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Abstract

Proliferating cells experience a global reduction of transcription during mitosis, yet their cell identity is

maintained and regulatory information is propagated from mother to daughter cells. Mitotic bookmarking

by transcription factors has been proposed as a potential mechanism to ensure the reactivation of

transcription at the proper set of genes exiting mitosis. Recently, mitotic transcription and waves of

transcription reactivation have been observed in synchronized populations of human hepatoma cells.

However, the study did not consider that mitotic-arrested cell populations progressively desynchronize

leading to measurements of gene expression on a mixture of cells at different internal cell-cycle times.

Moreover, it is not well understood yet what is the precise role of mitotic bookmarking on mitotic

transcription as well as on the transcription reactivation waves. Ultimately, the core gene regulatory

network driving the precise transcription reactivation dynamics remains to be identified. To address

these questions, we developed a mathematical model to correct for the progressive desynchronization

of cells and estimate gene expression dynamics with respect to a cell-cycle pseudotime. Furthermore,

we used a multiple linear regression model to infer transcription factor activity dynamics. Our analysis

allows us to characterize waves of transcription factor activities exiting mitosis and identify a core gene

regulatory network responsible of the transcription reactivation dynamics. Moreover, we identified more

than 60 transcription factors that are highly active during mitosis and represent new candidates of mitotic

bookmarking factors which could represent relevant therapeutic targets to control cell proliferation.
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Introduction 1

Proliferating cells show a global downregulation of transcription during mitosis. This results from the 2

combination of three main processes: 1) nuclear envelope breakdown leading to an increase of the volume 3

that transcription factors (TFs) and the RNA polymerases II (RNAPII) can explore and therefore 4

a decrease of their local concentration around gene promoters; 2) major reorganization of chromatin 5

architecture characterized by chromosome condensation, repositioning of nucleosomes in some regulatory 6

regions, loss of long-range interaction between enhancers and promoters and disassembling of topological 7

associated domains (TADs); and, 3) TF-DNA binding inactivation through postranscriptionally regulated 8

phosphorylation. As a consequence, most TFs and the RNAPII are evicted from mitotic chromosomes 9

and RNA synthesis is drastically reduced [1]. 10

In spite of this global decrease of gene expression during mitosis, proliferating cells are able to maintain 11

their cell identity and propagate regulatory transcriptional programs from mother to daughter cells [2]. 12

Mitotic bookmarking has been proposed as a potential mechanism that could be involved in the transmission 13

of regulatory information during the cell-cycle [3]. Indeed, a significant fraction of TFs are able to remain 14

bound to chromatin during mitosis [4]. These mitotic-bound factors (MFs) show faster interactions with 15

mitotic chromatin than in interphase as reduced residence times have been reported. It is believed that 16

non-specific chromatin or protein-protein interactions between MFs and chromosome coating proteins 17

can explain this fast observed dynamics [4, 5]. However, it has been shown for a handful of MFs, known 18

as bookmarking factors (BFs) [6–9], their ability to interact specifically with at least a fraction of their 19

interphase target sites during mitosis, indicating that chromosomes are not as compacted as previously 20

thought [9]. In fact, chromatin accessibility and nucleosomes landscape during mitosis remain unchanged 21

on bookmarked regions bound by known BFs [11,12]. This ability of BFs to maintain chromatin structure 22

locally could promote a quick transcription reactivation exiting mitosis. 23

Transcription dynamics during mitosis and early G1 phase has recently been measured by metabolic 24

labeling of RNA (EU-RNA-Seq) in synchronized population of Human Hepatoma cells HUH7 [10]. 25

Remarkably, this study showed a low but detectable transcription activity during mitosis in up to 8000 26

genes. Furthermore, transcription reactivation occurred in intense waves exiting mitosis and early G1 27

phase. However, the study did not take into account that mitotic-arrested cell populations progressively 28

desynchronized once the block was released. As a consequence, RNA measurements are performed on 29

mixture of cells at different internal cell-cycle times. Moreover, it is not understood yet what is the precise 30

role of mitotic bookmarking on mitotic transcription and the transcription reactivation waves. Ultimately, 31

the core gene regulatory network driving the precise transcription reactivation dynamics remains to be 32

identified. 33

In this paper we developed mathematical models and computational methods to address these open 34

questions. First, in order to correct for the progressive desynchronization of cell populations we assumed 35
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that there is a stochastic lag time until a cell can restart the cell-cycle progression again. We characterized 36

the distribution of lag times by analyzing how the observed fraction of mitotic cells evolves over time 37

after the mitotic block is released. This allows us to deconvolve the EU-RNA-Seq data and produce gene 38

expression profiles with respect to a cell-cycle pseudotime and classify the different waves of transcription 39

reactivation in relationship with the cell-cycle progression instead of the experimental time. Moreover, we 40

identified the key TFs determining the transcription reactivation dynamics. To do that, we developed an 41

ISMARA-like model [13] assuming that the expression of genes at a given time point of the cell-cycle 42

progression is a linear combination of the activities of all the TFs that can bind on their promoters. By 43

knowing the deconvolved gene expression and integrating data on transcription factors motif affinities, we 44

calculated the activity of every expressed TF and its role in transcription reactivation exiting mitosis. 45

