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Abstract

Along with the large and increasing number of scientific workflows publicly accessible on Web repositories, the discovery
of workflow fragments is significant to promote the reuse or repurposing of best-practices evidenced in legacy workflows,
when novel scientific experiments are to be conducted. This paper proposes a novel crossing-workflow fragment discovery
mechanism, where an activity knowledge graph is constructed to capture flat invocation relations between activities, and
hierarchical parent-child relations specified upon sub-workflows and their corresponding activities. Semantic relevance
of activities and sub-workflows is calculated based on their representative topics, and these topics are generated by
applying the biterm topic model. Given a requirement specified in terms of a workflow fragment template, individual
candidate activities or sub-workflows are discovered when considering their semantic relevance and short-document
descriptions. Candidate fragments are constructed through discovering the relations in activity knowledge graph specified
upon candidate activities or sub-workflows. These fragments are evaluated by balancing their structural and semantic
similarities. Evaluation results show that our approach is accurate in discovering appropriate crossing-workflow fragments
in comparison with the state of art’s techniques.

Keywords: Crossing-Workflow Fragments; Activity Knowledge Graph; Topic Discovery; Scientific Workflows.

1. Introduction

Scientific workflows prescribe partial-ordering relations
upon activities for the conduction of recurrent scientific
experiments. Along with the wide-adoption of Web 2.0
technology, activities are usually encapsulated and repre-
sented in terms of Web/REST services, or mashup APIs
nowadays, and scientific workflows can be publicly acces-
sible through the Internet, in order to promote their shar-
ing with colleagues when possible. For instance, there are
more than 2,830 scientific workflows contained in the my-
Experiment repository [1], and these workflows are pro-
vided by workflow systems including Taverna 2, Taverna
1, RapidMiner, Galaxy, etc. Considering the fact that de-
veloping a novel scientific workflow from scratch is typ-
ically a knowledge- and effort-intensive, and error-prone
mission, reusing and repurposing best-practices that have
been evidenced by legacy scientific workflows is considered
as a cost-effective and error-avoiding strategy [2, 3].

Current techniques have been developed to support the
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reuse and repurposing of workflows [4]. Generally, the sim-
ilarity of workflows (or business processes) can be effec-
tively calculated to evaluate whether a workflow can be
replaced (or reused) by another when necessary. These
techniques can be categorized into annotation-based [5],
structure-based [6], and data-driven [7, 8] mechanisms. We
have proposed a layer-hierarchial technique for computing
the similarity of scientific workflows in the myExperiment
repository, where a layer hierarchy represents the relations
between a workflow, its sub-workflow and their activities
[9]. In general, these techniques aim to calculate the simi-
larity for pairs of workflows, and discover and rank candi-
date workflows concerning certain requirements according
to their similarity values, in order to promote the reuse or
repurposing of single workflows. Note that when the sim-
ilarity is no larger in value than a pre-specified threshold,
a conclusion can be safely drawn that no single workflow
could be recommended for satisfying certain requirements.

It is worth emphasizing that a novel requirement may
be partially relevant to multiple scientific workflows. This
is due to the fact that certain experimental scenarios may
not or partially occur, and thus, no single workflow exists
in the repository that can satisfy respective requirements.
For instance, Fig. 4 shows a sample requirement that
should be satisfied through the composition of crossing-
workflow fragments derived from legacy scientific work-
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flows, rather than by any single workflow. In this setting,
this requirement should be achieved by discovering appro-
priate fragments contained in various workflows, and as-
sembling these crossing-workflow fragments according to
certain principles. To mitigate this problem, typical frag-
ments can be discovered from single workflows [10, 11], and
a fragment-index mechanism has been developed to pro-
mote the search and reuse of these fragments with various
granularities [12]. Besides, we have proposed a crossing-
workflow fragments discovery mechanism [13], where an
activity network is constructed to capture invocation re-
lations between pairs of activities in scientific workflows.
A graph isomorphism algorithm is applied to discover ac-
tivity fragments in this activity network with respect to
the workflow model representing certain requirements. A
fragment is examined as appropriate when activities in this
fragment and the workflow model are pair-wisely match-
ing. Generally, current techniques can discover fragments
whose activities may be contained in various workflows.
The constraint lies in the fact that except for flat invo-
cation relations, other relations like hierarchical parent-
child relations may exist between workflows, their sub-
workflows, and activities, whereas these relations have not
been included in the activity network. However, a cer-
tain requirement may be satisfied by composing fragments
with coarse or fine granularities with respect to the gran-
ular level of requirement specification, and this happens
especially when scientists are initially not familiar with
legacy workflows in the repository, and thus, has to re-
fine the solution through discovering coarse to fine frag-
ments in an iterative fashion. Consequently, the discovery
of crossing-workflow fragments containing activities with
coarse or fine granularities is challenging.

To remedy this issue, this paper proposes a novel crossing-
workflow fragments discovery mechanism through the query
answering based on knowledge graphs [14]. The contribu-
tion of this paper are summarized as follows:
• We construct an activity knowledge graph, whose

edges capture (i) flat invocation relations between
activities in scientific workflows in the myExperiment
repository, and (ii) hierarchical parent-child relations
specified upon sub-workflows and their correspond-
ing activities.

• We calculate the semantic relevance of activities and
sub-workflows leveraging their representative topics,
where these topics are generated by applying the
biterm topic model based on the description in short-
texts for activities and sub-workflows.

• We design a novel and efficient crossing-workflow
fragments discovery algorithm when the requirement
is specified in terms of a workflow fragment.

• We conduct extensive experiments, and evaluation
results demonstrate the advantage of our approach
in comparison with the state of art’s techniques.

The rest of this paper is organized as follows. Sec-
tion 2 presents the technique to construct an activity-based

knowledge graph. Section 3 explores the topic relevance
of activities and sub-workflows. Section 4 discovers and
recommends fragments that are crossing scientific work-
flows. Section 5 introduces our experimental settings, and
Section 6 evaluates this approach and compares it with
the state of art’s techniques. Section 7 reviews relevant
techniques, and Section 8 concludes this work.

