∇φt(x) + 1
2∇|∇φt(x)|2 = − 1

4∇∆ logµt(x)− 1
8∇| logµt(x)|2

µ0 = µin, µT = µfin,

(37)

where to derive the latter equation we observe that the requirement that vt ∈ TµtP2 for all t ∈ [0, T ]
is formally equivalent to vt = ∇φt for some time dependent potential (t, x) 7→ φt(x).

As we have seen in section 1.3.1, solutions of the FBSDE
dXt = Ytdt+ dBt

dYt = Zt · dBt
X0 ∼ µin, XT ∼ µfin,

(38)

having the additional property that Yt = ∇ψt(Xt) yield a probabilistic representation for
∂tµt(x)− 1

2∆µt(x) +∇ · (∇ψt(x)µt(x)) = 0,

∂t∇ψt(x) + 1
2∇∆ψt(x) +∇2ψt(x) · ∇ψt(x) = 0,

µ0(x) = µin(x), µT (x) = µfin(x).

(39)

Some tedious though standard calculations allow to see that the change of variable φt = − 1
2 logµt+

ψt transforms the PDE system (39) in (37). Summing up, we have obtained the following
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Informal statement We have:

(i) If (Xt, Yt, Zt)t∈[0,T ] is a solution for the FBSDE (38) such that Yt = ∇ψt(Xt) for some time-
varying potential ψ, then the marginal flow (µt)t∈[0,T ] of Xt is a solution for the Newton’s law
(36).

(ii) If P is the (classical) Schrödinger bridge between µin and µfin, then under P the canonical
process (Xt)t∈[0,T ] is such that there exist processes (Yt)t∈[0,T ],(Zt)t∈[0,T ] with the property
that (Xt, Yt, Zt)t∈[0,T ] is a solution for (38) and Yt is as in (i)

We leave it to future work to prove a rigorous version of the informal statement above. On the
formal level, there is no conceptual difficulty in extending it to include the interaction potential
W . Essentially, the only difference is that one has to deal with the non linear Fisher information
functional IF instead of I.

Beside its intrinsic interest, the parallelism between Newton’s laws and FBSDEs is very useful
when studying the long time behavior of the latter. Indeed, the Riemannian structure underlying
(36) allows to find tractable expressions for the first and second derivative of entropy-like functionals
along the marginal flow of the FBSDE.

Remark 2.1. Classical Schrödinger bridges are h−transforms in the sense of Doob [22]. Therefore,
one can also describe their dynamics with a first order SDE and a PDE that encodes the evolution
of the drift field. This is not strictly speaking a probabilistic representation of (36) since there is
already a PDE involved. Our FBSDE approach may be viewed as a way to interpret in a trajectorial
sense the PDE governing the drift in the h−transform representation.

3 The mean field Schrödinger problem and its equivalent
formulations: proofs

In this part we complement the discussion undertaken in Section 1.2 and provide the proofs of the
results stated therein. This section is organized into four subsections so that

• Subsection 3.1 contains the proof of Theorem 3.1, which generalizes Theorem 1.1, along with
several useful lemmas,

• Subsection 3.2 is where we prove Proposition 1.1, Lemma 1.1 and Theorem 1.3.

• Theorem 1.2 is proven in subsection 3.3.

• Finally, Corollary 1.1 and 1.2 are proven in Subsection 3.4.

In the whole section, apart from subsection 3.1 that has its own assumptions, we always assume
that (H1),(H2) are in force, even if we do not write them down explicitly in the statements of the
lemmas and propositions.
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3.1 A large deviations principle for particles interacting through their
drifts

We consider for N ∈ N the interacting particle system{
dXi,N

t = 1
N

∑N
k=1 b

(
t,Xi,N , Xk,N

)
dt+ dBit

Xi,N
0 ∼ µin, i = 1, . . . , N.

where {Bi : i = 1, . . . , N} are independent Brownian motions and {Xi,N
0 : i = 1, . . . , N} are

independent to each other and to the Brownian motions. Regarding the drift b, we assume

[0, T ]× Ω× Ω 3 (t, ω, ω̄) 7→ b(t, ω, ω̄) ∈ Rd is progressively measurable, (40)

|b(t, ω1, ω̄1)− b(t, ω2, ω̄2)| ≤ C
{

sups≤t |ω1
s − ω2

s |+ sups≤t |ω̄1
s − ω̄2

s |
}

(41)∫ T
0
|b(s, 0, 0)|ds ≤ C, (42)

for some constant C > 0 and all (t, ω1, ω2, ω̄1, ω̄2) ∈ [0, T ]×Ω4. Finally, regarding the measure µin

we assume that ∫
Rd exp(r|x|β)µin(dx) <∞ for all r > 0. (43)

We stress that the usual theory of stochastic differential equations guarantees the strong existence
and uniqueness for the above interacting particle system. Furthermore, if P ∈ P1(Ω) then the same
arguments show that the stochastic differential equation{

dXP
t =

[∫
b
(
t,XP, ω̄

)
P(dω̄)

]
dt+ dBt

XP
0 ∼ µin,

admits a unique strong solution. We denote Γ(P) the law of XP. We can now state the main result
of this part, which contains Theorem 1.1 as a very particular case.

Theorem 3.1. Let β ∈ [1, 2) and assume (40),(41),(42),(43). Then the sequence of empirical
measures {

1
N

∑N
i=1 δXi,N· : N ∈ N

}
,

satisfies a LDP on Pβ(Ω) equipped with the Wβ-topology, with good rate function given by

Pβ(Ω) 3 P 7→ I (P) :=

{
H(P|Γ(P)) ,P� Γ(P),
+∞ , otherwise.

(44)

The result is sharp, in that it fails for β = 2; see [56]. We follow Tanaka’s reasoning [49] in order
to establish this large deviations result. We remark that the assumption on exponential moments
(43) is only used in the proof of Theorem 3.1, and not in the results preceding this proof.

For Q ∈ Pβ(Ω) we consider the equation

Yt(ω) = ωt +
∫ t

0

[∫
b(s, Y (ω), Y (ω̄))Q(dω̄)

]
ds. (45)

Lemma 3.1. Take Y
(0)
t (ω) := ω0, Q ∈ Pβ(Ω), and consider the iterations

Y
(n+1)
t (ω) = ωt +

∫ t
0

[∫
b(s, Y (n)(ω), Y (n)(ω̄))Q(dω̄)

]
ds, s ≤ T.

Then
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a) The iteration is well-defined ω-by-ω (in particular, the Q-integrals are well-defined and finite)
and in fact supn EQ

[
supt≤T |Y nt |β

]
is finite.

b) For each ω ∈ Ω the sequence {Y (n)(ω)}n∈N is convergent in the sup-norm to some limiting

continuous path Y (∞)(ω). Further EQ

[
supt≤T |Y

(∞)
t |β

]
< ∞, EQ

[
supt≤T |Y

(∞)
t − Y (n)

t |
]
→

0, and Y (∞) is adapted to the canonical filtration.

Proof. From the Lipschitz assumption on b we first derive

sups≤t |Y
(n+1)
s | ≤ sups≤t |ωs|+

∫ T
0
|b(s, 0, 0)|ds+ C

∫ t
0

supr≤s |Y
(n)
r |dr + C

∫ t
0
EQ

[
supr≤s |Y

(n)
r |

]
dr.

(46)

Raising this to β, taking expectations and using Jensen’s inequality, we derive

EQ

[
sups≤t |Y

(n+1)
s |β

]
≤ C ′

(
1 + EQ

[
sups≤T |ωs|β

]
+
∫ t

0
EQ

[
supr≤s |Y

(n)
r |β

]
dr
)
,

where C ′ only depends on T and β. From this we establish for some R ≥ 0 that

supn EQ

[
sups≤t |Y

(n)
s |β

]
≤ ReRt.

Now denote ∆n
t := sups≤t |Y

(n)
s − Y (n−1)

s |. Again by the Lipschitz property

∆n+1
t ≤ C

∫ t
0
{∆n

s + EQ[∆n
s ]} ds,

which we can bootstrap to obtain

∆n+1
t + EQ[∆n+1

t ] ≤ 3C
∫ t

0
{∆n

s + EQ[∆n
s ]} ds.

Observe that ∆1
t ≤ 2 sups≤T |ωs−ω0|+C, so from the above inequality we obtain by induction that

∆n+1
t + EQ[∆n+1

t ] ≤ C ′′ t
n

n! . From this {∆n
T + EQ[∆n

T ]}n∈N is (for each ω) summable in n, so the

same happens to {∆n
T }n∈N and therefore the uniform limit of the Y (n) exists for all ω. We denote

by Y (∞) this limit. By Fatou’s lemma EQ

[
supt≤T |Y

(∞)
t |β

]
<∞. Since (EQ[∆n

T ])n∈N is summable

we must also have EQ

[
supt≤T |Y

(∞)
t − Y (n)

t |
]
→ 0. Since clearly each Y (n) is adapted so is Y (∞)

too.

Lemma 3.2. For any Q ∈ Pβ there exists a unique adapted continuous process satisfying (45)
pointwise. Denoting Y Q this process, we further have

Q ◦ (Y Q)−1 ∈ Pβ(Ω).

Proof. If X and Y are solutions, then the Lipschitz assumption on b implies

EQ

[
sups≤t |Ys −Xs|

]
≤ K

∫ t
0
EQ

[
supr≤s |Yr −Xr|

]
dr,

so from Grönwall we derive EQ

[
sups≤T |Ys −Xs|

]
= 0. With this, and using again the Lipschitz

assumption on b, we find

sups≤t |Ys −Xs| ≤ K
∫ t

0
supr≤s |Yr −Xr|dr,
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so by Grönwall we deduce that X = Y pointwise. For the existence of a solution we employ
Point (b) of Lemma 3.1, taking limits in the iterations therein (the exchange of limit and integral
is justified by the Lipschitz property of b). Finally Q ◦ (Y Q)−1 ∈ Pβ(Ω) follows by Point (b) of
Lemma 3.1 too.

Thanks to this result we can define the operator

Θ :(Pβ ,Wβ)→ (Pβ ,Wβ)

Q 7→ Θ(Q) := Q ◦ (Y Q)−1,
(47)

where Y Q denotes the unique solution of (45).