Indeed, this analysis allows us to divide TFs in groups according to their peak of activity with respect 46

to the cell-cycle pseudotime and identify a core regulatory network of TFs responsible of the observed 47

transcription waves. Interestingly, we do not see a strong correlation between known BFs as FOXA1 and 48

the speed at which their target genes are reactivated. However, we identified around 60 TFs that are 49

highly active during mitosis and represent new candidates of mitotic bookmarking factors. 50

Results 51

Deconvolution of gene expression data from desynchronized cell populations 52

In 2017, Palozola et al. published a study based on metabolic labeling of RNA (EU-RNA-Seq) of 53

prometaphase synchronized population of Human Hepatoma cells (HUH7) by arresting cell-cycle progression 54

[10] with nocodazole. EU-RNA-Seq experiments were performed to measure newly synthesized transcripts 55

at 0 minutes, 40 minutes, 80 minutes, 105 minutes, 165 minutes and 300 minutes after mitotic block 56

release as well as for an asynchronous cell population. In this study, the authors highlighted the presence 57

of low levels of transcription during mitosis and the fact that housekeeping genes and not cell-specific genes 58

are activated earlier during the mitotic exit. We reanalyzed the EU-RNA-Seq datasets and characterized 59

the expression dynamics at the gene level. By performing k-means clustering on the gene expression 60

profiles, we identified 5 different clusters, presenting diverse transcription reactivation dynamics over the 61

experimental time. Similarly as the authors reported one of these group showed a peak in the expression 62

at 40 minutes, while others showed a later transcription reactivation (see Fig. 1, panel A). 63

Notably, the study did not consider that mitotic-arrested cell populations progressively desynchronize 64

after washing out nocodazole and therefore the reported measurements are performed on mixture of cells at 65

different internal cell-cycle times. In addition, at every experimental time point there is contamination from 66

cells that escape mitotic block. We developed a mathematical model to correct for the desynchronization 67

and the contamination of non-synchronized cells. To do so, we assumed that after mitotic block release 68
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Fig 1: Deconvolution of gene expression data of synchronized cell population leads to dynamic
expression profile respect to cell-cycle average profile. A: Genes can be divided in groups according to
their dynamic expression profiles over time. Each row corresponds to a gene. Black horizontal lines divide the
different clusters of genes. The color scale represents the level of the Z-score of expression of each gene, as shown
by the colorbar on the left. On the right, the number of genes for each cluster is indicated as well as the color
corresponding to the cluster expression average shown on the bottom panel. B: We assume that cells have to
wait a stochastic, log-normally distributed lag time to start again the cell-cycle progression after the release of
the chemical cell-cycle arrest by nocodazole. Here, a pictorial representation of lag time distribution, where the
green part of area represents the fraction of cells that already exited mitosis at two different experimental time
points. The dashed line indicates the time τmit that cells need to complete mitosis. C: Blue dots: quantification by
imaging of cells showing condensed (mitotic) and decondensed (non-mitotic) chromatin after mitotic block release
(data from [10]); Orange line: model fitting used to infer τmit and the parameters of the log-normal distribution, σ
and µ. D: After the deconvolution, genes were divided in groups according the their dynamic expression profile
over the cell-cycle pseudotime τ . The vertical white line represents τmit and indicates the transition between
mitosis to interphase in early G1 phase. The color scale represents the level of the Z-score of expression of each
gene, as shown by the colorbar on the right. On the right, the number of genes for every cluster is indicated as
well as the color corresponding to the cluster expression average shown on the bottom to one of the curves on the
bottom.

there is a stochastic lag time until cells can start again the cell-cycle progression that is log-normal 69

distributed with a certain mean µ and standard deviation σ. We introduced the concept of internal 70

cell-cycle pseudotime τ , defined as the effective cell-cycle time progression of a cell, starting once the lag 71

time is over. We then assumed that there is an average time τmit that cells need to complete mitosis. 72

Finally, we fitted the parameters of the model τmit, µ and σ using data from cell imaging reporting how 73

the fraction of observed mitotic cells evolves over time after the mitotic block is released [10]. This led to 74

an estimated median lag time of 30 minutes and an average time to complete mitosis of 67 minutes (see 75
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Fig. 1, panel B and C and Methods for a detailed mathematical derivation). 76

By applying our model, we deconvolved the time-dependent EU-RNA-Seq data and mapped them onto 77

the internal cell-cycle pseudotime τ (see supplementary Table 1). As a result we obtained gene expression 78

dynamics with respect to the cell-cycle progression, allowing us to highlight the transition between mitosis 79

and early G1 phase. Again, we identified 5 different clusters of genes showing distinct transcription 80

reactivation dynamics over the cell-cycle pseudotime τ . Strikingly, around 2000 genes showed an expression 81

wave very early during mitosis, presumably around metaphase, while a large fraction of genes reach their 82

reactivation peak just before exiting mitosis, during telophase or during the transition to early G1 phase, 83

as shown in Fig. 1, panel D. In summary, our analysis allows us to correct for desynchronization of cell 84

populations and study gene expression dynamics with respect to the cell-cycle pseudotime highlighting 85

the waves of transcription in relationship with the transition between mitosis and interphase. 86

Transcription factor activity dynamics during mitosis and early G1 phase 87

The transcription waves identified in the previous section are driven by regulatory transcriptional programs 88

mainly activated by transcription factors (TFs). To understand which ones among all TFs are in fact the 89

principal drivers of the transcription reactivation dynamics, we developed an ISMARA-like approach [13]. 90

Thus, we assumed that the normalized log-transformed expression egτ of a gene g at cell-cycle pseudotime 91