2. Activity Knowledge Graph Construction

As presented in our previous work [9], a scientific work-
flow represents invocation and parent-child relations upon
sub-workflows and activities. Specifically,

Definition 1 (Scientific Workflow). A scientific work-
flow swf is a tuple (tl, dsc, SWFsub, ACT , LNK), where:
• tl is the title of swf .
• dsc is the description in the short-text of swf .
• SWFsub is a set of sub-workflows contained in swf .
• ACT is a set of activities contained in swf .
• LNK = {LNKinv, LNKpch} is a set of links, where
LNKinv specifies flat invocation relations upon SWFsub

and ACT , and LNKpch specifies hierarchical parent-
child relations upon sub-workflows in SWFsub and
their corresponding activities in ACT .

Note that a sub-workflow can be regarded as an activ-
ity with relatively coarse granularity. The invocation rela-
tions between activities prescribe the execution sequences
upon functional services. An activity in the myExperi-
ment repository can be REST/Web service or a mashup
API, and it is usually represented by (i) a name in string
with several keywords, and (ii) a description in short-text.
As presented in our previous work [9], a scientific workflow
can be converted into a layer hierarchy, when hierarchical
parent-child relations are explicitly specified for activities
between contiguous layers. Through folding sub-workflows
into single activities, each layer represents (part of) the
workflow specification. A sample scientific workflow and
its corresponding layer hierarchy are shown in Fig. 1 and
2, respectively.

To facilitate the discovery of fragments that may con-
tain activities from various workflows, we construct an ac-
tivity knowledge graph (AKG) to capture various kinds of
structural relations among workflows, sub-workflows, and
activities in a semantic fashion. Given a set of scientific
workflows {swf}, AKG is defined as follows:

Definition 2 (Activity Knowledge Graph). An activ-
ity knowledge graph is a tuple (E, R, S), where
• E is a set of entities, which includes workflows, their

sub-workflows, and activities in {swf}.
• R is a set of relation types including:

– Invok to specify a flat invocation relation be-
tween a pair of sub-workflows or activities.
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Figure 1: A scientific workflow originally from Taverna 2 of the my-
Experiment repository with the title “PubMed Search” publicly ac-
cessible at https://www.myexperiment.org/workflows/1833.html.
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Figure 2: The layer hierarchy for scientific workflow as shown in Fig.
1.

– PrtOf to specify the relation for a sub-workflow
or activity as part of a workflow.

– PrtCld to specify a hierarchical parent-child re-
lation for a sub-workflow and the corresponding
set of activities.

• S ⊂ E × R × E is a set of triples, which specify the
relations prescribed upon entities.

swf1：
PubMed Search

swfsub4:

Retrive_

abstracts

act3：
extractPMID

act2：
run_eSearch

act6:

run_eFetch

act8:

merge_dates

Figure 3: A snippet of AKG for layer hierarchy as shown in Fig. 2,
where legacy scientific workflows are interconnected when they share
certain activities or workflow fragments.

An AKG is constructed by adopting relations prescribed
in the layer hierarchy of scientific workflows. A snippet of
AKG is shown in Fig. 3, where (i) entities for workflows are
denoted by nodes in orange, and “swf1: PubMed Search”
is an example, (ii) entities for sub-workflows are denoted
by nodes in pink, and “Retrive abstracts” is an example,
and (iii) entities for activities are denoted in blue, and
act3 is an example. Relations are denoted as triples, and
sample relations are given as follows:
• s1 = (swfsub4, PrtOf , swf1)
• s2 = (act5, PrtOf , swf1)
• s3 = (act5, Invok, act6)
• s4 = (act5, PrtCld, swfsub4)
Leveraging this AKG, we propose in the following sec-

tions to discover crossing-workflow fragments, whose defi-
nition is presented as follows:

Definition 3 (Crossing-workflow Fragment). A crossing-
workflow fragment cwf is a tuple (ACT , LNK, SWF ),
where ACT , LNK, and SWF are the same as those in
scientific workflows.

A sample crossing-workflow fragment is shown in Fig.
4, and it is composed of (i) activities act4, act5, act6, act7,
and sub-workflows swfsub3 originated from workflow swf1,
and (ii) activities act5, act6, act7, act8, and sub-workflows
swfsub9 originated from workflow swf2.

3. Topic-Based Activity Relevance
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Note that activities and sub-workflows may be seman-
tically equivalent or similar although they are different in
their names and descriptions, this section explores the se-
mantic relevance of activities and sub-workflows to facili-
tate the discovery of crossing-workflow fragments. Consid-
ering the fact that the name is typically the concatenation
of several keywords or their abbreviations, and their de-
scription contains one or several sentences, we adopt the
topic model [15], such that activities or sub-workflows are
assumed as semantically relevant when they are highly cor-
related in their representative topics.

3.1. Activities and Sub-Workflows Representation as Short
Documents

This section converts the description for activities and
sub-workflows into a chain of keywords, and appends them
upon the name, to generate short documents in order to
derive their topics. We argue that the name, which is
usually represented as the concatenation of few carefully-
selected keywords or their abbreviations, should contain
more precise information than the words in the relatively
long text description. On the other hand, due to the brief-
ness of the name which may hardly convey complete in-
formation, words in text descriptions are evaluated and
combined as the complement of the name to generate short
documents as the representation of activities or sub-workflows.

A word in text description should be considered as rel-
evant when this word (i) is semantically similar to a word
in the name (i.e., semantic relevance), and (ii) it co-occurs
frequently with a word which is semantically equivalent or
similar with a word in the name (i.e., co-occurrence rele-
vance). Algorithm 1 presents the evaluation and selection
procedure for words in text descriptions, where ACT is a
set of activities or sub-workflows in terms of their names
and text descriptions, thdsim is the pre-specified thresh-
old to determine semantic relevance, and thdrel is the pre-
specified threshold to determine co-occurrence relevance.
Note that thdsim (or thdrel) should be set to an appropri-
ate value with respect to certain requirements of domain
applications.