Lemma 3.3. Y Rµ
in

is the unique strong solution to the McKean-Vlasov SDE{
dZt =

[∫
b (t, Z, ω̄) P(dω̄)

]
dt+ dBt

Z ∼ P, Z0 ∼ µin.

Furthermore, if {Xi,N : i ≤ N,N ∈ N} is the aforementioned interacting particle system, which is
driven by {Bi : i ∈ N} independent Brownian motions started like µin, then

Θ
(

1
N

∑N
i=1 δBi·

)
= 1

N

∑N
i=1 δXi,N· , a.s. (48)

Proof. That Y Rµ
in

is a solution to the McKean-Vlasov SDE is clear since ω is a Brownian motion
under Rµin

. That the solution is unique follows by observing that the drift in this SDE is Lipschitz
jointly in Z and P = Law(Z), from where usual arguments apply. For the second point, consider

first ω1, . . . , ωN continuous paths and define Q = 1
N

∑N
i=1 δωi . Then for all 1 ≤ i ≤ N we have

Y Q
t (ωi) = ωit +

∫ t
0

(
1
N

∑
k≤N b(s, Y

Q(ωi), Y Q(ωk))
)

ds.

Replacing the deterministic paths ω1, . . . , ωN by those of B1, . . . , BN we conclude.

The key observation is that 1
N

∑N
i=1 δBi satisfies a large deviations principle in Pβ(Ω) equipped

with theWβ topology, with good rate function given by the relative entropy H(·|Rµin

). This is true
for β < 2 under our exponential moments assumption (43), but fails for β = 2, as follows easily
from [56]. By Lemma 3.3 we may derive, via the contraction principle ([21, Theorem 4.2.1]) a large
deviations principle for {

1
N

∑N
i=1 δXi,N : N ∈ N

}
,

if we could only establish the continuity of Θ. This is our next step.

Lemma 3.4. Θ is Lipschitz-continuous and injective.

Proof. We first prove the Lipschitz property. Let π be a coupling with first marginal Q and second
marginal P. Denoting (ω, ω̄) the canonical process on Ω × Ω, and by the Lipschitz assumption on
b, we have

Eπ
[
sups≤t |Y Q

s (ω)− Y P
s (ω̄)|β

]
≤ K

∫ t
0
Eπ
[
|Y Q
s (ω)− Y P

s (ω̄)|β
]

ds+ Eπ
[
sups≤t |ωs − ω̄s|β

]
.
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By Grönwall we have

Eπ
[
sups≤T |Y Q

s (ω)− Y P
s (ω̄)|β

]
≤ K ′Eπ

[
sups≤T |ωs − ω̄s|β

]
,

so taking infimum over such π we conclude that

Wβ(Θ(Q),Θ(P)) ≤ K ′Wβ(Q,P).

We now prove that Θ is injective. Let P = Θ(Q) = Θ(Q̂). By definition we have Q-a.s.

ωt = Y Q
t (ω)−

∫ t
0

[∫
b(s, Y Q

s (ω), Y Q
s (ω̄))Q(dω̄)

]
ds = Y Q

t (ω)−
∫ t

0

[∫
b(s, Y Q

s (ω), ω̄)P(dω̄)
]

ds,

and the same holds for Q̂ instead of Q. Denoting

F (ω) := ω −
∫ ·

0

[∫
b(s, ω, ω̄)P(dω̄)

]
ds,

we therefore have

ωt = F (Y Q)t (Q− a.s.),

ωt = F (Y Q̂)t (Q̂− a.s.).

Hence Q = Θ(Q) ◦ (F )−1 = P ◦ (F )−1 = Θ(Q̂) ◦ (F )−1 = Q̂.

We can now provide the proof of Theorem 3.1:

Proof of Theorem 3.1. As we have observed, if {Bi : i ∈ N} is and iid sequence of Rµin

-distributed

processes, then 1
N

∑N
i=1 δBi· satisfies a large deviations principle in Pβ(Ω) equipped with the Wβ

topology, with good rate function given by the relative entropy H(·|Rµin

). By (48), and since

Θ : (Pβ ,Wβ)→ (Pβ ,Wβ) is continuous, the contraction principle establishes that { 1
N

∑N
i=1 δXi,N· :

N ∈ N} satisfies a large deviations principle in Pβ(Ω) equipped with the Wβ topology. Since Θ is
injective the good rate function is given by

Ĩ (P) :=

{
H(Θ−1(P)|Rµin

) if P ∈ range(Θ)
+∞ otherwise.

In fact observe that if P ∈ range(Θ) and Θ−1(P)� Rµin

then7 P� Rµin

, so

Ĩ (P) :=

{
H(Θ−1(P)|Rµin

) if P ∈ range(Θ) and P� Rµin

+∞ otherwise.

Now take P ∈ range(Θ) and call Q = Θ−1(P). It is immediate by the definition of Γ(·) that

Γ(P) = Rµin ◦ (Y Q)−1. On the other hand observe that the filtration generated by Y Q is equal to
the canonical filtration: indeed Y Q is adapted and conversely

ωt = Y Q
t −

∫ t
0

[∫
b(s, Y Q

s , ω̄)P(dω̄)
]

ds =: ht(Y
Q),

7Let P = Θ(Q) for Q � Rµ
in

. The process Y Q satisfies pointwise dY Q
t = dωt + b̄(t, Y Q)dt, where b̄(t, y) =∫

b(t, y, Y Q(ω̄))Q(dω̄). We have Rµ
in ◦ (Y Q)−1 � Rµ

in
since in fact their relative entropy is finite. Hence, if

Rµ
in

(A) = 0 then Rµ
in

((Y Q)−1(A)) = 0, and so Q � Rµ
in

implies Q((Y Q)−1(A)) = 0 therefore P(A) = 0 as
desired.
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so the canonical process is Y Q-adapted. From this

d

(
Q◦(Y Q)−1

)
d

(
Rµin◦(Y Q)−1

) = ERµin

[
dQ

dRµin
|σ(Y Q)

]
= dQ

dRµin
◦ h.

Hence

H(P|Γ(P)) = H(Q◦(Y Q)−1|Rµin◦(Y Q)−1) = EQ◦(Y Q)−1

[
log dQ

dRµin
◦ h
]

= H(Q|Rµin

) = H(Θ−1(P)|Rµin

),

and therefore

Ĩ (P) =

{
H(P|Γ(P)) if P ∈ range(Θ) and P� Rµin

+∞ otherwise.

The next step is to show that P � Rµin

implies P ∈ range(Θ). In fact, denote by τ the adapted
transformation

ω 7→ τt(ω) = ωt −
∫ t

0

∫
b(s, ω, ω̄)P(dω̄)ds.

On the other hand call XP the unique adapted pointwise solution to

XP
t = ω0 +

∫ t
0

[∫
b
(
s,XP, ω̄

)
P(dω̄)

]
ds+ ωt,

which exists by Lemma 3.2 applied to the drift
∫
b(·, ·, ω̄)P(dω̄). As we recall in Lemma 5.4, XP and

τ are P-a.s. inverses if P� Rµin

, since the above drift is Lipschitz. Now introduce Q := P ◦ (τ)−1,
so that Q ◦ (XP)−1 = P and in particular

XP
t = ω0 +

∫ t
0

[∫
b
(
s,XP, XP(ω̄)

)
Q(dω̄)

]
ds+ ωt.

By Lemma 3.2 we have Θ(Q) := Q ◦ (Y Q)−1 = Q ◦ (XP)−1 = P.
We have arrived at

Ĩ (P) =

{
H(P|Γ(P)) if P� Rµin

+∞ otherwise.

To obtain the desired form (44) of the rate function it suffices to use Lemma 5.2 in the Appendix.

3.2 McKean-Vlasov formulation and planning McKean-Vlasov FBSDE

Proof of Lemma 1.1 and Proposition 1.1 Under (H1) for any P ∈ P1(Ω) the vector field

[0, T ]× Rd 3 (t, x) 7→ −∇W ∗ Pt(x) := −
∫
Rd
∇W (x− z)Pt(dz),

is very well-behaved. Precisely:

Lemma 3.5. Let P ∈ P1(Ω) and grant (H1). Then the time-dependent vector field (t, x) 7→
−∇W ∗ Pt(x) belongs C0,1([0, T ]× Rd;Rd) and is uniformly Lipschitz in the space variable.
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Proof. We begin by proving continuity. Fix t, x and (tn, xn)→ (t, x). The sequence ∇W (xn−Xtn)
converges pointwise to ∇W (x−Xt), since X is the (continuous) canonical process. By the funda-
mental theorem of calculus and (H1) we have |∇W (xn−Xtn)| ≤ C1 +C2 sups∈[0,T ] |Xs|. Since P ∈
P1(Ω), we may use dominated convergence to conclude EP[∇W (xn − Xtn)] → EP [∇W (x−Xt)].
The space Lipschitzianity of −∇W ∗ Pt follows from (H1). Space differentiability follows similarly
from (H1) and dominated convergence.

We will often make use of the next technical lemma, whose proof we defer to the appendix:

Lemma 3.6. Let µ ∈ P2(Rd) and b̄ be of class C0,1([0, T ]× Rd;Rd) and such that

∀t ∈ [0, T ], x, y ∈ Rd |b̄(t, x)− b̄(t, y)| ≤ C|x− y| (49)

for some C < +∞. Define R̄ as the law of the SDE

dXt = b̄(t,Xt)dt+ dBt, X0 ∼ µ (50)

and let P ∈ P(Ω) with X0 ∼ µ. The following are equivalent

(i) H(P|R̄) < +∞.

(ii) There exist a P-a.s. defined adapted process (ᾱt)t∈[0,T ] such that

EP

[∫ T
0
|ᾱt|2dt

]
< +∞ (51)

and
Xt −

∫ t
0
[b̄(s,Xs) + ᾱs] ds (52)

is a Brownian motion under P.

Moreover, if (i), or equivalently (ii), holds, then we have

H(P|R̄) = 1
2EP

[∫ T
0
|ᾱt|2dt

]
(53)

and
EP

[
supt∈[0,T ] |Xt|2 + |b̄(t,Xt)

2|
]
< +∞. (54)

In particular, if (i), or equivalently (ii), holds we have that P ∈ P2(Ω).