τ can be obtained as a linear combination of the cell-cycle dependent activities Afτ of all TFs f that can 92

potentially regulate the gene. The model can be summarized by the following equation: 93

egτ =
∑
f

NgfAfτ (1)

where the values Ngf represent the entries of a matrix N containing the number of binding sites for the TF 94

f associated with promoter of the gene g, taking into account the affinity between the motif of f and the 95

sequence of the gene promoter [14]. From the analysis, we excluded TFs associated to unexpressed genes. 96

Furthermore, to avoid overfitting we introduced a regularization term that enforces smooth TF activities 97

over the cell-cycle time and we calibrated using a cross-validation approach. For further mathematical 98

details we refer to Methods. 99

Our analysis allows us to infer the activity of 332 TFs (see supplementary Table 2). This can be 100

understood as a dimensionality reduction approach as we describe the problem of transcription reactivation 101

with much fewer parameters, since we pass from the analysis of thousands of genes to only hundreds 102

of TFs (see Fig. 2, panel A). To analyze the activity dynamics we use k-means and divide them in 3 103

clusters, according to their profile over τ . We showed that almost 19% of TFs present positive activity 104

during mitosis, with a peak in the first minutes, and then progressive decrease of activity. Conversely, 105

36% of TFs present a negative activity during mitosis, and then a high activity in early G1. Lastly, the 106
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Fig 2: Transcription factor activity dynamics during mitosis and early G1 phase. A: Schematic
representation of the model: the expression egτ of the gene g at cell-cycle pseudotime τ is a linear combination
of the activities of different transcription factors f binding the promoter of g. Ngf represents the entries of a
matrix N containing the number of sites for TF f associated with promoter of the gene g, taking into account the
affinity between the motif of f and the sequence of the promoter. B: TFs can be divided in groups according to
their activity dynamics over the cell-cycle pseudotime τ . The vertical white line represents τmit, and indicates the
transition between mitosis and interphase. On the right, the number of TFs belonging to each cluster is indicated.
C: Activities of mitotic-active (orange curves) and early-G1-active (red curves) TFs that show a high amplitude
dynamics. Grey lines show the gene expression dynamics of the corresponding TF genes. Pearson correlation
coefficients between the TF activites and expressions are shown in each panel. Dashed lines represent τmit.

remaining 45% of TFs show a moderate amplitude in their dynamics suggesting that they play a minor 107

role on transcription reactivation dynamics (the results are shown in Fig. 2, panel B). Among TFs that 108

are active during mitosis, we obtain known bookmarking factors as C/EBP, HSF1, TBP, GATA1 and 109

ESRRβ [3, 10,15–17] reassuring that our approach is able to identify relevant TFs. Indeed, activates of 110

TFs that are annotated to the Gene Ontology category cell-cycle show an intense dynamics during mitosis 111

and early G1 phase (see Fig. S3). Interestingly, by sorting TFs according to when their highest peak of 112

activity occurs, we observed waves of activity suggesting an intrinsic TF hierarchy with respect to their 113

role on the temporal reactivation of transcription after mitosis (see Fig. 2 panel B). 114

Determining the molecular mechanisms underlying the TF activity dynamics that we inferred goes 115

beyond the scope of this study. However, we can have a first clue by analyzing the correlation between the 116

TF activity and the expression of the corresponding TF gene. Indeed, a strong correlation indicates that 117
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changes in transcription may be responsible for changes in activity. On the contrary, low correlations may 118

suggest that postrasncriptional regulation is required to explain the TF activity dynamics. In Fig. 2 panel 119

C, we show activities of mitotic- and early-G1-active TFs with a high amplitude dynamics together with 120

their expression profiles. Interestingly, TBP, TAF1 and FOSL2 show a high positive correlation indicating 121

that their activities may be regulated at the transcriptional level. On the other hand, SOX13 and HNF1A 122

show a clear delay between expression and activity which could reflect the delay on the accumulation of 123

active protein due to mRNA and protein half-lives or postranscriptional regulation. Strikingly, POU5F1 124

shows a strong negative correlation which suggests that may act mainly as a repressor. In summary, 125

our analysis not only allows us to identify the activity dynamics of key TFs involved in transcription 126

reactivation but also provides preliminary hints on the molecular mechanisms that may be involved in 127

such dynamics. 128

Bookmarking and transcription reactivation kinetic 129

Next, we investigated the role of mitotic bookmarking in the transcription reactivation dynamics. To do 130

that, we analyzed the expression of genes associated to FOXA1, a liver-specific factor and one of the first 131

identified bookmarking factors. We used mitotic ChIP-Seq data from a study of Caravaca et al. [6]. We 132

selected the genes associated to FOXA1 ChIP-Seq peaks (see Methods) and we calculated the average 133

expression of these genes and compared it with the overall average gene expression. Surprisingly, genes 134

associated to FOXA1 reach their activation peak later than the overall peak of gene expression that occurs 135

during the transition between mitosis and early G1 phase (see Fig. 3, panel A). Then, we compared the 136

activity of FOXA1 with the average activity of all TFs, revealing a negative peak during mitosis (see 137

Fig. 3, panel B), in accordance with the results shown in Fig. 3, panel A. These results suggest that 138

FOXA1, despite its presence on mitotic chromosomes through specific and non-specific interactions, is 139

not sufficient to promote quick transcription reactivation. However it may play a structural function by 140

keeping the chromatin open to promote binding of other TFs. 141

To scale up this analysis we took advantage of a recent large scale study by Raccaud et al. in 2019. 142