As presented by Algorithm 1, given an activity or sub-
workflow act contained in ACT with the name actnm and
text description actds, a word splitting function Spt is
adopted to convert actnm and actds to sets of words, and
these words are saved in word document sets WDnm and
WDds, respectively (line 2). The semantic similarity be-
tween words in WDnm and words in WDds is calculated
pair-wisely through the calculation function SimCal based
on WordNet [16] (line 4). Generally, WordNet is a lexical
database of the English language, and it has been widely
used for supporting the semantic computation of similarity
for paragraphs. If the similarity between wdnm and wdds

is no smaller than the pre-specified threshold thdsim, wdds

is assumed semantically similar to wdnm, and thus, wdds

in WDds can be selected and inserted into the keyword
set KW (line 5), which is considered semantically similar
to words in the name. The co-occurrence situation in the

Algorithm 1 Representative Words Selection
Require:

- ACT : a set of activities and sub-workflows
- thdsim: the threshold for semantic relevance
- thdrel: the threshold for co-occurrence relevance
- wdSz: the size of co-occurring text window

Ensure:
- WD: a set of representative words for ACT

1: for all act ∈ ACT do
2: WDnm ← Spt(actnm); WDds ← Spt(actds)
3: for ∀ wdnm ∈ WDnm and ∀ wdds ∈ WDds do
4: if SimCal(wdnm, wdds) ≥ thdsim then
5: KW ← KW ∪ {wdds}
6: end if
7: end for
8: FR ← FrCl(actds)
9: CPN ← InPr(WDds)

10: WI ← WdSp(actds, wdSz)
11: for all wi ∈ WI do
12: CPN ← CPN ∪ StaOcc(wi)
13: end for
14: CPR ← ClRl(CPN , FR)
15: for all kw ∈ KW do
16: if QyRl(kw, CPR) ≥ thdrel then
17: WD ← WD ∪ {prkw}
18: end if
19: end for
20: end for

text description is explored as follows. Word frequencies
are counted and saved into the FRequency set FR for each
word in WDds based on actds and the frequency calcula-
tion function FrCl (line 8). The numbers of co-occurrence
for the pairs of words are initialized to 0 and saved into
CPN by the initialization function InPr (line 9), where
the sets of words in different pairs are usually different.
Since text descriptions are mostly not short in terms of
the number of words, the size of co-occurring text win-
dow wdSz is set to a certain value, and thus, actds can
be transferred into multiple sub-vectors wi leveraging the
window splitting function WdSp (line 10). We iterate each
wi and update the values of co-occurrence pairs in CPN
through the statistical function StaOcc (lines 11-13). Con-
sequently, the co-occurrence relevance cr for each pair is
calculated based on CPN and FR as follows:

CPR(wdi
ds, wd

j
ds, cr) =

CPN(wdi
ds, wd

j
ds, cn)/FR(wdi

ds, fr),
(1)

where FR represents the frequency of occurrences fr of
the word wdi

ds, and CPN refers to the number of co-
occurrences cn where words wdi

ds and wdj
ds appear in a

certain text description. CPR shows that the larger the
ratio of (i) the times the word wdi

ds co-occurs with the
word wdj

ds, with respect to (ii) the frequency where the
word wdi

ds appears, the more relevant the words wdi
ds and
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wdj
ds are. Consequently, relevant pairs prkw are discovered

for each keyword kw in KW through the query function
QyRl. When the value of co-occurrence relevance is rela-
tively large in comparison with the pre-specified threshold
thdrel, words in prkw are inserted into the set WD (lines
15-19). Consequently, representative words for each activ-
ity and sub-workflow are selected and appended to enrich
their names. In this setting, the representations of short
documents for activities and sub-workflows are generated
for the topic discovery task in the following section.

The time complexity of Algorithm 1 is O(n1 ∗ s1 ∗ d1),
where n1 is the maximum number of activities and sub-
workflows in the repository, s1 is the upper number of
words in the word document set WDnm for names, and d1
is the upper bound number of words in the word document
set WDds for text descriptions. Note that line 11 and line
15 should iterate fewer times than line 3, and thus the time
complexity of Algorithm 1 is captured by line 1 and line 3,
which iterate n1 ∗ (s1 ∗ d1) times for the procedure of lines
4-6 in the worst case. Therefore, the time complexity of
this algorithm is O(n1 ∗ s1 ∗ d1).

3.2. Topic Discovery Using BTM
Based on short documents generated for activities and

sub-workflows, this section aims to discover their topics,
where biterm topic model (BTM ) [17, 18] is assumed as
the most appropriate algorithm for processing short docu-
ments. Generally, topics are represented as groups of cor-
related words in topic models like BTM. Topics are learned
by modeling the generation of word co-occurrence patterns
(i.e. biterms) in the short document-based corpus, where
the problem of sparse word co-occurrence patterns can be
addressed at the document-level. The procedure of topic
discovery includes the following steps:

3.2.1. Content Digitization
Short documents are digitized and transformed into

the format according to the requirement of BTM. This
procedure is presented by Algorithm 2, where DOC rep-
resents the set of short documents for activities and sub-
workflows. Given a document doci ∈ DOC, all words con-
tained in doci (denoted word(doci)) are examined for the
statement that whether a word wdj

doci
is included in the

word conversion table WdLt through the query function
QyIs. If this is not a fact, wdj

doci
is inserted into WdLt

(lines 3-4). The mapping relation MP between the word
wdi and the serial number idtmp is constructed in order to
re-represent DOC (lines 9-17). Especially, the size of serial
numbers is determined by the word number in WdLt start-
ing at 0 and corresponding to words in an increasing order
(line 10). When doci is required to be transferred into
the digital document docwds

i , the corresponding mapping
relations are retrieved through the query function QyId,
whose numbers are used to replace words that are located
through the replacement function RpLc (line 14). Con-
sequently, docwds

i is updated and inserted into the digital
corpus SNwd (line 16).