We turn to proving Lemma 1.1 stated in the introduction:

Proof of Lemma 1.1. Define the vector field b̄(t, z) := −∇W ∗ Pt(z). Lemma 3.5 grants that b̄
fulfills the hypotheses of Lemma 3.6, giving the desired conclusions.

We can prove Proposition 1.1 of the introduction, concerning the existence of MFSBs. Recall
the definition of Γ(P) and (MFSP) from the introduction.
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Proof of Proposition 1.1. Let Rµin

be the law of the Brownian motion started at µin. (H2) grants
that the classical Schrödinger problem (namely wrt. Brownian motion) is admissible. To see this, it
suffices to verify that the coupling µin ⊗ µfin is admissible for the static version of the Schrödinger
problem [36, Def 2.2] and then use the equivalence between the static and dynamic versions [36,

Prop 2.3]. Therefore, there exist some P ∈ P(Ω) such that P0 = µin and H(P|Rµin

) < +∞.
Lemma 3.6 (or its specialization Lemma 5.1 in the appendix) yields that P ∈ P1(Ω). On the other
hand Lemma 5.2 in the appendix proves that for any P ∈ P(Ω) H(P|Γ(P)) < +∞ if and only if

H(P|Rµin

) < +∞. Thus (MFSP) is admissible as well. Now observe that P 7→ H(P|Γ(P)) is lower
semicontinuous in Pβ(Ω), since on the one hand the relative entropy is jointly lower semicontinuous
in the weak topology, and on the other hand Γ is readily seen to be continuous in P1(Ω). Recalling
the definition of the operator Θ given in (47), to finish the proof we only need to justify that

θM := {P ∈ P1(Ω) : H(Θ−1(P)|Rµin

) ≤M, P0 = µin},

is relatively compact in P1(Ω) for each M , since the proof of Theorem 3.1 established8 that

H(Θ−1(P)|Rµin

) = H(P|Γ(P)) if P� Rµin

. Now remark that

θM ⊂ Θ
(
{Q : H(Q|Rµin

) ≤M,Q0 = µin}
)
⊂ Θ

(
{Q : H(Q|Rγ) ≤ M̄,Q0 = µin}

)
,

where γ denotes the standard Gaussian, since by the decomposition of the entropy we have

H(P|Rγ) = H(µin|γ) +H(P|Rµin

),

and by Assumption (H2)

H(µin|γ) =
∫

logµin(x)µin(dx)−
∫

log(γ(x))µin(dx) =
∫

logµin(x)µin(dx) + c−
∫ |x|2

2 µin(dx) <∞.

As Θ is per Lemma 3.4 Lipschitz in P1(Ω), it remains to prove that {H(Q|Rγ) ≤ M̄} is W1-
compact. This can be easily done by hand, or by invoking Sanov Theorem in the W1-topology for
independent particles distributed according to Rγ (see e.g. [56]), finishing the proof.

Proof of Theorem 1.3 We split the proof into two propositions, namely Propositions 3.1 and
3.2. We begin by addressing the issue of Markovianity of the minimizers. Recall the definition
of H−1((µt)t∈[0,T ]) given under ‘frequently used notation.’ We rely strongly on the work [14] by
Cattiaux and Léonard for the proof of the following result:

Proposition 3.1. Let P be optimal for (MFSP). Then there exists Ψ ∈ H−1((Pt)t∈[0,T ]) such that

(dt× dP-a.s.) αP
t = Ψt(Xt), (55)

where (αP
t )t∈[0,T ] is given in Lemma 1.1.

Proof. If P be optimal for (MFSP), then it is also optimal for

inf {H(Q|Γ(P)) : Q ∈ P1(Ω), Qt = Pt for all t ∈ [0, T ]} , (56)

8This part of the proof did not use the existence of exponential moments for µin. If we assume existence of
exponential moments, then the compactness of θM follows from Theorem 3.1, since the rate function must be good.
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since Γ(P) only depends on the marginals of P. The above problem is an instance of [14], ie.
its optimizer is a so-called critical Nelson process. However, the drift of the path-measure Γ(P)
may not fulfill the hypotheses in [14]. For this reason we need to make a slight detour. Let
θn ∈ C∞c ([0, T ] × Rd) and Rn be defined as in Lemma 5.3 in the appendix, meaning that ∇θn· (·)
converges to −∇W ∗ Pt(z) in H−1((Pt)t∈[0,T ]) and that Rn is the law of

dYt = ∇θnt (Yt)dt+ dBt, Y0 ∼ µin ∈ P2(Rd).

For any n consider the problem

min {H(Q|Rn) : Q ∈ P1(Ω), Qt = Pt for all t ∈ [0, T ]} . (57)

Using [14, Lemma 3.1,Theorem 3.6] we obtain that for all n the unique optimizer P̄ of (57) is the
same for all n, and is such that there exists Φ ∈ H−1((Pt)t∈[0,T ]) such that

Xt −
∫ t

0
Φs(Xs)ds (58)

is a Brownian motion under P̄. Lemma 3.5 grants that if we set b̄(t, z) = −∇W ∗ Pt(z) then the
hypotheses of Lemma 3.6 are met. Since H(P|Γ(P)) < +∞, we derive from (54) therein that

EP̄

[∫ T
0
|∇W ∗ Pt(Xt)|2dt

]
= EP

[∫ T
0
|∇W ∗ Pt(Xt)|2dt

]
< +∞.

Hence
EP̄

[∫ T
0
|Φt(Xt) +∇W ∗ Pt(Xt)|2dt

]
< +∞. (59)

Using the implication (ii)⇒ (i) of Lemma 3.6 we finally obtain thatH(P̄|Γ(P)) < +∞ and therefore
that we can use Lemma 5.3 for the choice Q = P̄ therein.

Now consider Q admissible for (56) and such that H(Q|Γ(P)) < +∞. Using Lemma 5.3 twice
we obtain

H(P̄|Γ(P)) = lim inf
n→+∞

H(P̄|Rn) ≤ lim inf
n→+∞

H(Q|Rn) = H(Q|Γ(P))

Thus P̄ is also an optimizer for (56). But then P̄ = P since (56) can have at most one minimizer
by strict convexity of the entropy and convexity of the admissible region. Combining (58) with (9)

we get that
∫ t

0

(
−∇W ∗ Ps(Xs) + αP

s − Φs(Xs)
)

ds is a continuous martingale with finite variation.
But then it is constant P-a.s. The conclusion follows setting Ψt(z) := Φt(z) + ∇W ∗ Pt(z) and
observing that ∇W ∗ P·(·) ∈ H−1((Pt)r∈[0,T ]).

Notice that the above proposition proves the first half of Theorem 1.3 from the introduction.
We now establish the second half of this result:

Proposition 3.2. Assume that P is optimal for (MFSP). Then Ψt(Xt) has a continuous version
adapted to the P-augmented canonical filtration, and the process (Mt)t∈[0,T ] defined by

Mt := Ψt(Xt)−
∫ t

0
ẼP̃

[
∇2W (Xs − X̃s) · (Ψs(Xs)−Ψs(X̃s))

]
ds (60)

is a continuous martingale under P on [0, T [ and satisfies EP

[∫ T
0
|Mt|2dt

]
< +∞.
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To carry out the proof, we will use a well-known characterization of martingales (see e.g. [23])

which is as follows: an adapted process (Mt)t∈[0,T ] such that EP

[∫ T
0
|Mt|2dt

]
< +∞ is a martingale

in [0, T [ under P if and only if

EP

[∫ T
0
Mthtdt

]
= 0 (61)

for all adapted processes (ht)t∈[0,T ] such that

EP

[∫ T
0
|ht|2dt

]
< +∞, and

∫ T
0
ht dt = 0 P− a.s. (62)

Proof. Define (Mt)t∈[0,T ] via (60). Using (H1),(8) and (54) we get that EP[
∫ T

0
|Mt|2dt] < +∞.

Therefore, using the characterization of martingales [23, pg. 148-149] in order to show that Mt is
a martingale on [0, T [ we need to show (61) for all adapted processes (ht)t∈[0,T ] satisfying (62).
By a standard density argument, one can show that it suffices to obtain (61) under the additional
assumption that (ht)t∈[0,T ] is bounded and Lipschitz, i.e.

∀t ∈ [0, T ], ω, ω̄ ∈ Ω, sups∈[0,t] |hs(ω)− hs(ω̄)| ≤ C sups∈[0,t] |ωs − ω̄s|, supt∈[0,T ] |ht(ω)| ≤ C,
(63)

for some C > 0. Consider now a process (ht)t∈[0,T ] satisfying (62) and (63) and for ε > 0 define
the shift transformation

τε : Ω −→ Ω, τεt (ω) = ωt + ε
∫ t

0
hs(ω)ds. (64)

Under the current assumptions, τε admits an adapted inverse Y ε, i.e. there exists an adapted
process (Y εt )t∈[0,T ] such that

P− a.s. τεt (Y ε(ω)) = Y εt (τε(ω)) = ωt ∀t ∈ [0, T ]. (65)

Indeed, since H(P|Γ(P)) < +∞, Lemma 5.2 in the appendix yields that P� Rµin

; this entitles us
to apply Lemma 5.4 in the same section, providing the existence of the inverse Y ε.

If we set Pε = P ◦ (τε)−1 we have that Pε ∈ P1(Ω) is admissible for (MFSP), thanks to (62).
Moreover, Lemma 1.1 and (65) imply that

Xt −
∫ t

0

(
εhs(Y

ε) + Ψs(Y
ε
s )−∇W ∗ Ps(Y

ε
s )
)

ds

is a Brownian motion under Pε. Combining (8), (63) and (H1) we get that

1
2EPε

[∫ T
0

∣∣Ψt(Y
ε
t ) + εht(Y

ε)−∇W ∗ Pt(Y
ε
t ) +∇W ∗ Pεt (Xt)

∣∣2dt
]
< +∞. (66)

Lemma 3.5 grants that b̄(t, x) = −∇W ∗Pεt (x) fulfills the hypothesis of Lemma 3.6 and (66) allows
to use the implication (ii) ⇒ (i) which yields that H(Pε|Γ(Pε)) is finite and equals the left hand
side of (66). Using the definition of Pε, we can rewrite H(Pε|Γ(Pε)) as

1
2EP

[∫ T
0
|εht + Ψt(Xt) +∇W ∗ Pεt (τ

ε
t )−∇W ∗ Pt(Xt)|2ds

]
.