The authors were able to systematically measure the mitotic chromosome binding of 501 TFs in mouse 143

fibroblast cells by live-imaging cell lines carrying exogenous florescence constructs. The mitotic bound 144

fraction (MBF) was defined as the fraction of fluorescence signal located on mitotic chromosomes over the 145

total cell signal. According to this score the TFs were divided in three categories (enriched, intermediate 146

and depleted) indicating their capacity to bind mitotic chromosomes and their potential to be bookmarking 147

factors. We then assumed that human TFs in HUH7 cells behave similar as their mouse paralogs and 148

assigned the corresponding MBF score. We hypothesized that genes regulated by TFs with high MBF 149

should be ready to be reactivated earlier. To test this, we calculated a MBF weighted average score 150

(MWAS) for each promoter as the average MBF of all the TFs that regulate a given gene promoter 151
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Fig 3: Bookmarking and transcription reactivation dynamics. A: The average expression of all genes
(grey line) was compared with the average expression of FOXA1 target genes during mitosis (green line). B: The
activity of FOXA1 (blue line) in comparison with the average activity of all TFs (grey line). C: Gene expression
pattern as a function of the promoter MWAS (MBF weighted average score). The average expression of all genes
(grey line) was compared to the average expression of genes whose promoters tend to be regulated by TFs with
high MBF (red line) and low MBF (blue line) (see Methods). D: The same as in panel C, but gene expression
patterns are shown normalized by the overall average expression (grey line). E: Gene expression pattern as a
function of the total number of TF binding sites in the promoter. The average expression of genes with large (red)
and low (blue) number of promoter binding sites are compared to the overall averege expression (grey line). F:
The same as in panel E, but gene expression patterns are shown normalized by the overall average expression
(grey line). G: Gene expression pattern as a function of the promoter MAWAS (mitotic activity weighted average
score, xdd Methods). The average expression of genes with high (red) and low (blue) MAWAS are compared to
the overall averege expression (grey line). H: The same as in panel G, but gene expression patterns are shown
normalized by the overall average expression (grey line). Dashed vertical lines in all panels indicate τmit.
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weighted by the number of their binding sites. Then, we divided genes in high and low MWAS and 152

we calculated the average expression of these two groups (see Methods for further information). Genes 153

associated to high MWAS, i.e gene that tend to be regulated by TFs with high MBF, did not show a 154

faster reactivation dynamics but a significant larger expression during early G1 phase (see Fig. 3, panel C 155

and D). Consistently, we showed no significant difference between the MBF distribution of TFs with high 156

activity during mitosis or during early G1 (supplementary fig. Fig. S4). These results indicate that there 157

is an absence of correlation between TF mitotic binding and TF mitotic activity and quick transcription 158

reactivation of their target genes. We cannot rule out that the absence of correlation could be due to the 159

fact that MBF scores were measured with an artificial system in a different cell line of a different organism. 160

However, the absence of correlation may suggests that that previously reported mitotic bound factors, as 161

in the case of FOXA1, may have a structural function by keeping chromatin open during mitosis and the 162

speed of transcription reactivation may be then regulated by other determinants. 163

Next, we studied whether promoter architecture could be one of the determinants of early transcription 164

reactivation. Surprisingly, just the total number of binding sites within the gene promoter is a strong 165

feature to predict early or late reactivation. Indeed, average expression of genes with large number of 166

binding sites shows a quick transcription reactivation during mitosis, in contrast to a reactivation during 167

early G1 of genes with small number of binding sites (see Fig. 3, panel E and F). Two non-exclusive 168

mechanisms could explain why strong promoters reactivate earlier: first, gene promoters with more 169

TF binding sites may be easier to kept accessible during mitosis as more TFs could compete against 170

nucleosomes leading to nucleosome free regions. Second, large number of binding sites may facilitates that 171

TFs find the promoters and thus increase the chance to recruit the transcriptional machinery. Finally, as 172

expected, genes that have a large number of binding sites for TFs with a high inferred activity during 173

mitosis (high mitotic activity weighted average score, MAWAS), showed a high mitotic transcription and 174

a quick transcription reactivation (see Fig. 3, panel G and H, and supplementary table 3). Therefore, we 175

believe that our method allows to identify new bookmarking factors that should not only bind mitotic 176

chromosomes but be able to bind specific DNA binding sites during mitosis. In addition, we predict that 177

promoters with large number of binding sites for these TFs should show a higher degree of chromatin 178

accessibility during mitosis. 179

Identification of the Core Regulatory Network responsible for the transcription 180

reactivation after mitotic exit 181

Next, we wanted to identify the TFs, among the 332 for which we are able to infer activities, that have a 182

major role on the reactivation of transcription exiting mitosis. Namely, the key TFs that if perturbed 183

may affect more significantly the measured gene expression patterns. To do so, we calculated the fraction 184

of explained variance as a measure of the performance of our model to fit the data. Then, we defined a 185
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Fig 4: Identification of the Core Regulatory Network responsible for the transcription reactivation
after mitotic exit. Inferred core regulatory network (CRN) by selecting the top 5% of the TFs according to
their importance in explaining the gene expression patterns and their inferred time-dependent activities. Colours
indicate the cluster to which TFs belong, in accordance with the in Fig. 2, panel B. Note that the majority of TF
motifs are associated uniquely to single TF, while some other motifs are shared by more than one TF, precluding
the inference of single TF activities of motifs which can be potentially bound by more than one TFs.