Algorithm 2 Content Digitization
Require:

- DOC: a set of short documents for activities and
sub-workflows

Ensure:
- SNwd: a set of serial numbers that represent short
documents contained in DOC

1: for all doci ∈ DOC do
2: for all wdj

doci
∈ word(doci) do

3: if QyIs(WdLt, wdj
doci

) = false then
4: WdLt ← WdLt ∪ {wdj

doci
}

5: end if
6: end for
7: end for
8: idtmp ← 0
9: for all wdi ∈ WdLt do

10: MP ← MP ∪ {(wdi, idtmp++)}
11: end for
12: for all doci ∈ DOC do
13: for all wdj

doci
∈ word(doci) do

14: docwds
i ← RpLc(doci, QyId(MP,wdj

doci
))

15: end for
16: SNwd ← SNwd ∪ {docwds

i }
17: end for

The time complexity of Algorithm 2 is O(n1∗(s1+d1)),
where n1 is the maximum number of short documents for
activities and sub-workflows, and (s1 + d1) is the upper
bound number of words in short documents including its
name and text descriptions of a certain activity. Generally,
the iteration times of lines 1-2 and lines 12-13 are the same,
and there are n1 ∗ (s1 + d1) times of iteration in the worst
case for the procedure of lines 3-5 or line 14. Consequently,
the time complexity of this algorithm is O(n1 ∗ (s1 + d1)).

3.2.2. Biterm Extraction
According to the principle of BTM, every short text in

short documents can be treated as a separate text frag-
ment. Any pair of distinct words is extracted as a biterm,
and these biterms are treated as the training data set of
topic probability distribution in BTM. For instance, three
biterms are extracted from the short document “pathway
description gene” as “pathway description”, “pathway gene”,
and “description gene”.

3.2.3. BTM Training
The corpus of short documents can be regarded as a

mixture of topics, where each biterm is drawn from a spe-
cific topic independently. Generally, the probability that a
biterm drawn from a specific topic is further captured by
the chance such that both words in the biterm are drawn
from the topic. This concrete generative procedure, where
α and β are supposed to be Dirichlet priors, can be illus-
trated as follows:
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• Step 1 : For each topic z, draw a topic-specific word
distribution φz ∼ Dir(β);

• Step 2 : Draw a topic distribution θ ∼ Dir(α) for
the whole corpus of short documents;

• Step 3 : For each biterm b in the set of biterms B,
draw a topic assignment z ∼ Multi(θ), and draw two
words: wi, wj ∼ Multi(φz).

The joint probability of a biterm b = (wi, wj) according
to the above procedure can be calculated as follows:

P (b) =
∑

z

P (z)P (wi|z)P (wj |z) =
∑

z

θzφi|zφj|z. (2)

Therefore, the likelihood for the corpus of short docu-
ments is calculated as follows:

P (B) =
∏
(i,j)

∑
z

θzφi|zφj|z. (3)

Generally, latent topics are discovered when consider-
ing word co-occurrence patterns, where these patterns are
exhibited in the corpus of short documents.

3.3. Inferring Topics of Activities and Sub-Workflows
Since BTM does not model the document generation

process, topic proportions for activities and sub-workflows
are not discovered directly by applying the topic learning
technique. To infer topics for each short document d, the
expectation of topic proportions of biterms generated from
d is calculated as follows:

P (z|d) =
∑

b

P (z|b)P (b|d). (4)

According to the parameters estimated by BTM, the
factor P (z|b) can be obtained through the Bayes’ formula
as presented by Formula 5:

P (z|b) = P (z)P (wi|z)P (wj |z)∑
z P (z)P (wi|z)P (wj |z)

, (5)

where P (z) = θz, P (wi|z) = φi|z and P (wj |z) = φj|z. Note
that parameters θ and φ are determined through adopting
Gibbs sampling [19] for the approximate inference, which is
a widely applicable Markov chain Monte Carlo algorithm.
Generally, Gibbs sampling is in principal more accurate
since it asymptotically approaches the correct distribution.
Therefore, P (b|d) is calculated by taking the empirical dis-
tribution of biterms in d as the estimation:

P (b|d) = nd(b)∑
b nd(b) , (6)

where nd(b) refers to the frequency of the biterm b in d.
In short texts, P (b|d) follows a uniform distribution over
all biterms in d mostly.

3.4. Determination of an Optional Topic Number K
Note that the result of the topic extraction procedure

is sensitive to the pre-specified number of topics K. There-
fore, determining an optimal K is fundamental leveraging
certain metrics. The perplexity is a factor that is usually
adopted for evaluating the quality of a language model.
However, K is usually large in number and it may cause
the problems of low topic identification and high similar-
ity between extracted topics. In fact, the topic identifi-
cation and topic similarity are closely related. The lower
the topic similarity and the higher the topic identification,
and hence, K should be determined considering these two
factors. Consequently, this paper adopts the perplexity
and topic similarity in order to balance the generalization
ability and improve the effect of topic extraction in BTM.

3.4.1. Perplexity
Generally, the perplexity decreases along with the in-

crease of the number of topics. A low value of perplexity is
supposed to generate a better predictive effect on testing
text corpus. In a topic model, the perplexity is calculated
as follows:

Per = exp{−
∑M

d=1 log p(wd)∑M
d=1 Nd

}, (7)

where M represents the number of short documents, and
Nd is the number of words contained in a certain docu-
ment d. The parameter wd refers to the words in d, while
p(wd) is the probability produced by wd leveraging the
document-topic and topic-word distributions. When Per
approaches to 0, a better generalization ability is assumed
to be achieved.

3.4.2. Topic Similarity
The topic similarity is usually calculated using methods

like Kullback-Leibler (KL) divergence, or Jensen-Shannon
(JS) divergence, etc. Considering the fact that KL diver-
gence can hardly satisfy symmetry and triangle inequality,
but JS divergence can, although they are similar regard-
ing the order of topic comparison. In this paper, JS diver-
gence is adopted for the measurement of topic similarity.
On the basis of JS divergence, we introduce the variance
of random variables into the potential topic space, which
can measure the overall difference of the topic space. The
variance for topics, denoted V ar, is calculated as the av-
erage for the sum of squares of the distances between (i)
the word probability distribution of each topic, and (ii)
the mean probability distribution of words, as follows:

V ar =
K∑

i=1
[DJS(Ti, ξ̄)]2 ÷K, (8)

where ξ̄ is the mean probability distribution of different
words obtained by the topic-word probability distribution
T . K represents the number of topics, and DJS denotes
the JS divergence. When V ar is larger, the difference be-
tween topics is greater, and thus, the distinction between
topics is higher and the topic structure is more stable.
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3.4.3. Topic Number K Determination
Based on afore-determined perplexity and topic simi-

larity, the factor Per V ar, which is adopted to evaluate
the performance of topic models, is calculated as follows:

Per V ar = Per ÷ V ar. (9)

When Per V ar is relatively small in value, the cor-
responding topic model is assumed to be optimal. The
range for optimal K can be determined by testing sev-
eral K values according to experiments. As an example
of scientific workflows in this paper, the values for Per,
V ar, and Per V ar are calculated and presented at Table
1. An optimal K as 370 is determined when Per V ar is
the smallest in value as 35.801, while Per is the smallest
as 11.288, and V ar is the largest as 0.315.