Imposing optimality of P and letting ε to zero, using Taylor’s expansion

0 ≤ lim infε→0
H(Pε|Γ(Pε))−H(P|Γ(P))

ε

= EP

[∫ T
0

Ψt(Xt) ·
(
ht + ẼP̃

[
∇2W (Xt − X̃t) ·

∫ t
0
hs − h̃sds

])
dt
]
.
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In the above equation, (X̃t, h̃t)t∈[0,T ] is an independent copy of (Xt, ht)t∈[0,T ] defined on some

probability space (Ω̃, F̃, P̃) and ẼP̃ denotes the expectation on (Ω̃, F̃, P̃). Moreover, the exchange of
limit and expectation is justified by (49), (8) and the dominated convergence theorem. Using the
symmetry of W , and taking ±h, we can rewrite the latter condition as

0 = EP

[∫ T
0

Ψt(Xt) · htdt
]

+ EP

[∫ T
0
ẼP̃

[
(Ψt(Xt)−Ψt(X̃t)) · ∇2W (Xt − X̃t)

]
·
∫ t

0
hsdsdt

]
.

By integration by parts and the boundary condition (62), we arrive at

0 = EP

[∫ T
0

(
Ψt(Xt)−

∫ t
0
ẼP̃

[
(Ψs(Xs)−Ψs(X̃s)) · ∇2W (Xs − X̃s)

]
ds
)
· htdt

]
,

proving the desired martingale property. By [45, Theorem IV.36.5] we know that a martingale in an
augmented Brownian filtration admits a continuous version. Using again Lemma 5.2 we have that
P� Rµ, and we so obtain a continuous version of our martingale (60), and a fortiori of Ψt(Xt).

3.3 Benamou-Brenier formulation

We finally turn to the Benamou-Brenier formulation. Recall that CT (µin, µfin) denotes the optimal
value of the mean field Schrödinger problem. We define the set A as the collection of all absolutely
continuous curves (µt)t∈[0,T ] ⊂ P2(Rd) (see Section 4.2) such that

(t, z) 7→ ∇ logµt(z) ∈ L2(dµtdt),

(t, z) 7→ ∇W ∗ µt(z) ∈ L2(dµtdt).

Recall from the introduction the problem

CBB
T (µin, µfin) := inf

(µt)t∈[0,T ]∈A,
∂tµt+∇·(wtµt)=0

1

2

∫ ∫ ∣∣∣∣wt(z) +
1

2
∇ logµt(z) +∇W ∗ µt(z)

∣∣∣∣2 µt(dz)dt (67)

In (67), solutions to the continuity equation ∂tµt +∇ · (wtµt) = 0 are meant in the weak sense.

Proof of Theorem 1.2. We first show that CT (µin, µfin) ≥ CBB
T (µin, µfin). To this end, we may

assume that the l.h.s. if finite and denote P an optimizer. As established in Theorem 1.3, the drift
of X under P is equal to ∫ t

0
Ψs(Xs)−∇W ∗ Ps(Xs)ds,

where Ψ ∈ H−1((Pt)t∈[0,T ]) and

CT (µin, µfin) = 1
2

∫ ∫
|Ψt(z)|2Pt(dz)dt.

As we will see in Lemma 4.4 and Remark 4.1, the flow of marginals (Pt)t∈[0,T ] is absolutely contin-
uous and its tangent velocity field v is given by

vt(z) := −∇W ∗ Pt(z) + Ψt(z)− 1
2∇ log Pt.

Hence

CT (µin, µfin) = 1
2

∫ ∫ ∣∣vt(z) + 1
2∇ log Pt +∇W ∗ Pt(z)

∣∣2 Pt(dz)dt.
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We conclude the desired inequality by noticing that∇ log Pt ∈ L2(dPtdt) and∇W ∗Pt ∈ L2(dPtdt).
To wit, the first statement follows from [25, Thm 3.10] combined with Lemma 5.2 in our ap-
pendix, and the second from (54) used with b̄ = −∇W ∗ Pt(z). We now establish CT (µin, µfin) ≤
CBB
T (µin, µfin), so we may assume that (µt)t∈[0,T ] is feasible for the r.h.s. and leads to a finite

value. Denote by ṽ its tangent velocity field. We define Φt(z) := ṽt(z) + 1
2∇ logµt(z), so from the

continuity equation for (µt)t∈[0,T ] we deduce the following equation in the distributional sense

∂tµt +∇ · (µtΦt)− 1
2∆µt = 0.

Observing that Φ ∈ H−1((µt)t∈[0,T ]), we may apply the equivalence “(a) iff (c)” in [14, Theorem
3.4] 9. We thus obtain a measure P whose marginals are exactly (µt)t∈[0,T ], and by the uniqueness
statement in [14, Theorem 3.4] we also know that the drift of X under P is precisely Φs(Xs). Hence

1
2

∫ ∫ ∣∣ṽt(z) + 1
2∇ logµt(z) +∇W ∗ µt(z)

∣∣2 µt(dz)dt = 1
2

∫ ∫
|Φt(z) +∇W ∗ µt(z)|2 µt(dz)dt

= 1
2EP

[∫ T
0
|Φ(Xt) +∇W ∗ Pt(Xt)|2dt

]
≥ CT (µin, µfin),

where the inequality follows from the equivalent expression of CT (µin, µfin) given in (10).
We have proven CT (µin, µfin) = CBB

T (µin, µfin), and the other statements follow from the previ-
ous arguments.

3.4 Schrödinger potentials and mean field PDE system: proofs

We start with an observation concerning the link between (15) and (16):

Remark 3.1. It is worth stressing that the link between (15) and (16) can be established if the
FBSDE solution Yt is a gradient vector field depending only on t and Xt. We have gathered
preliminary evidence that (15) admits non Markov solutions even in the simple case when W = 0.
More precisely, we expect that all processes in the reciprocal class of Brownian motion (meaning
that they share the same bridges, but see [37] for details) fulfilling the marginal constraints of (1.1)
are solutions to (15). This is in contrast with what is expected for standard FBSDEs [10, Lemma
3.5] whose boundary conditions are not of planning type.

We now provide the belated proofs:

Proof of Corollary 1.1. We know by Theorem 1.1 that Ψ belongs to H((µt))t∈[0,T ]. The regularity
hypothesis imposed on Ψt(x) and µt(x) allow us to conclude that Ψ is a true gradient, i.e. there
exist ψ such that Ψt(x) = ∇ψt(x) for all (t, x) ∈ [0, T ] × Rd. Lemma 1.1 together with Theorem
1.3 yield that µt is a weak solution of the Fokker Planck equation in (17). Because of the regularity
assumptions we made on Ψ and µ, we can conclude that µt is indeed a classical solution. For the
same reasons, we can turn the martingale condition (1.3) into the system of PDEs

∀i = 1, . . . , d ∂t∂xiψt(x) + L(∂xiψt(x))−
∫
Rd ∂xi((∇W (x− x̃)) · (∇ψ(x)−∇ψ(x̃))µt(dx̃) = 0,

9That is for the construction of a Nelson process with marginals (µt)t∈[0,T ], with respect to the reference measure

given by Wiener started at µin.

28



where L is the generator 1
2∆+(∇(−W ∗µt+ψt)) ·∇. After some tedious but standard calculations

we can rewrite the above as

∂xi
(
∂tψt(x) + 1

2∆ψt(x) + 1
2 |∇ψt(x)|2 +

∫
Rd ∇W (x− x̃) · (∇ψt(x)−∇ψt(x̃)µt(dx̃))

)
= 0

Since ψ is defined up to the addition of a function that depends on time only, the conclusion
follows.

Corollary 1.2 can be proven with a direct calculation using the definition of ϕt and (17).

4 Convergence to equilibrium and functional inequalities:
proofs

In this part we complement the discussion undertaken in Section 1.4 and provide proofs for the
results stated therein. This section is organized as follows:

• Subsections 4.1,4.2,4.3 are devoted to stating and proving some preparatory results that we
shall use at different times in the proofs of the main results.

• In Subsection 4.4 we prove Theorem 1.6, and we state and prove Theorem 4.1 together with
its corollaries: the Talagrand (Corollary 1.3) and the HWI (Corollary 1.4) inequalities.

• Finally, in Subsection 4.5 we prove Theorem 1.4 and Theorem 1.5.

In all the lemmas and theorems in this subsection we always assume (H1)-(H2) to hold, and
throughout P, αP,Ψ,M are as given in Theorem 1.3. We refer to Sections 1.2 and 1.4 for any
unexplained notation.

4.1 Exponential upper bound for the corrector

Recall that we called Ψ the corrector. The goal of this part is to quantify the size of the corrector,
as stated in Lemma 4.3 below. Before doing this we prove two preliminary lemmas. As usual, we
denote by 〈·〉 the quadratic variation of a semimartingale.

Lemma 4.1. We have

∀t ∈ [0, T [, EP[|Mt|2] = EP[〈M〉t] < +∞. (68)

Moreover the function t 7→ E [〈M〉t] is continuous on [0, T [ and

∀t ∈ [0, T [, sups∈[0,t] EP[|Ψs(Xs)|2] < +∞ (69)

Proof. We have shown at Theorem 3.2 that EP

[∫ T
0
|Mt|2dt

]
< +∞ which gives that EP

[
|Mt|2

]
<

+∞ for almost every t ∈ [0, T [. But since EP

[
|Mt|2

]
is an increasing function of t, we get

EP

[
|Mt|2

]
< +∞ for all t ∈ [0, T [. To complete the proof of (68) it suffices to observe that by

definition of quadratic variation and since Mt is an L2-martingale on [0, T [, we have EP

[
|Mt|2

]
=
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EP[〈Mt〉]. To prove the continuity of t 7→ EP[〈M〉t] we start by observing that since Mt is a con-
tinuous martingale, then 〈M〉t has continuous and increasing paths. Thus, we obtain by monotone
convergence that EP[〈M〉t+h] → EP[〈M〉t] as h ↓ 0, which gives the desired result. The proof of
(69) follows from (60), the bounded Hessian of W (see(H1)) and the first part of Theorem 1.3.