TF importance score as the reduction on fraction of explained variance when the TFs is removed as an 186

explanatory variable from the multiple linear regression model (see Methods for further details). A list of 187

all TFs sorted according to their importance score is given in the supplementary table 4. 188

Furthermore, in Fig. 4 we show a Core Regulatory Network (CRN) where the nodes are formed by the 189

5% top most important TFs and the links represent potential regulatory interaction between the selected 190

TFs according to the presence of TF binding sites in their promoters. Interestingly, the CRN shows a 191

large number of regulatory links (149 connections) while random networks with the same number of TFs 192

produce a smaller number of connections (36 on average). Thus, the high interconnectiviy of our CRN 193

suggests that the identified TFs may be related functionally. Indeed, some of them have been reported 194

to be involved in cell-cycle or cell proliferation and growth as ATF1, FOS, CEBPZ, SP3 and KLF4 [18]. 195

Moreover, the CRN structure shows multiple feedback loops rather than a hierarchical network as one 196

could expect taking into account the observed sequential waves of transcription reactivation. This type of 197
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Fig 5: Genes belonging to the same TADs show an higher correlation in expression. Correlations
between gene expressions for genes belonging to the same TAD were calculated, for two different TADs sets
(IMR90, hESC cells). In red, the KDE of the distribution of the correlation is plotted, in comparison with a
random model (grey plot). Dashed vertical lines represent the average values of the corresponding distributions.

structure has the potential to show cycling dynamics which may be important not only for the reactivation 198

after mitosis but for the regulation of transcription across the whole cell-cycle. In conclusion, we predict 199

that these TFs could represent relevant therapeutic targets to control cell proliferation. 200

Genes within in the same TAD show similar reactivation dynamics 201

The connection between transcription and the 3D structure of chromatin is currently a very active field of 202

research. During mitosis, topologically associated domains (TADs) are disrupted and rebuilt at different 203

dynamics during the transition between mitosis and G1 phase [20].However, the causal connection between 204

transcription reactivation and chromatin structure reformation exiting mitosis is not known yet. As a first 205

attempt to investigate this relationship, we analyzed the correlation between transcription reactivation 206

profiles of genes belonging to the same TAD. To do that, we took two TAD lists identified in human IMR90 207

and ES cells, from Hi-C experiments [21]. Although these are different cells lines than the HUH7, it has 208

been shown that TADs are highly conserved between different cell-types and even different organisms [21]. 209

We obtained a total of 2290 and 3061 TADs respectively. For each TAD in both lists, we identified the 210

expressed genes that are located within its limits, finding respectively 10225 and 9849 genes. Pearson 211

correlation coefficients were calculated between all pairs of genes within the same TAD. As a control, 212

expressed genes were randomly located into TADs respecting the total number of genes in each TAD. 213

Distribution of correlation coefficients as well as distribution of random coefficients are shown in Fig. 5. 214

Interestingly, genes belonging to the same TAD show a higher correlation than random pair of genes, 215

indicating that transcription reactivation dynamics are similar between genes that are located near in 216
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space within the same local self-interacting chromatin 3D structure. Finally, we hypothesized that TADs 217

containing genes characterized by a quick transcription reactivation should show a faster reformation 218

exiting mitosis. Further experimental work would be required to validate our hypothesis. 219

Discussion 220

Cell identity maintenance in proliferating cells is a biological process that has crucial implications in 221

developmental biology, regenerating medicine and cancer. Nevertheless, the precise molecular mechanisms 222

responsible for the transmission of regulatory information from mother to daughter cells are not fully 223

understood yet. Mitotic bookmarking by TFs through specific DNA binding on mitotic chromosomes has 224

been proposed as a mechanism to reinforce cell identity maintenance during cell division. In this paper 225

we studied the regulation of transcription reactivation exiting mitosis and the connection with mitotic 226

bookmarking. 227

First, we reanalyzed time-dependent EU-RNA-Seq data on synchronized cell populations by a mitotic 228

arrest, to correct for the progressive desynchronization of cells after block release. This allowed us 229

to estimate gene expression profiles with respect to a cell cycle pseudotime with an explicitly defined 230

transition between mitosis and early G1 phase. Remarkably, we identified a set of genes that show a very 231

early wave of transcription reactivation during mitosis. However, the majority of genes showed a peak of 232

transcription at telophase or during the transition between mitosis and G1. 233

Next, we estimated TF activity dynamics of 332 expressed TFs by fitting a multiple linear model to the 234

deconvolved gene expression profiles. We observed time-dependent waves of TF activities suggesting an 235

intrinsic TF hierarchy with respect to their role on transcription reactivation after mitosis. In addition, 236

we investigated whether TFs previously reported to bind mitotic chromosomes were responsible for a 237

faster reactivation dynamics. Surprisingly, we did not find a strong correlation between genes regulated 238

by mitotic bound TFs and the speed of reactivation. However, our approach allowed us to identify 239

around 60 TFs that are highly active during mitosis and represent new candidates of mitotic bookmarking 240

factors. Therefore, we predict that the interactions of these factors with their specific target sites during 241

mitosis are the molecular mechanisms responsible for mitotic transcription and transcription reactivation. 242