3.5. Representative Topics Determination
After generating the topic distribution of short docu-

ments, we intend to use representative topics to quantify
the semantic relevance of activities or sub-workflows to fa-
cilitate their reuse and repurposing. In most scenarios, a
small number of topics may have a large probability score
for each activity or sub-workflow, and these topics are as-
sumed as representative in this paper to represent the la-
tent semantic information for activities or sub-workflows.

The procedure of determining representative topics is
presented as follows. For a certain topic, an average prob-
ability is calculated with respect to all activities and sub-
workflows. A threshold thdtp, which is usually pre-set to
several times of this probability average, is adopted to
specify the significance of this topic. When the value is
larger than thdtp, this topic is assumed as significant. Con-
sequently, the probability of this topic is reserved when the
value is no smaller than thdtp, and this topic is assumed as
representative for a certain activity or sub-workflow. Since
the probability for non-representative topics is set to zero,
a probability normalization procedure is conducted for the
topics of activities and sub-workflows afterwards.

For instance, given an activity with the name “Kegg gene
ids” in the workflow entitled “Pathways and Gene an-

notations for QTL region”, the short document is gener-
ated as “kyoto genome encyclopedia gene”. Sample topics
are generated as (topic332, 0.6117) and (topic73, 1.3951E-
9), where the topic topic332 contains the top 10 keywords
including “{gene, encyclopedia, kyoto, genome, provide,
database, description, get, rest, national}”. The average
probability is calculated as 0.0018 for topic332, and the
threshold is set to five times of this average as 0.0090.
Consequently, topic332 is reserved as a representative topic.
On the other hand, the average probability for topic73 is
calculated as 0.0026, and the threshold is set to 0.0130 ac-
cordingly. Therefore, topic73 is not a representative topic,
and its probability is set to 0 afterwards.

4. Crossing-Workflow Fragments Discovery

This section introduces our crossing-workflow fragments
discovery mechanism leveraging the semantic relevance of
representative topics for activities and sub-workflows. Specif-
ically, candidate activities or sub-workflows are discovered
according to the specification of activity stubs in a certain
requirement represented in terms of a workflow fragment.
Crossing-workflow fragments are discovered through the
query processing upon AKG constructed in Section 2, and
these fragments are evaluated and recommended when bal-
ancing their structural and semantic similarities with re-
spect to the requirement.

4.1. Candidate Activity and Sub-workflow Discovery
A novel scientific workflow fragment to be constructed

with respect to an un-conducted scientific experiment may
be similar to an existing one. In this setting, a certain sci-
entific workflow should be reused or repurposed partially
or completely. On the other hand, when a requirement is
relevant with several scientific workflows in the repository,
activities or sub-workflows should be discovered from ap-
propriate workflows and thus optimally composed accord-
ingly. For instance, a sample crossing-workflow fragment
is presented in Fig. 4 for satisfying a certain requirement.

swf1: PubMed Search

act4: 

extractPMID

swfsub3: 

Retrive_

abstracts

act8: 

clean_text

swf2: Gene to Pubmed

act5: run_

eSearch

act6: inppXML
act7: 

run_eFetch

swfsub9: 

clean_text

Figure 4: Based on the AKG snippet as shown in Fig. 3, a sample
requirement is generated that can be satisfied by the composition of
crossing-workflow fragments, where “swf1: PubMed Search”, “swf2:
Gene to Pubmed”, “swfsub3: Retrive abstracts”, and “swfsub9:
clean text” are legacy scientific workflows in the repository.

Candidate activities or sub-workflows are discovered
when they are highly relevant in their representative top-
ics respecting those of activity stubs in the requirement.
It is worth emphasizing that topics can be regarded as
a high-level categorization. When two activities (or sub-
workflows) are highly relevant in their topics, this fact can
hardly specify that they are equivalent or highly similar
to each other. Taking this fact into concern, the semantic
similarity of short documents is adopted to improve the
accuracy of the discovery for activities or sub-workflows.
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Table 1: Per, V ar and Per V ar Settings When K is Set to Various Values.

K 80 120 160 260 350 360 370 380 400
Per 23.840 19.179 16.809 13.145 11.765 11.384 11.288 11.555 11.776
V ar 0.264 0.289 0.296 0.311 0.314 0.313 0.315 0.312 0.310

Per V ar 90.007 66.268 56.657 42.225 37.380 36.302 35.801 36.993 37.012

Consequently, the relevance of a candidate activity or sub-
workflow actcnd and an activity stub in the requirement
actrq is calculated as follows:

relevance(actcnd, actrq) = α× simT (actcnd, actrq)
+(1− α)× simS(actcnd, actrq),

(10)

where simT represents the similarity for representative
topics, and it is reflected by distances between represen-
tative topics. Intuitively, the smaller the distance is, the
larger the simT is between a certain pair of topics. It
returns a value between 0 and 1, where 0 means totally
different and 1 means the equivalence. simS represents
the semantic similarity between short documents, and it
is calculated by adopting the minimum cost and maximum
flow algorithm, where WordNet is used to calculate the se-
mantic similarity for words. The calculation method of
simS refers to the part of semantic similarity for activ-
ity name in our previous work [13]. simS returns a value
between 0 and 1, where 0 means totally different and 1
means the equivalence. The factor α ∈ [0, 1] in Formula
10 reflects the relative importance of simT with respect
to simS . When candidate activities and sub-workflows
are determined according to the value of their relevance,
top K1 candidates are recommended for a certain activity
stub. For instance, α is set to 0.7, and K1 is set to 7, in
our experiments.