Lemma 4.2. The function t 7→ EP[Xt] is linear, the function t 7→ EP[Ψt(Xt)] is constant, and

∀t ∈ [0, T [, EP[Xt] = EP[X0] + EP[Ψ0(X0)]t

Proof. Using the symmetry ofW and the martingale property (60) it is easily derived that EP[Ψt(Xt)]
is constant as a function of t. Therefore we get for all t ∈ [0, T ]

EP[Xt] = EP[X0]−
∫ t

0

EP[∇W ∗ Ps(Xs)]ds+ EP[Ψ0(X0)]t

Using again the symmetry of W we get that
∫ t

0
EP[∇W ∗Ps(Xs)]ds = 0, from which the conclusion

follows.

We can now provide some key estimates on the corrector:

Lemma 4.3. Assume (H1)-(H4). If P is an optimizer for (MFSP) and Ψ the associated corrector,
then for any t ∈ (0, T ) we have

1
2EP

[∫ t
0
|Ψs(Xs)|2ds

]
≤ exp(2κt)−1

exp(2κT )−1CT (µin, µfin), (70)

and
1
2EP

[
|Ψt(Xt)|2

]
≤ 2κCT (µin,µfin)

exp(2κ(T−t))−1 . (71)

Proof. Consider the function t 7→ ϕ(t) defined by

ϕ(t) = EP

[∫ t
0
|Ψs(Xs)|2ds

]
.

Fubini’s theorem allows to interchange the time integral and the expectation to get that ϕ is an
absolutely continuous function with derivative

ϕ′(t) = EP

[
|Ψt(Xt)|2

]
. (72)

From Itô’s formula and Theorem 1.3 we get that for all t ∈ [0, T [

|Ψt(Xt)|2 − |Ψ0(X0)|2 =2
∫ t

0
Ψr(Xr) · dMr+

2
∫ t

0
Ψr(Xr) · ẼP̃[∇2W (Xr − X̃r) · (Ψr(Xr)−Ψr(X̃r))] dr + 〈M〉t.

We observe that the fact that Mt is a martingale together with (69) and (68) make sure that

EP

[∫ t
0

Ψr(Xr) · dMr

]
= 0. Thus, taking expectation on both sides of the above equation yields

ϕ′(t)− ϕ′(0) = EP

[
2
∫ t

0
Ψr(Xr) · ẼP̃[∇2W (Xr − X̃r) · (Ψr(Xr)−Ψr(X̃r))] dr

]
+ EP[〈M〉t]. (73)
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Because of (69) we can use Fubini’s Theorem and write

EP

[
2
∫ t

0
Ψr(Xr) · ẼP̃[∇2W (Xr − X̃r) · (Ψr(Xr)−Ψr(X̃r))] dr

]
=2
∫ t

0
EP

[
Ψr(Xr) · ẼP̃[∇2W (Xr − X̃r) · (Ψr(Xr)−Ψr(X̃r))]

]
dr

=
∫ t

0
EP⊗P̃

[
(Ψr(Xr)−Ψr(X̃r)) · ∇2W (Xr − X̃r) · (Ψr(Xr)−Ψr(X̃r))

]
dr, (74)

where we used the symmetry of W to obtain the last expression. Plugging it back in (73) and using
that t 7→ ϕ′(t) is

• continuous on [0, T [ because so are (74) and E[〈M〉t] (cf. Lemma 4.1),

• increasing on [0, T [ since W is convex and the quadratic variation is an increasing process,

we conclude that t 7→ ϕ′(t) is absolutely continuous on the same interval. Moreover, using the
κ-convexity of W and again the fact that the quadratic variation is an increasing process we get

ϕ′′(t) ≥ 2κEP[|Ψt(Xt)|2] = 2κϕ′(t) (75)

where to establish the last inequality we used that the hypothesis on µin and µfin together with
Lemma 4.2 imply EP[Ψt(Xt)] = 0. The bound (70) follows by integrating the differential inequality

(75) as done for instance in Lemma 5.5 in the Appendix, and observing that 1
2EP

[∫ T
0
|Ψr(Xr)|2dr

]
=

H(P|Γ(P)). To prove (71), we begin by observing that (75) also yields that

∀s ∈ [t, T ], EP

[
|Ψs(Xs)|2

]
≥ exp(2κ(s− t))EP

[
|Ψt(Xt)|2

]
. (76)

Next, by definition of entropic cost we get the trivial bound

CT (µin, µfin) = 1
2EP

[∫ T
0
|Ψs(Xs)|2ds

]
≥ 1

2EP

[∫ T
t
|Ψs(Xs)|2dt

]
The desired conclusion follows by plugging (76) in the above equation and some standard calcula-
tions.

4.2 First derivative of F
We compute the first derivative of F along the marginal flow of Q, assuming that H(Q|Γ(Q)) < +∞
and that Q is Markov. To do this, we use an approach based on optimal transport, and some results
of [25]. To be self-contained, we recall the basic notions of optimal transport we need to state the
results. We refer to [1] for more details.

Tangent space Let µ ∈ P2(Rd). The tangent space TanµP2 at µ is the closure in L2
µ of{

∇ψ;ψ ∈ C∞c (Rd)
}
.

Since L2
µ is an Hilbert space, given an arbitrary Ψ ∈ L2

µ, there exists a unique projection Πµ(Ψ) of

Ψ onto TanµP2(Rd).
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Absolutely continuous curves and velocity field Following [1, Th 8.3.1], we say that a
curve (µt)t∈[0,T ] ⊆ P2(Rd) is absolutely continuous if there exists a Borel measurable vector field
(t, z) 7→ wt(z) such that

• (wt)t∈[0,T ] solves (in the sense of distributions) the continuity equation

∂tµt +∇ · (wtµt) = 0. (77)

• wt satisfies the integrability condition∫ T
0

(∫
Rd |wt(z)|

2µt(dz)
)1/2

dt < +∞.

Consider an absolutely continuous curve (µt)t∈[0,T ]. It is a consequence of the results in Chapter
8, and in particular of Proposition 8.4.5 of [1], that there exist a unique Borel measurable vector
field vt(z) solving (77) and such that z 7→ vt(z) belongs to the tangent space TanµtP2 for almost
every t ∈ [0, T ]. We call such vt the (tangent) velocity field of (µt)t∈[0,T ].

Remark 4.1. Let (µt)t∈[0,T ] be an absolutely continuous curve and wt(z) be in H−1((µt)t∈[0,T ]). It
is rather easy to see that z 7→ wt(z) belongs to TanµtP2 for almost every t ∈ [0, T ].

Throughout the rest of the paper, if Q ∈ P(Ω) is such that H(Q|Γ(Q)) < +∞, we say that Q is

Markov if αQ
t is σ(Xt)-measurable for all t ∈ [0, T ], (αQ

t )t∈[0,T ] being defined by (8). In that case

we write ΞQ
t (Xt) instead of αQ

t .

Lemma 4.4. Let Q be such that H(Q|Γ(Q)) < +∞ and Markov. Then

(i) (Qt)t∈[0,T ] is an absolutely continuous curve. Its tangent velocity field is given by

vt(z) = −∇W ∗Qt(z) + ΠQt(Ξ
Q
t (z))− 1

2∇ log Qt(z). (78)

Moreover, ∫ T
0

∫
Rd |vt|

2dQtdt < +∞. (79)

(ii) The function t 7→ F(Pt) is absolutely continuous and

∀0 ≤ s ≤ t, F(Qt)−F(Qs) =
∫ t
s

∫
Rd
(
∇ log Qr + 2∇W ∗Qr

)
(z) · vr(z)Qr(dz) dr. (80)

Proof.
Proof of (i) To show that (Qt)t∈[0,T ] is absolutely continuous it suffices to show that there exists a
distributional solution of the continuity equation

∂tQt +∇ · (wtQt) = 0 (81)

with the property that ∫ T
0

(∫
Rd |wt(z)|

2Qt(z)
)1/2

dt < +∞. (82)

Let now ϕ ∈ C∞c (]0, T [×Rd). Using Itô’s formula and taking expectation we obtain∫ T
0

∫
Rd

(
∇ϕ(t, z)

(
−∇W ∗Qt(z) + ΞQ

t (z)
)

+ 1
2∆ϕ(t, z) + ∂tϕ(t, z)

)
Qt(dz) = 0. (83)
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Lemma 5.2 in the appendix grants that under the current assumptions H(Q|Rµin

) < +∞, where

Rµin

is the Wiener measure started at µin. But then, using [25, Thm 3.10]10 we obtain that log Qt

is an absolutely continuous function for almost every t and that (t, z) 7→ ∇ log Qt(z) belongs to
H−1((Qt)t∈[0,T ]). Therefore we can use integration by parts in (83) to obtain

∀t ∈ [0, T ], 1
2

∫
Rd ∇ϕ(t, z)Qt(dz) = − 1

2

∫
Rd ∆ logϕ(t, z) · ∇ log Qt(z) Qt(dz)

which gives, using the definition of the projection operator ΠQt , that the rhs of (78) solves the conti-
nuity equation in the sense of distributions. Next, we observe that (8) grants that ΠQt(Ξ

Q(t, z)) ∈
H−1((Q)t∈[0,T ]). We have already shown that ∇ log Qt ∈ H−1((Q)t∈[0,T ]), and (54) used with
b̄ = −∇W ∗ Qt(z) yields that −∇W ∗ Qt(z) ∈ H−1((Q)t∈[0,T ]). Thus vt(z) ∈ H−1((Q)t∈[0,T ]) as
well, which gives (82) and (79). Finally, Remark 4.1 yields that (vt)t∈[0,T ] is indeed the tangent
velocity field.
Proof of (ii) From point (i) we know that z 7→ ∇ log Qt(z) belongs to L2

Qt
for almost every t; this

implies that ∇ log Qt+2∇W ∗Qt belongs to the subdifferential of F at Qt for almost every t (see e.g.
[1, Thm. 10.4.13]). The chain rule [1, sec. E, pg. 233-234] gives the desired result (80), provided
its hypothesis are verified. We have to check that (a) (Qt)t∈[0,T ] is an absolutely continuous curve
and F(Qt) < +∞ for all t ∈ [0, T ], (b) F(·) is displacement λ-convex for some λ ∈ R, and (c) that

∫ T
0

(∫
Rd |vt|

2dQt

)1/2(∫
Rd

∣∣∣∇ log Qt + 2∇W ∗Qt

∣∣∣2dQt

)1/2

dt < +∞.