Moreover, we hypothesize that these specific interactions may also play an important role maintaining 243

chromatin accessibility on mitotic chromosomes. Further experimental work would be needed to validate 244

our hypothesis and predictions. 245

Moreover, we reconstructed a core regulatory network underlying the dynamics of transcription reactiva- 246

tion exiting mitosis, by selecting the key TFs that showed the highest explanatory power in our multiple 247

linear regression model. Then, we propose a list of candidates to be the crucial players in the process 248

of reactivating the gene expression in the first stages of the interphase, ensuring the cell identity. We 249
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predict that these TFs could represent relevant therapeutic targets to control cell proliferation. Further 250

experiments are required to validate our predictions and prove the active role of TFs on chromatin 251

accessibility and 3D structure. 252

Methods 253

Fitting of model parameters for deconvolution of gene expression data 254

To estimate gene expression dynamics with respect to an internal cell-cycle pseudotime, we assumed 255

that after the release of the synchronization there is a stochastic lag time until cells can start again the 256

cell-cycle progression. According to our model, the cell-cycle progression of a cell is represented by the 257

internal cell-cycle pseudotime τ = t − η , where t is the experimental time and η is the stochastic lag 258

time that the cell had to wait until the cell-cycle progression was restarted again. We further assumed 259

that the lag time η is log-normally distributed with a certain mean µ and standard deviation σ. Then, 260

the probability of finding a cell in the population with an internal cell-cycle pseudotime τ at a given 261

experimental time t can be written as: 262

P (τ |t)dτ =
1√

2πσ2(τ − t)
e−

(log(t−τ)−µ)2

2σ2 dτ (2)

Assuming that cells require an average time τmit to complete mitosis we can calculate the fraction of cells 263

waiting for mitosis to be finished as q(t) =
∫ τmit

0
P (τ |t)dτ and solving the integral we obtain: 264

q(t) =


1
2 −

1
2erf( log (t−τmit)−µ√

2σ
) t > τ

1 t ≤ τ
(3)

Then, we fit the parameters of the stochastic model (τmit, µ and σ) by using data from [10] on the time 265

evolution of the number of mitotic cells observed after synchronization treatment release. To do so, we 266

define the likelihood of the data based on the assumption that the cell counts follow a binomial distribution 267

with probability q(t). Thus, 268

L =
∏
i

q(ti)
nmit
i (1− q(ti))n

tot
i −n

mit
i (4)

where nitot and nimit are, respectively, the total number of cells and the number of cells in mitosis counted at 269

experimental time t0 = 0 minutes, t1 = 40 minutes, t2 = 80 minutes, t3 = 105 minutes, t4 = 165 minutes 270

and t5 = 300 minutes. Then, the log likelihood can be written as: 271

logL =
∑
i

nmit
i log (q(ti)) +

∑
i

(ntoti − nmit
i ) log (1− q(ti)) (5)
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By performing an optimization of Eq. 5 (python scipy optimize package, nelder-mead algorithm), we can 272

infer the parameters τmit, µ and σ, obtaining, respectively, 67min, 3.43 and 0.74. Once the parameters 273

have been inferred, the probability P (τ |t) is fully determined and, therefore, we can recover the gene 274

expression with respect to the internal cell-cycle pseudotime τ using the following convolution equation: 275

rg(t) =

∫ t

0

Eg(τ)P (τ |t)dτ (6)

where rg(t) represents the expression of the gene g at experimental time t (given by the EU-RNA-Seq

data), Eg(τ) is the expression of the same gene g at the cell-cycle pseudotime τ . This equation basically

reflects that the gene expression measured at a certain experimental time is the population average over

the expressions of cells at different cell-cycle times. In case of perfect synchronization over time, the

probability P (τ |t) would become a Dirac delta function and the gene expression in both times would

be the same. Furthermore, we took into account the fact that the samples were contaminated by a

fraction πM = 0.23 of cells that never exited mitosis and a fraction πI = 0.075 of cells that did not

response to the mitotic block and stayed in interphase (see Fig. 1, panel C). It means that only a fraction

πC = 1−πM −πI starts again the cell cycle progression within the duration of the experiment. Then, this

can be summarized by describing the measured gene expression as a mixture of the three cell populations

as follows:

rg(t) = πC

∫ t

0

Eg(τ)P (τ |t)dτ + πMEg(0) + πIE
I
g (7)

rag = fmit

∫ τmit

0

Eg(τ)dτ/τmit + fIE
I
g (8)

where, EIg is the average expression during interphase and an extra equation is included to relate the gene 276

expression rag measured on an asynchronous cell population as a weighted average of the gene expression 277

during mitosis and during interphase where the weights reflect the fraction of the cell-cycle duration TC 278

that cells expend on average in each phase, i.e fmit = τmit/TC and fI = 1− fmit. 279

Then, to perform the deconvolution we discretized the cell-cycle pseudotime into small intervals (δτ = 1 280

min) and expressed the Eq. 7 and 8 into matricial from: rg = MEg, where the expression vectors are 281

defined as rg = (rg(0), rg(t0), rg(t1), . . . , rag ) and Eg = (Eg(0), Eg(δτ), Eg(2δτ), . . . , EIg ) and the matrix M 282

is the sum of three components: M = MC +MM +MI that account for the three distinct cell populations. 283

First, the cell-cycle matrix MC models the desynchronization of the cells that re-enter the cell cycle, as in 284
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Eq. 6, and can be written as: 285