4.2. Crossing-Workflow Fragments Discovery
This section proposes to discover crossing-workflow frag-

ments, where relations prescribed by AKG are obtained to
connect activities or sub-workflows for respective activity
stubs in the requirement. Relevant fragments from various
workflows are discovered and composed. Leveraging can-
didate activities and sub-workflows, invocation relations
are instantiated and examined the statement that whether
they are contained in AKG. Suitable relations are applied
to generate crossing-workflow fragments, and these frag-
ments are examined and ranked through balancing their
structural and semantic similarities.

Step 1: Instantiated relations examination based
on AKG. This procedure is presented by Algorithm 3,
where RQ = {ACTrq, LNKrq} gives a certain require-
ment, ACTrq refers to a set of activity stubs, and LNKrq

represents links connecting activity stubs in RQ. In partic-
ular, the symbol |ACTrq| denotes the number of activity
stubs contained in ACTrq while |LNKrq| represents the

Algorithm 3 Instantiated Relations Examination
Require:

- RQ = {ACTrq, LNKrq}: a requirement specification
- ACTcnd = {ACT i

cnd}: a set of candidate activities
or sub-workflows for each actirq ∈ ACTrq where i ∈ [1,
|ACTrq|]
- AKG: an activity knowledge graph in Section 2

Ensure:
- NACTcnd: a new candidate set for activity stubs
contained in ACTrq

1: for all lnki ∈ LNKrq do
2: ACT src

cnd ∈ ACTcnd, ACT snk
cnd ∈ ACTcnd ← get the

sets of candidate activities and sub-workflows for
source lnki.actsrc

rq ∈ ACTrq or sink activity stub
lnki.actsnk

rq ∈ ACTrq

3: for ∀ actsrc
cnd ∈ ACT src

cnd and ∀ actsnk
cnd ∈ ACT snk

cnd do
4: if QryAKG(rl ← (actsrc

cnd, r, actsnk
cnd), AKG) =

null then
5: continue
6: end if
7: lnki.RL ← lnki.RL ∪ {rl}
8: NACT src

cnd ← NACT src
cnd ∪ {actsrc

cnd}
9: NACT snk

cnd ← NACT snk
cnd ∪ {actsnk

cnd}
10: end for
11: end for

number of links contained in LNKrq. Without loss of gen-
erality, RQ is assumed to have a single initial activity stub
actint. To facilitate the fragment discovery procedure, ac-
tivity stubs are numbered in an incremental manner by
adopting the breadth-first search method upon RQ start-
ing at actint. For a link specified in the requirement, the
sets of candidate activities and sub-workflows are obtained
respecting its source and sink activity stubs (lines 2-3).
For an activity stub actirq contained in ACTrq, ACT i

cnd ∈
ACTcnd represents the set of candidate activities and sub-
workflows generated in Section 4.1. Candidate activities or
sub-workflows in ACT src

cnd compose as a series of relations rl
with those in ACT snk

cnd . rl is denoted as (actsrc
cnd, r, actsnk

cnd),
where r refers to the invocation relation upon activities or
sub-workflows evidenced in current scientific workflows. rl
is verified through a query function QryAKG conducted
upon AKG (line 4), and this query statement is presented
as follows:

MATCH (e1 : E{actsrc
cnd})− [r1 : R{r}] −> (e2 : E{actsnk

cnd})
RETURN e1 as Source, r1 as Rel, e2 as Sink
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where the MATCH clause specifies the relation as con-
straints. Entities are represented with “()” brackets (e.g.,
(e1: E{actsrc

cnd}) and edges with “[]” brackets (e.g., [r1:
R{r}]). Filters for labels are denoted following the node
separated with the symbol “:”, and (e1: E) represents a
node e1 that must match to a certain entity label in E.
Certain values for properties can be specified within “{}”
(e.g., {actsrc

cnd}). The RETURN clause aims to project
output variables. The triple (Source, Rel, Sink) is (actsrc

cnd,
r, actsnk

cnd) when rl exits in relations prescribed by AKG, or
is set to null otherwise. rl is inserted into the candidate
relation set as the corresponding link (line 7). To avoid
unnecessary combinations, unrelated candidate activities
or sub-workflows are excluded. Besides, source and sink
activity of rl, i.e., actsrc

cnd and actsnk
cnd , are inserted into new

candidate sets NACT src
cnd and NACT snk

cnd for corresponding
activity stubs in ACTrq (lines 8-9).

The time complexity of Algorithm 3 is O(l ∗ (K1)2),
where l is the maximum number of links connecting activ-
ity stubs in a certain requirement. For an activity stub, K1
candidates are mostly recommended. In this algorithm,
the time complexity is reflected by for loops of line 1, and
line 3. In fact, there are l ∗ (K1 ∗K1) times of iteration in
the worst case for the procedure of lines 4-9, and thus the
time complexity of this algorithm is O(l ∗ (K1)2).

Step 2: Crossing-workflow fragments genera-
tion. Based on candidate instantiation relations, the crossing-
workflow fragment generation strategy is presented by Al-
gorithm 4, where fragments are initially constructed through
the inclusion of a certain activity or sub-workflow (lines 1-
7). Given a fragment frg in FRG, we examine each candi-
date activity or sub-workflow actkcnd respecting the activ-
ity stub actirq, and matched relations, to evaluate whether
frg can be extended to generate new fragments. A tag
is adopted to specify the fact that whether actkcnd has ex-
tended certain relations to produce new fragments or not
(line 10). The set of indexes for links in LNKrq are ob-
tained associated with actirq being processed and those ac-
tivity stubs that have already been processed, where each
link index lnkidx should be handled independently (lines
11-13). Involved candidate relations are decomposed into
the respective source and sink activities, which allows the
indexes of their source and sink activity stubs, i.e., idx1
and idx2, to be determined for promoting the selection of
extended relations (line 14).