To wit, (a) follows from point (i) and the fact that H(Q|Γ(Q)) < +∞, and (b) is a consequence of
displacement convexity of the entropy and (H1). Finally, (c) is granted by (79) and the fact that
∇ log Qt(z) + 2∇W ∗Qt(z) belongs to H−1((Qt)t∈[0,T ]) (see the proof of (i)).

4.3 Time reversal

For Q ∈ P(Ω) the time reversal Q̂ is the law of the time reversed process (XT−t)t∈[0,T ]. In this

section we derive an expression for H(Q̂|Γ(Q̂)) and use it to derive the bound (91) below, which
plays a fundamental role in the proof of Theorem 4.1.

Proposition 4.1. Let Q ∈ P1(Ω) be Markov and such that H(Q|Γ(Q)) < +∞.

(i) If Q0 = µin, QT = µfin then H(Q̂|Γ(Q̂)) < +∞ as well and

H(Q̂|Γ(Q̂)) = H(Q|Γ(Q)) + F(µin)−F(µfin) (84)

(ii) If Q0 = µfin, QT = µin then H(Q̂|Γ(Q̂)) < +∞ as well and

H(Q|Γ(Q)) = H(Q̂|Γ(Q̂)) + F(µin)−F(µfin) (85)

Proof. We only prove (i), (ii) being completely analogous. Recalling (see Lemma 5.2) thatH(Q|Γ(Q)) <

+∞ implies H(Q|Rµin

) < +∞, we can use [25, Thm. 3.10, Eq. 3.9] to obtain that there exist a

Borel measurable vector field b̂t(x) such that

Xt −
∫ t

0
b̂s(Xs)ds

10Strictly speaking, Föllmer’s result is only concerned with the case µin = δ0. However, a simple adaptation of his
argument show that its validity extends to any µin satisfying (H2).
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is a Brownian motion under P̂ and that

Q̂− a.s. b̂t(Xt) = −bT−t(Xt) +∇ log QT−t(Xt) ∀t ∈ [0, T ], (86)

where bt(z) is the drift of Q, that, in view of Lemma 1.1 we write as −∇W ∗Qt + ΞQ
t (z). Thus, we

deduce that under Q̂ we have that

Xt −
∫ t

0
−∇W ∗ Q̂s(Xs) + Ξ̂Q

s (Xs)ds

is a Brownian motion, where

Q̂− a.s. Ξ̂Q
t (Xt) = −ΞQ

T−t(Xt) +∇ log QT−t(Xt) + 2∇W ∗QT−t(Xt) ∀t ∈ [0, T ]. (87)

In the proof of Lemma 4.4, it was shown that (∇ log Qt)t∈[0,T ], (∇W ∗Q·)t∈[0,T ] and (ΞQ
t )t∈[0,T ]

are all in H−1((Qt)t∈[0,T ]). This implies that (Ξ̂Q
t )t∈[0,T ] ∈ H−1((Q̂t)t∈[0,T ]) as well. But then using

(ii)⇒ (i) in Lemma 3.6 for the choice b̄(t, z) = −∇W ∗ Q̂t(z) we get that H(Q̂|Γ(Q̂)) < +∞ and

H(Q̂|Γ(Q̂)) = 1
2EQ̂

[∫ T
0
|Ξ̂Q
t (Xt)|2dt

]
.

Using (87) in the above equation we get

H(Q̂|Γ(Q̂)) = 1
2EQ̂

[∫ T
0
|ΞQ
T−t(Xt)−

(
∇ log QT−t(Xt) + 2∇W ∗QT−t(Xt)

)
|2dt

]
= 1

2EQ

[∫ T
0
|ΞQ
t (Xt)|2dt

]
+ 1

2EQ

[ ∫ T
0

(
∇ log Qt(Xt) + 2∇W ∗Qt(Xt)

)
·
(
− 2ΞQ

t (Xt) +∇ log Qt(Xt)

+ 2∇W ∗Qt(Xt)
)
dt
]

(78)
= H(Q|Γ(Q))− EQ

[∫ T
0

(
∇ log Qt(Xt) + 2∇W ∗Qt(Xt)

)
· vt(Xt)dt

]
.

The conclusion follows from point (ii) of Lemma 4.4.

A consequence of Proposition 4.1 is that optimality is preserved under time reversal.

Lemma 4.5. Let P be an optimizer for (MFSP). Then P̂ optimizes

inf
{
H(Q|Γ(Q)) : Q ∈ P1(Ω), Q0 = µfin, QT = µin

}
. (88)

Proof. Let us observe that since (H2) makes no distinction between µin and µfin, the problem (88)
admits at least an optimal solution by Proposition 1.1. Applying Proposition 3.1 inverting the roles
of µin, µfin we get that the optimizers of (88) are Markov. So it suffices to show that for any Markov
Q admissible for (88) we have H(Q|Γ(Q)) ≥ H(P̂|Γ(P̂)). Take any such Q. We have

H(Q|Γ(Q))
Prop.4.1(ii)

= H(Q̂|Γ(Q̂)) + F(µin)−F(µfin)
Opt. of P

≥ H(P|Γ(P)) + F(µin)−F(µfin)

Prop.4.1(i)
= H(P̂|Γ(P̂)).
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4.4 Functional inequalities: proofs and the behaviour of F
The goal of this section is to prove Theorem 1.6 as well as the Talagrand and HWI inequalities.
The latter are colloraries of the following new result concerning the behaviour of F along bridges:

Theorem 4.1. Assume (H1)-(H4) and let T > 0 be fixed. If P is an optimizer for (MFSP), then
for all t ∈ [0, T ] we have

F(Pt) ≤
exp(2κ(T − t))− 1

exp(2κT )− 1
F(µin) +

exp(2κT )− exp(2κ(T − t))
exp(2κT )− 1

F(µfin)

− (exp(2κ(T − t))− 1)(exp(2κt)− 1)

exp(2κT )− 1
CT (µin, µfin). (89)

This bound generalizes to the mean field setup the results of [17], and may be seen as a rigorous
version of some of the heuristic arguments put forward in [28] and [34], upon slightly modifying the
definition of CT .

4.4.1 Proof of Theorem 4.1

Using a time reversal argument, we prove the bound (91) which is the key ingredient of the proof
of Theorem 4.1 together with the bound for the correction term (70).

Tthe backward corrector Ψ̂ is obtained by the same argument used in Proposition 4.1, replacing
(MFSP) with (88) to obtain that there exist a Borel measurable vector field Ψ̂t(z) ∈ H−1((P̂t)t∈[0,T ])
such that

Xt −
∫ t

0

(
−∇W ∗ P̂s(Xs) + Ψ̂s(Xs)

)
ds

is a Brownian motion under P̂. Moreover, the following relation holds

P̂− a.s. Ψ̂t(Xt) = −ΨT−t(Xt) +∇ log PT−t(Xt) + 2∇W ∗ PT−t(Xt) ∀t ∈ [0, T ]. (90)

Lemma 4.6. Assume (H3),(H4) and let P be an optimizer for (MFSP). Then

F(Pr) + 1
2EP

[∫ T
r
|Ψs(Xs)|2ds

]
≤ exp(2κ(T−r))−1

exp(2κT )−1 CT (µin, µfin) (91)

+ exp(2κ(T−r))−1
exp(2κT )−1 F(µin) + exp(2κT )−exp(2κ(T−r))

exp(2κT )−1 F(µfin)

and
1
2EP

[
|Ψ̂T−r(Xr)|2

]
≤ 2κCT (µfin,µin)

exp(2κr)−1 (92)

hold for all r ∈ (0, T ).

Proof. Using (78) we can rewrite the above equation (90) as

P̂− a.s. Ψ̂t(Xt) = ΨT−t(Xt)− 2vT−t(Xt) ∀t ∈ [0, T ] (93)

From Proposition 4.5 we also know that P̂ is optimal for (88) and hence that H(P̂|Γ(P̂)) =
CT (µfin, µin). Therefore, by inverting again the roles of µin and µfin, we can use Lemma 4.3 for the
problem (88) setting t = T − r to derive that

1
2EP̂

[∫ T−r
0

|Ψ̂s(Xs)|2ds
]
≤ exp(2κ(T−r))−1

exp(2κT )−1 H(P̂|Γ(P̂)). (94)
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Thanks to (93) we can write

1
2EP̂

[∫ T−r
0

|Ψ̂s(Xs)|2ds
]

= 1
2EP

[∫ T
r
|Ψs(Xs)|2ds

]
− EP

[∫ T
r

(
2Ψs(Xs)− 2vs(Xs))vs(Xs)ds

]
(78)+Ψ∈H−1

= 1
2EP

[∫ T
r
|Ψs(Xs)|2ds

]
− EP

[∫ T
r

(
∇ log Ps(Xs) + 2∇W ∗ Ps(Xs)

)
· vs(Xs) ds

]
(80)
= 1

2EP

[∫ T
r
|Ψs(Xs)|2ds

]
+ F(Pr)−F(µfin). (95)

The bound (91) follows by plugging in (95) into (94) using the above equation, (84) and recalling
that H(P|Γ(P)) = CT (µin, µfin). The proof of (92) goes along the same lines: Since P̂ is optimal
for (88) we also get from Lemma 4.3, and in particular from (71) for the choice t = T − r that

1
2EP̂

[
|Ψ̂T−r(XT−r)|2

]
≤ 2κCT (µfin,µin)

exp(2κr)−1 .

Now the proof of Theorem 4.1 and its corollaries in the introduction is an easy task, given all
the preparatory work.

Proof of Theorem 4.1. It amounts to add (70) and (91) with the choice r = t, and use the relation

H(P|Γ(P)) = 1
2EP

[∫ T
0
|Ψt(Xt)|2dt

]
= CT (µin, µfin).

Proof of Corollary 1.3. It follows from Theorem 4.1 (Eq. (89)), observing that F(Pt) ≥ 0.

Proof of Corollary 1.4. Combining (90),(93),(31) we get that∫
Rd |vt|

2(x)Pt(dx) = −EP(µin, µ∞) + 1
4IF (Pt).