MC =


πCP

0

0

· · ·

0

0 0 · · · 0 0


(9)

where P is the discrete version of Eq. 3. Second, the mitotic matrix MM adds to the model the contribution 286

of the cells that are still in mitosis by mapping them into τ = 0. Its explicit form is: 287

MM = πM





1 0 · · · 0 · · · 0

1 0 · · · 0 · · · 0

· · · · · · · · · · · · · · · · · ·

1 0 · · · 0 · · · 0



0

0

· · ·

0

0 0 0 · · · · · · · · · 0 0


(10)

And third, the interphase matrix MI exploits the asynchronous dataset to infer the average expression 288

levels during interphase. The matrix takes the following form: 289

MI =





0 0 · · · 0 · · · 0

0 0 · · · 0 · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · 0 · · · 0



πI

πI

· · ·

πI

1
TC

1
TC

· · · · · · · · · · · · · · · fI


(11)

where the cell cycle duration TC is set to 24h [22]. 290

Hence, the deconvolution problem can be understood as a multiple linear regression and, therefore, 291

we can infer the gene expression in the space of the cell-cycle pseduotime by optimizing the following 292

quadratic loss function: 293

LSM =
∑
g

| rg −MEg |2 +λ
∑
gi

| Eg,τ+1 − Eg,τ |2 (12)

where we added a smooth Ridge regularization term to be able to solve the overrepresented linear model 294

and avoid overfitting. Then, the solution is E∗g = (Q + λI)−1MT rg, where Q = MTM and I is the 295

regularization matrix. 296

Finally, To choose the parameter λ, we calculated the Akaike Information Criterion (AIC) and the 297
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Bayesian Information Criterion (BIC) scores in function of λ, as follows [23,24]: 298

AIC = NE · χ2 + 2NG ·D (13)

299

BIC = NE · χ2 + 2NG ·D · log(NE) (14)

where NE is the number of experimental time points, NG the total number of genes, χ2 =
∑
g | rg−ME∗g |2 300

is the minimum error and D is the degree of freedoms that, for a multiple linear regression model with 301

smooth Ridge regularitation, can be calculated as D = Tr(M((Q+ λI)−1MT ). The BIC score tents to 302

introduce a stronger penalty producing a solution more robust against overfitting therefore we chose 303

λ = 0.79 that minimizes the BIC score (see Fig. S1). 304

Visualization of the gene expression through heatmaps 305

To represent the gene expression as shown in Fig. 1 panel A, processed EU-RNA-Seq data at the transcript 306

level from [10] were used. Transcript FPKMs from the same gene were then grouped to obtain gene level 307

EU-RNA-Seq data, and all the genes with a low expression on the asynchronous sample (< 36 FPKM) 308

were excluded (see Fig. S1, panel A). Then, a Z-score was calculated, correcting each FPKM value by 309

subtracting the mean µg and dividing by the standard deviation σg, both µg and σg calculated over the 310

corresponding gene. Genes were divided into 5 clusters (the optimum number to obtain significantly 311

different profiles) according to their Z-score over time, by using the KMeans tool from sklearn python 312

library. The heatmap was represented by using seaborn python library, ordering the genes of each cluster 313

according to their norm with respect to the corresponding cluster average expression. 314

Inference of transcription factor activities 315

We developed an ISMARA-like model [13] where the expression of a given gene with respect to the 316

cell-cycle pseudotime can be obtained as a linear combination of time-dependent activities of all TFs that 317

can potentially bind its promoter. First, a as proposed in [13], we preprocessed our data as follows: first, 318

to revert the z-score transformation performed above we multiplied the gene expression values Egα by the 319

standard deviation σg and added the average µg. Second, in order to calculate the log2 expression for all 320

genes, we add a pseudo-count to the corrected Egτ values, i.e. for every given time τ , we ranked all the 321

values higher than zero and we calculated the 5th percentile pcτ . We then added pcτ to the corresponding 322

Egτ . After that, we calculated êgτ , i.e. normalized values of the gene expression at a cell-cycle pseudotime 323

τ , as follows: 324

êgτ = log2

[
106 · Egτ∑

g′ Eg′τ

]
(15)

April 15, 2020 16/24

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.15.042853doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.042853
http://creativecommons.org/licenses/by-nc-nd/4.0/


we further normalized the expression of genes across pseudotime and genes resulting in egτ = êgτ − 〈êg〉 − 325

〈êτ 〉+ 〈〈ê〉〉. Finally, we write the linear model as: 326

egτ =
∑
f

NgfAfτ (16)

where the value Ngf represents the number of binding sites for the TF f on the gene promoter g, taking 327

into account the affinity between the motif of f and the sequence of the promoter; and, the unknown 328

parameter Afτ is the activity of the TF f at a given cell-cycle pseudotime τ . The binding site matrix is 329

further normalized to ensure
∑
g Ngf = 0. Note that the TF activities are then zero mean variables. 330

Then we used least square fitting to obtain the TF activites. To avoid overfitting we included a Ridge 331

regularization penalty. To estimate the weight of the regularization we calculated the Mean Square Error 332

(MSE) for a training and a test datasets and we performed a 80-20 cross-validation. A regularization 333

factor λ = 443 was chosen, corresponding to the minimum of the MSE of the test dataset (see Fig. S2). 334

In addition, we calculated the explained variance (EV) of the model, EV =
(egτ−ethgτ )

2

(egτ−µg)2 , where ethgτ is the 335

theoretical expression of the gene g at internal cell cycle time τ , i.e. calculated using the inferred activity 336