When source and sink activities of a candidate relation
are the same as (i) the activity for the corresponding in-
dex idx1 of frg and the candidate activity being processed
actkcnd, respectively, or (ii) actkcnd and the activity at the
corresponding index idx2 of frg (line 15), this fact indi-
cates that a matched relation is found, and the tag can be
set to true (line 16). In this setting, the growth procedure
for new fragments is executed upon frg. In particular,
actkcnd is inserted into the activity set of this new fragment
while the matched relation is supplemented to its relation
set (lines 17-18). Since actkcnd and the associated activity
in frg are deterministic, there is at most one suitable re-

Algorithm 4 Crossing-Workflow Fragments Generation
Require:

- RQ = {ACTrq, LNKrq}: a requirement specification
- NACTcnd = a new candidate set for corresponding
activity stubs in ACTrq provided by Algorithm 3

Ensure:
- FRG = {frg}: a set of crossing-workflow fragments

1: for all actirq ∈ ACTrq where NACT i
cnd , ∅ do

2: if FRG = ∅ then
3: for all actkcnd ∈ NACT i

cnd do
4: frg.ACT ← {actjcnd}; FRG ← FRG ∪ {frg}
5: end for
6: continue
7: end if
8: for all frg ∈ FRG do
9: for all actkcnd ∈ NACT i

cnd do
10: tagk

cnd ← false
11: IDX ← get indexes for links in LNKrq asso-

ciated with actirq and processed activity stubs
12: for all idx ∈ IDX do
13: for all rl ∈ lnkidx.RL do
14: idx1, idx2 ← get the indexes of activities

in frg related to rl.actsrc
cnd or rl.actsnk

cnd

15: if (rl.actsrc
cnd = actidx1

frg and rl.actsnk
cnd

= actkcnd) or (rl.actsrc
cnd = actkcnd and

rl.actsnk
cnd = actidx2

frg ) then
16: frgn ← frg; tagk

cnd ← true
17: frgn.ACT ← frgn.ACT ∪ {actkcnd}
18: frgn.RL ← frgn.RL ∪ {rl}
19: FRG ← FRG ∪ {frgn}
20: break
21: end if
22: end for
23: end for
24: if tagk

cnd = false then
25: frgn ← frg
26: frgn.ACT ← frgn.ACT ∪ {actkcnd}
27: FRG ← FRG ∪ {frgn}
28: end if
29: end for
30: FRG ← FRG - {frg}
31: end for
32: end for

lation in the corresponding candidate relation set. Once
this relation is discovered, the iteration for its candidate
relation set terminates (line 20). On the other hand, when
no suitable relations are discovered, i.e., the tag is set to
false, we need to simply insert actkcnd into a new fragment
without corresponding relations (lines 24-27), which con-
tributes to the fragment discovery for the following phase
acti+1

rq . When the extension generation task of frg is com-
plete, frg is removed from the set FRG (line 29).

The time complexity of Algorithm 4 is O(n ∗ (K1)2 ∗
s ∗ d), where n is the maximum number of activities in a
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certain requirement, s is the upper number of connected
activity stubs for each activity stub in the requirement,
and d is the upper bound number of instantiation relations
between two activity stubs. Generally, for an activity stub,
K1 candidates are mostly recommended. In Algorithm 4,
the time complexity is reflected by for loops of line 1, line
8, line 9, line 12, and line 13. Especially, line 9 represents
the iteration of initialization fragments, which are initially
constructed through the inclusion of the first activity or
sub-workflow stub. In this setting, K1 fragments are gen-
erated. Therefore, there are (n−1)∗K1∗K1∗s∗d times of
iteration in the worst case for the procedure of lines 14-19,
and hence, the time complexity of this algorithm is O(n ∗
(K1)2 ∗ s ∗ d).

Algorithm 5 Candidate Fragments Recommendation
Require:

- RQ = {ACTrq, LNKrq}: a requirement specification
- FRG = {frg}: a set of generated crossing-workflow
fragments provided by Algorithm 4

Ensure:
- FRGrec = {frg}: a set of top K2 crossing-workflow
fragments where frg = {ACT , RL, sim}

1: for all frg ∈ FRG do
2: frg.ACT ← remove activities irrelevant with ∀ rl ∈

frg.RL
3: for all act ∈ frg.ACT do
4: actrq ← get the activity stub in ACTrq w.r.t. act
5: simsm ← simsm + SimCal(actrq, act)
6: end for
7: simst ← |frg.RL|/|LNKrq|
8: simsm ← simsm/|frg.ACT |
9: frg.sim ← β ∗ simst + (1 - β) ∗ simsm

10: end for
11: FRG ← {frq} where frq.sim is among the top K2

Step 3: Candidate fragments recommendation.
This procedure is presented by Algorithm 5. The activ-
ity set of afore-generated fragments may contain irrelevant
activities. Therefore, the activity set needs to be updated
according to activities related to the relation set (line 2).
Meanwhile, the fragment similarity frg.sim is calculated
as the following two parts, e.g., structural similarity simst

and semantic similarity simsm (line 8), where β ∈ [0, 1]
reflects the relative importance of simst against simsm.
Note that simst corresponds to the structural similarity
between frg and RQ, which is the relation ratio for the
number of relations in frg.RL to the number of total re-
lations in LNKrq (line 7). Besides, simsm represents the
average semantic similarity between frg and RQ, which is
calculated by leveraging similarities between each activity
in frg and the corresponding activity stub, and the num-
ber of activities in frg.ACT . Similarities are calculated
by adopting the function SimCal (line 5).

Generally, fragments with the larger structural simi-
larity should be more appropriate to be recommended. In

this setting, simst is assigned a larger weight than simsm

(i.e., β is set to 0.7 in our experiments). The similarity of
each fragment returns a value between 0 and 1, where 0
means totally different and 1 means the equivalent. Con-
sequently, top K2 (like 10) fragments {frg} are selected
and recommended according to the values of their frag-
ment similarities (line 10).

The time complexity of Algorithm 5 is O(f ∗n), where
f is the upper number of crossing-workflow fragments gen-
erated by Algorithm 4, and n is the maximum number of
activities in a fragment. In fact, the time complexity is re-
flected by for loops of line 1, and line 3, and the procedure
of lines 4-5 is to be iterated f ∗n times at most. Therefore,
the time complexity of this algorithm is O(f ∗ n).