Using the above relation, Cauchy Schwartz inequality and the continuity of IF (Pt) in a neighbor-
hood of 0, (80) we get that

lim inft→0
1
t (F(Pt)−F(P0)) ≥ −

(
IF (µin)

(
1
4IF (µin)− EP(µin, µ∞)

))1/2
. (96)

Consider now the bound (89). Observing that F(µ∞) = 0, subtracting F(µin) on both sides,
dividing by t, letting t→ 0, using (96) and finally rearranging the resulting terms we get (28).

4.4.2 Proof of Theorem 1.6

We prove here Theorem 1.6 of the introduction. In the proof we will write∫
Rd ∇

2W (X̂t − y) · (Ψ̂t(X̂t)− Ψ̂t(y)) P̂t(dy),

instead of
ẼP̃

[
∇2W (Xs − X̃s) · (Ψs(Xs)−Ψs(X̃s))

]
,

which is used in the rest of the article. This is done in order to better deal with time reversal.

36



Proof of Theorem 1.6. Let Mt be the martingale defined at (14). Since P̂ is optimal for (88), from
Proposition 3.2 we get that

M̂t = Ψ̂t(Xt)−
∫ t

0

∫
Rd ∇

2W (X̂s − y) · (Ψ̂s(Xs)− Ψ̂s(y)) P̂s(dy) ds

is an L2-martingale on [0, T [ under P̂. We define the stochastic processes

At :=
∫
Rd ∇

2W (Xs − y) · (Ψs(Xs)−Ψs(y)) Ps(dy)

and
Ât :=

∫
Rd ∇

2W (X̂s − y) · (Ψ̂s(X̂s)− Ψ̂s(y)) P̂s(dy).

We have, using the Markovianity of both P and P̂, that

EP

[
Ψt(Xt) · Ψ̂T−t(X̂T−t)

]
= EP

[
(Mt +

∫ t
0
Asds) · (M̂T−t +

∫ T−t
0

Âsds)
]

= EP

[(
EP[MT |X[0,t]] +

∫ t
0
Asds

)
·
(
EP[M̂T |X̂[0,T−t]] +

∫ T−t
0

Âsds
)]

= EP

[
EP[ΨT (XT )−

∫ T
t
Asds |X[0,t]] · EP[Ψ̂T (X̂T )−

∫ T
T−t Âsds |X̂[0,T−t]]

]
= EP

[
EP[ΨT (XT )−

∫ T
t
Asds |Xt] · EP[Ψ̂T (X̂T )−

∫ T
T−t Âsds |X̂t]

]
= EP

[(
ΨT (XT )−

∫ T
t
Asds

)
·
(

Ψ̂T (X̂T )−
∫ T
T−t Âsds

)]
.

Therefore,

d
dtEP

[
Ψt(Xt) · Ψ̂T−t(X̂T−t)

]
= EP

[
−At · (Ψ̂T (X̂T )−

∫ T
T−t Âs) + ÂT−t · (ΨT (XT )−

∫ T
t
Asds)

]
= EP

[
−At · (M̂T − M̂T−t + Ψ̂T−t(X̂T−t)) + ÂT−t · (MT −Mt + Ψt(Xt))

]
.

Taking conditional expectation w.r.t. σ(X[0,t]) and using that bothAt and ÂT−t areX[0,t]-measurable
we get that the above expression equals

EP

[
−At · Ψ̂T−t(X̂T−t) + ÂT−t ·Ψt(Xt)

]
.

Using the fact that W is symmetric and the definition of At, ÂT−t, one easily obtains that the latter
expression is worth 0. Indeed it holds that

EP

[
At · Ψ̂T−t(X̂T−t)

]
= EP

[
ÂT−t ·Ψt(Xt)

]
=∫

Rd×Rd(Ψ̂T−t(x)− Ψ̂T−t(y)) · ∇2W (x− y) · (Ψt(x)−Ψt(y))Pt(dx)Pt(dy).

The proof that the function (31) is constant on (0, T ) is now concluded. In order to establish (32)
we set t = T/2 in (31) and Cauchy Schwartz to get that

|EP(µin, µfin)| ≤
(
EP[|ΨT/2(XT/2)|2]EP[|Ψ̂T/2(X̂T/2)|2]

)1/2

.

The desired conclusion follows from (71) and (92).
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4.5 Convergence to equilibrium: proofs

4.5.1 Proof of Theorem 1.4

Proof of Theorem 1.4. Lemma 4.4 provides with

d
dtF(Pt)

(80)
= EP [(∇ log Pt(Xt) + 2∇W ∗ Pt(Xt)) · vt(Xt)]

(90)+(93)
= 1

2EP

[(
Ψt(Xt) + Ψ̂T−t(X̂T−t)

)
·
(

Ψt(Xt)− Ψ̂T−t(X̂T−t)
)]

= 1
2EP

[
|Ψt(Xt)|2 − |Ψ̂T−t(X̂T−t)|2

]
.

Reasoning as in the proof of Lemma 4.3 we get that both EP

[
|Ψt(Xt)|2

]
and EP

[
|Ψ̂T−t(X̂T−t)|2

]
are differentiable as functions of t in the open interval (0, T ). Moreover

1
2

d
dtEP

[
|Ψt(Xt)|2 − |Ψ̂T−t(X̂T−t)|2

] (72)+(75)

≥ κEP

[
|Ψt(Xt)|2 + |Ψ̂T−t(X̂T−t)|2

]
= κEP

[
|Ψt(Xt) + Ψ̂T−t(X̂T−t)|2 − 2Ψt(Xt) · Ψ̂T−t(X̂T−t)

]
(87)
= κEP

[
|∇ log Pt(Xt) + 2∇W ∗ Pt(Xt)|2

]
− 2κEP(µin, µfin).

The κ-convexity of W and the fact that the center of mass EP[Xt] is constant (see Lemma 4.2)
allow to use the logarithmic Sobolev inequality [12, (ii), Thm 2.2] to obtain11

κEP

[
|∇ log Pt(Xt) + 2∇W ∗ Pt(Xt)|2

]
≥ 4κ2F(Pt).

Thus we have proven that for almost every t ∈ [0, T ]

d
dt2F(Pt) ≥ 4κ2F(Pt)− 2κEP(µin, µfin),

from which (22) follows by integrating this differential inequality (see Lemma 5.6). Setting t = θT in
(22) and using (32) to bound the conserved quantity gives (23) after some standard calculations.

4.5.2 Proof of Theorem 1.5

Proof of Theorem 1.5. Let P be optimal for (MFSP) and Ψ be given by Proposition 3.1. Then if
we define

Bt := Xt −
∫ t

0
∇W ∗ Ps(Xs) + Ψs(Xs)ds

the process (Bt)t∈[0,T ] is a Brownian motion under P. Since the McKean Vlasov SDE admits a
unique strong solution, there exists a map Y : Ω −→ Ω such that Y ◦ B· := Y satisfies Y0 =
X0 (P− a.s.) and

P− a.s. Yt = Y0 −
∫ t

0
∇W ∗ PMKV

s (Ys)ds+Bt.

Define now δ(t) = EP[|Xt−Yt|2]. Using Itô’s formula we get that δ(t) is differentiable with derivative

δ′(t) = −2EP[(Xt − Yt) · (∇W ∗ Pt(Xt)−∇W ∗ PMKV

t (Yt))] + 2EP[(Xt − Yt) ·Ψt(Xt)]

11Again, the apparent mismatch between the constant in the Log Sobolev inequality from [12] and the one we use
here is due to the fact that in our definition of F̃ , there is no 1/2 in front of W .
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The same arguments as in Lemma 4.3 give

2EP[(Xt − Yt) · (∇W ∗ Pt(Xt)−∇W ∗ PMKV

t (Yt))] ≥ 2κEP[|Xt − Yt|2] ≥ 0.

Moreover, by Cauchy Schwartz:

EP[(Xt − Yt) ·Ψt(Xt)] ≤ EP

[
|Xt − Yt|2

]1/2 EP

[
|Ψt(Xt)|2

]1/2
.

Therefore
δ′(t) ≤ 2δ(t)1/2EP

[
|Ψt(Xt)|2

]1/2
which gives

(
√
δ)′(t) ≤ EP

[
|Ψt(Xt)|2

]1/2
.

Integrating the differential inequality and using that δ(0) = 0:

√
δ(t) ≤

∫ t
0
EP

[
|Ψs(Xs)|2

]1/2
ds ≤ t1/2

( ∫ t
0
EP

[
|Ψs(Xs)|2

]
ds
)1/2

(70)

≤ t1/2
(

2 exp(2κt)−1
exp(2κT )−1 CT (µin, µfin)

)1/2

.

The conclusion follows from (25) and the observation that W2
2 (Pt,P

MKV
t ) ≤ δ(t).

5 Appendix

We begin with the promised graphical illustration of Theorem 1.4:

Figure 1: A qualitative illustration of the turnpike property expressed by Theorem 1.4: at first
F(µt) decreases exponentially fast and then it stays close to the minimum value for a long time;
towards the end it abruptly increases to reach its final value

The following lemma is well known. For simple proofs see [35] or the appendix of [24].
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Lemma 5.1. For µ ∈ P2(Rd) let Rµ be the law of the Brownian with initial law µ. For P ∈ P(Ω)
with P ◦ (X0)−1 = µ the following are equivalent

(i) H(P|Rµ) < +∞.

(ii) There exist a P-a.s. defined adapted process (αt)t∈[0,T ] such that

EP

[∫ T
0
|αt|2dt

]
< +∞

and
Xt −

∫ t
0
αsds

is a Brownian motion under P.

Moreover, if (ii) holds, then

H(P|Rµ) = 1
2EP

[∫ T
0
|αt|2dt

]
. (97)

and
EP

[
supt∈[0,T ] |Xt|2

]
< +∞. (98)

With the help of Lemma 5.1 we can readily prove its generalization given in Lemma 3.6 con-
cerning the case when Rµ is replaced by the law of a diffusion with Lipschitz drift.