Afτ and the matrix Ngf , and µg is the mean among all the values egτ . We obtained a regularization 337

factor λ = 443, corresponding to the maximum of the EV of the test dataset Fig. S2, in accordance with 338

the minimum obtained for the MSE. 339

Visualization of the TFs activities through heatmaps 340

To represent the TFs activities as shown in Fig.2, the TFs were divided into 3 clusters according to 341

their activity dynamics over τ . First, we calculated the standard deviation over time of TF activities 342

as σf =
√∑

τ A
2
fτ and classify a TF as high amplitude dynamic if σf > 0.07. Second, we sorted TFs 343

according to when their maximum activity peak occurred and defined a TF as mitotic active if the 344

peak appeared before τmit. Therefore, TFs were classified as either mitotic active, early-G1 active or 345

non-dynamic. The heatmap in Fig.2 was represented by using seaborn python library, ordering the TFs 346

in each cluster by the the first reached maximum over τ . To represent the TFs activity as shown in 347

Fig. S3 only TFs corresponding to genes belonging to the Gene Ontology (GO) category (Cell Cycle - 348

GO:0007049) were considered. 349

Core Regulatory Network 350

To build the core regulatory network (CRN) we selected the TFs that showed a high degree of explanatory 351

power to reproduce the gene expression dynamics. To do that, we assigned a score for each TF based on 352

its contribution to the explained variance by calculating a reduced explained variance EVf =
(egτf−e

′th
gτf )

2

(egτf−µg)2 , 353

i.e. the EV as shown in the section Inference of transcription factor activities but removing from the 354
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model the corresponding TF f . Then, we defined the importance score of a TF by the ratio
EVf
EV and we 355

ranked all TFs according to this score taking into account that the smaller is the ratio the higher is the 356

impact of the TF on the explanatory power of the model. The figure was then generated by using digraph 357

library in Matlab, by selecting relevant TFs and corresponding genes in the N matrix. 358

Genes expression dynamics and bookmarking 359

To establish which genes are associated to FOXA1, as shown in Fig. 3, panel A, we took into account the 360

mitotic ChIP-Seq peaks of FOXA1 from [6]. Then, for every peak, we selected the nearest expressed gene, 361

using as references the corresponding TSS and the average point of the selected peak. So, we obtained a 362

list of expressed genes that we defined the genes bound by FOXA1 during mitosis. 363

To establish which genes tend to be regulated by TFs with high or low MBF [4], as shown in Fig. 3, 364

panels C and D, we calculated what we called MBF weighted average scores (MWAS) as follows: for each 365

gene g, we took the number of binding sites Ngf corresponding to the factors f for which we know the 366

MBF score. Each of these values was multiplied for the corresponding MBF, and then they were summed 367

all together. Finally, this sum was divided by the total number of binding sites, i.e. the sum
∑
f Ngf . 368

This score is what we called MWAS. Then we ranked the genes according to the MWAS, and we removed 369

the ones with MWAS = 0. The 10% of the genes with the highest MWAS were then considered associated 370

with enriched TFs (”enriched genes”), while the 10% of the genes with the lowest MWAS were considered 371

associated with the depleted TFs (”depleted genes”). 372

To obtain genes enriched or depleted in binding sites, we calculated for each gene promoter the total 373

number of binding sites, i.e.
∑
f Ngf and then the 10% of the genes with largest number of binding sites 374

and the 10% of the genes with smallest number were considered to calculate average expression profiles as 375

shown in Fig. 3 panel E and F. 376
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Supporting information 377

Fig. S1 378

Data processing for deconvolution A: Log2 histogram of FPKM reads at gene level for asynchronous 379

data. The dashed vertical line represents the threshold we considered to process our data: genes with 380

asynchronous FPKM < 36.76 were excluded. B: AIC and BIC scores were calculated in order to establish 381

the best λ parameter for the regularization of the deconvolution process (see Methods). Both AIC and 382

BIC showed a minimum, and we choose λ = 0.79, corresponding to the BIC minimum (dashed vertical 383

line). C: Average gene expression of convolved (grey line) and deconvolved (yellowish line) data were 384

represented on the same plot. 385
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Fig. S2 386

Cross validation of the linear model. A: A cross-validation 80/20 was performed to find the best 387

λ regularization parameter for inferring the TFs activity (see Inference of transcription factor activities). 388

A value λ = 443 was chosen (dashed vertical line), corresponding to the minimum of the Mean Squared 389

Error (MSE) of the test dataset (see Methods). B: The same analysis shown in the panel A was performed 390

by using Explained Variance (EV) instead of MSE. The dashed vertical line corresponds to the maximum 391

λ = 443, in accordance with the minimum MSE. 392
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Fig. S3 393

Transcription factors dynamics taking into account only cell-cycle GO category. Here, only 394

TFs associated to genes belonging to the Gene Ontology (GO:0007049) category have been shown and 395

clustered. In this case, only 2 main groups of TFs have been individuated, and both of them show a 396

significant activity change over τ . The vertical white line represents τmit, and separates ideally the mitosis 397

from the interphase. On the right, the number of TFs for every cluster is indicated. 398

Fig. S4 399

Average MBF for mitotic and early G1 active transcription factors. Boxplots showing the 400

average MBF for TFs with higher activity during mitotis (green box) and during early G1 (orange box) 401

respectively, in comparison with the average of all TFs (blue box). 402
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