Proof of Lemma 3.6. The proof of (i) ⇒ (ii) follows the arguments in [35]. Now assume that (ii)
holds. Because of the continuity of t 7→ b̄(t, 0) and (49) we get that

∀(t, x) ∈ [0, T ]× Rd, |b̄(t, x)| ≤ C ′(1 + |x|) (99)

for some C ′ < +∞. Consider the sequence of stopping times Tn = inf{t ≥ 0 : |Xt| = n} ∧ T . Using
(99),(52) and some standard calculations we find that there exist C ′′ < +∞ such P almost surely

∀n ∈ N, t ∈ [0, T ] : sup
r≤t
|Xr∧Tn |2 ≤ C ′′

(
|X0|2 + 1 +

∫ t

0

sup
r≤s
|Xr∧Tn |2ds+

∫ t

0

|ᾱs|2ds+ sup
r≤t
|Br∧Tn |2

)
where B is a Brownian motion. Taking expectation, using (8), using Grönwall’s Lemma, and
eventually letting n→ +∞, one obtains

supt∈[0,T ] EP

[
supt∈[0,T ] |Xt|2

]
< +∞. (100)

But then, thanks to (99) and (51) we also obtain that EP[
∫ T

0
|b̄(s,Xs) + ᾱs|2ds] < +∞. Lemma 5.1

yields then (as usual Rµ is Wiener measure started like µ)

H(P|Rµ) < +∞, and H(P|Rµ) = 1
2EP

[∫ T
0
|b̄(t,Xt) + ᾱt|2dt

]
. (101)

Under the current hypotheses on b, Rµ and R̄ are mutually absolutely continuous and

dRµ

dR̄
= exp

(
−
∫ T

0
b̄(t,Xt) · dXt + 1

2

∫ T
0
|b̄(t,Xt)|2dt

)
.
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Therefore, using some standard calculations and (ii) we get

EP

[
log dRµ

dR̄

]
= −EP

[∫ T
0

(
ᾱt + 1

2 b̄(t,Xt)
)
· b̄(t,Xt)dt

]
< +∞. (102)

Since Rµ and R̄ are mutually absolutely continuous and H(P|Rµ) < +∞ we get that P� R̄ and

H(P|R̄) = EP

[
log dP

dRµ + log dRµ

dR̄

]
(103)

Thus, H(P|R̄) < +∞ if both H(P|Rµ) and EP

[
log dRµ

dR̄

]
are finite. But this is indeed the case,

thanks to (102),(101). The proof that (ii)⇒ (i) is now complete. The desired form of the relative
entropy follows by plugging in (101) and (102) into (103). Finally (54) follows from (100) and (99),
and the last statement from (54).

Lemma 5.2. Let µin ∈ P(Rd) and P ∈ P1(Ω) with P0 = µin. Then H(P|Γ(P)) < +∞ if and only

if H(P|Rµin

) < +∞.

Proof. Define b̄(t, z) = −∇W ∗Pt(z). Lemma 3.5 ensures that b̄ is of class C0,1 and that (49) holds.
Assume that H(P|Γ(P)) < +∞ and let (ᾱt)t∈[0,T ] be given by the implication (i)⇒ (ii) of Lemma
3.6. If we define (αt)t∈[0,T ] by

P− a.s. αt = b̄(t,Xt) + ᾱt, ∀t ∈ [0, T ],

then (54) together with (51) entitle us to use the implication (ii)⇒ (i) of Lemma 5.1 to obtain the
desired result. The converse implication is done inverting the roles of Lemmas 3.6 and 5.1.

Lemma 5.3. Assume (H1),(H2) P,Q ∈ P1(Ω) be such that H(P|Γ(P)),H(Q|Γ(P)) < +∞ and
(Qt)t∈[0,T ] = (Pt)t∈[0,T ]. If (θn)n∈N ⊆ C∞c ([0, T ]×Rd) is such that ∇θn converges to −∇W ∗Pt(z)
in H−1((Pt)t∈[0,T ]), i.e.

limn→+∞
∫

[0,T ]×Rd |∇θ
n
t (z) +∇W ∗ Pt(z)|2Pt(dz) dt = 0, (104)

then
lim

n→+∞
H(Q|Rn) = H(Q|Γ(P)),

where Rn is the law of

dYt = ∇θnt (Yt)dt+ dBt, Y0 ∼ µin ∈ P2(Rd).

Proof. By Lemma 5.2 we have H(Q|Rµin

) < +∞, where Rµ
in

is the law of the Brownian motion
with initial law µin. Using implication (i)⇒ (ii) from Lemma 5.1 and then (ii)⇒ (i) together with
(53) from Lemma 3.6 for the choice b̄ = ∇θn, we get for all n ∈ N:

H(Q|Rn) =
1

2
EQ

[∫ T

0

|αt −∇θnt (Xt)|2dt

]
, (105)

where αt is the dirft of Q (see Lemma 5.1). Moreover, using H(Q|Γ(P)) < +∞ and Lemma 3.6, we
also get that

H(Q|Γ(P)) = 1
2EQ

[∫ T
0
|αt +∇W ∗ Pt(Xt)|2dt

]
. (106)
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Using (Qt)t∈[0,T ] = (Pt)t∈[0,T ] and (104) we get

limn→+∞ EQ

[∫ T
0
|∇θnt (Xt)|2dt

]
= EQ

[∫ T
0
|∇W ∗ Pt(Xt)|2dt

]
. (107)

On the other hand, let ᾱt(Xt) be a measurable version of EQ[αt|Xt], the existence of which is

guaranteed e.g. by [30, Proposition 4.4]. Using conditional Jensen and EQ

[∫ T
0
|αt|2dt

]
< +∞, it is

easy to verify that ᾱ ∈ H−1((Pt)t∈[0,T ]). Moreover

EQ

[∫ T
0
αt · ∇θnt (Xt)dt

]
=
∫

[0,T ]×Rd ᾱt(z) · ∇θ
n
t (z)Pt(dz)dt.

Since ᾱ ∈ H−1((Pt)t∈[0,T ]) we get from (104), (Qt)t∈[0,T ] = (Pt)t∈[0,T ] and the basic properties of
conditional expectation

limn→+∞
∫

[0,T ]×Rd ᾱt(z) · ∇θ
n
t (z)Pt(dz)dt = EQ

[∫ T
0
αt · ∇W ∗ Pt(Xt)dt

]
. (108)

Gathering (106),(108),(105),(107) the conclusion follows.

Lemma 5.4. Assume P � Rµ and that (ht)t∈[0,T ] is an adapted process satisfying the Lipschitz
condition in (63). Then the shift τε defined at (64) admits an almost sure inverse, i.e. there exists
an adapted process (Y εt )t∈[0,T ] such that

P− a.s. τεt (Y ε(ω)) = Y εt (τε(ω)) = ωt ∀t ∈ [0, T ]. (109)

Proof. Let Rµ be the law of the Brownian motion started at µ. The fact that (109) holds Rµ almost
surely under the Lipschitz condition (63) is a classical result, see e.g. [52, pg 209-210]. In this case
the a.s. inverse is nothing but the strong solution of the SDE

dY εt = −εht(Y εt )dt+ dBt

We conclude by P� Rµ.

The next lemma follows from [17, Lemma 4.1]:

Lemma 5.5. Let c : [0, T ] → R be twice differentiable on (0, T ) with c(0) = 0 and let κ ∈ R. If
d2

dt2 c(t) ≥ 2κ d
dtc(t) for all t ∈ (0, T ), then

∀t ∈ [0, T ], c(t) ≤ exp(2κt)−1
exp(2κT )−1c(T ). (110)

The following lemma is also useful for the quantitative estimates:

Lemma 5.6. Let ϕ : [0, T ]→ R be twice differentiable on (0, T ) and assume that ϕ(t) satisfies the
differential inequality

d2

dt2ϕt ≥ λ
2ϕt − λE

where E is a constant. Then we have for all 0 ≤ t ≤ T,

ϕt ≤ (ϕ0 − E
λ ) sinh(λ(T−t))

sinh(λT ) + (ϕT − E
λ ) sinh(λt)

sinh(λT ) + E
λ . (111)
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Proof. Consider the function γt = ϕt − ψt, where ψt is the right hand side of (111). It is easily

verified that d2

dt2ψt = λ2ψt − λE and ψ0 = ϕ0, ψT = ϕT . Consequently, we have that d2

dt2 γt ≥ λ2γt
for t ∈ [0, T ] and γ0 = γT = 0. Assume γt1 > 0 for some t1. Since γ0 = 0, there must exist t0 ≤ t1
such that γt0 > 0 and d

dtγt0 > 0. But this contradicts Lemma 5.7 below.

Lemma 5.7. Assume that λ ≥ 0. Let 0 ≤ t0 < T and γ : [0, T ]→ R be a function satisfying{
d2

dt2 γt ≥ λγt, t ∈ [t0, T ],

γt0 > 0, γT = 0.

Then d
dtγt0 ≤ 0.

Proof. Assume ad absurdum that d
dtγt0 > 0. Since γT = 0 it must be that t1 = inf{t ≥ t0; d

dtγt = 0}
belongs to (t0, T ]. By definition of t1, and since d

dtγt0 > 0 we have that γt ≥ γt0 > 0 for all t ∈ [t0, t1].
But then

0 > d
dtγt1 −

d
dtγt0 =

∫ t1
t0

d2

dt2 γtdt ≥ λ
∫ t1
t0
γtdt ≥ 0,

which is absurd.
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Itô differential. Probability theory and related fields, 71(4):501–516, 1986.

[31] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the
Fokker–Planck equation. SIAM Journal on Mathematical Analysis, 29(1):1–17, 1998.

[32] Ioannis Karatzas, Walter Schachermayer, and Bertram Tschiderer. Pathwise Otto calculus.
arXiv preprint arXiv:1811.08686, 2018.

[33] Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese journal of mathematics,
2(1):229–260, 2007.
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[48] Michel Talagrand. Transportation cost for Gaussian and other product measures. Geometric
& Functional Analysis GAFA, 6(3):587–600, May 1996.

[49] Hiroshi Tanaka. Limit theorems for certain diffusion processes with interaction. In North-
Holland Mathematical Library, volume 32, pages 469–488. Elsevier, 1984.

[50] Emmanuel Trélat and Enrique Zuazua. The turnpike property in finite-dimensional nonlinear
optimal control. Journal of Differential Equations, 258(1):81–114, 2015.

[51] Julian Tugaut. Phase transitions of mckean–vlasov processes in double-wells landscape.
Stochastics An International Journal of Probability and Stochastic Processes, 86(2):257–284,
2014.
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