5. Experimental Setting

A prototype has been implemented by Java programs,
and scientific workflows in the category of Taverna 2 of
the myExperiment repository are collected and cleansed,
where there are 1573 scientific workflows in this category
till to June 12, 2018. Experiments are conducted upon
a desktop with an Intel(R) Core(TM) i5-6500 processor,
a 6.00GB memory, and a 64-bit Windows 7 system, and
topic models are generated by a tool executed on Linux.

5.1. Data Cleansing
Before conducting the experimental evaluation, scien-

tific workflows are cleansed as follows:
• The titles or text descriptions of scientific workflows

lacks specification. In this case, similarity computa-
tion for activities cannot be conducted, and the topic
discovery is inaccurate. Therefore, these workflows
are removed from the dataset.

• Activities corresponding to slim services are mostly
glue codes, and they do not represent invocation re-
lations between functionalities. Therefore, activities
with the slim service type are filtered out.

As aforementioned, the semantic similarity between
words is computed by WordNet. However, improper words
that are not recognized by WordNet are contained in names
or text descriptions of activities and sub-workflows. We
have to manually handle them case-by-case as follows:
• 334 abbreviations are used in the bioinformatics do-

main, but they cannot be recognized by WordNet.
An example is “snp”, which means “single nucleotide
polymorphism” after searching on the web. A con-
version table is manually established, and it aims to
transform these abbreviations into their full descrip-
tions. If a full description cannot be found through
browsing the web like the term “martijn”, it is as-
sumed to be dissimilar to any other words, and such
an abbreviation is removed.

• As to the abbreviation that is just a part of a word,
we can convert it to the full description. An example
is “bio” which corresponds to “biology”.
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• Words, whose meaning is not clear and information
is incomplete, are complemented according to the
context and web network. An example is “cpath”
rewriting as “Canadian Professional Association for
Transgender Health” in the life science domain.

• When two or several words are joint without delim-
iters, they are separated manually. An example is
“documentfind”, which is transferred into two words
“document” and “find”.

After handling the names and descriptions of activities
and sub-workflows, stopwords words such as can, of, and
and, are removed. A table including 883 stopwords is con-
structed according to the dataset, and it helps the dataset
cleansing procedure. Besides, words like accessed, accesses,
and accessing have a common word root access. Affixes are
removed to keep the root only. This is important for topic
model algorithms. Otherwise, they are treated as different
word entities, and thus, their topic relevance is inaccurate.
To remedy this issue, the lemmatization technology is ap-
plied by establishing common reduction rules, which are
divided into general deformation rules for nouns and verbs,
deformation rules for irregular verbs or nouns, and so on.

5.2. Experimental Setup
Without loss of generality, scientists are assumed to

be unambiguous about functional components required to
support their experiments, although they can hardly iden-
tify reusable functional fragments from legacy workflows
in the repository, due to the large number and relatively
complex in the structure of workflows. As presented by
Fig. 3 in our previous work [9], scientific workflows in
the Taverna 1 category of the myExperiment repository
are mostly fallen into 6 clusters. This observation is also
supported by AKG we have constructed where a workflow
may connect with at most 5 to 6 other workflows. Con-
sequently, based on AKG, we carefully make 20 crossing-
workflow fragments as testing fragments, which contains
activities or sub-workflows originally from 1 to 6 work-
flows, and the majority (12 out of 20 in our experiments)
spans 2 to 4 workflows.

Scientific workflows are typically small in the number
of activities. A statistic has been made for the number
of activities contained in workflows in the Taverna 2 cate-
gory of the myExperiment repository, and the result shows
that roughly 86.046% of workflows contain no more than
11 activities. Based on this observation, we set 3 out of
20 testing fragments containing over 11, while the others
containing less than 11 activities and sub-workflows.

Parameters of BTM models are presented in Table 2,
where alpha, beta, niter, and save step are set to default
values as 50/K, 0.01, 1000 and 100, respectively, and W is
determined by the word number contained in the corpus.
The number of topics K is determined by examining the
training corpus, where experimental results show that an
optimal K does not change when most of the corpus re-
mains invariant contents, although a small amount of data

Table 2: BTM Model Parameter Settings.
Symbol Description

K the topic number set by Per V ar
W the word number determined by the corpus

alpha the parameter α = 50/K in BTM
beta the parameter β = 0.01 in BTM
niter the number of iterations: niter = 1000

save step the number of iterations when saving a
temporary result, and save step = 100

data dir the path to the input document of BTM training
res dir the path to the output document of BTM training

is appended. Based on this result, K is set to 370 where
the criteria including perplexity and topic similarity are
optimal as shown in Table 1.

5.3. Crossing-workflow Fragments Discovery When No
Changes Are Applied to Sample Fragments

Experiments are conducted when sample fragments re-
main as they are retrieved from the dataset. An expected
result should be exactly matched fragments compared with
the fragment of requirement. Experiments for 20 sample
crossing-workflow fragments return the right recommenda-
tions, which contain original sample fragments, and these
fragments are ranked as the first in terms of the fragment
similarity value. For instance, the sample requirement as
shown in Fig. 4 is represented as follows:
• E = {swfsub3, act4, act5, act6, act7, act8, swfsub9}
• R = {Invok}
• S = {(act5, Invok, act4), (act4, Invok, swfsub3),

(act5, Invok, swfsub9), (act5, Invok, act6), (act6,
Invok, act7), (act7, Invok, act8), (act8, Invok, swfsub9)}

where 7 relation triples are included, and crossing-workflow
fragments are discovered and ranked as follows:
• Candidate 1 = {frg.ACT = (swfsub3, act4, act5,
act6, act7, act8, swfsub9), frg.RL =

(
(act5, Invok,

act4), (act4, Invok, swfsub3), (act5, Invok, swfsub9),
(act5, Invok, act6), (act6, Invok, act7), (act7, Invok,
act8), (act8, Invok, swfsub9)

)
, frg.sim = 1.0}

• Candidate 2 = {frg.ACT = (act330, act4, act5, act6,
act7, act8, swfsub9), frg.RL =

(
(act5, Invok, act4),

(act4, Invok, act330), (act5, Invok, swfsub9), (act5,
Invok, act6), (act6, Invok, act7), (act7, Invok, act8),
(act8, Invok, swfsub9)

)
, frg.sim = 0.985}

• . . . . . .
• Candidate 5 = {frg.ACT = (swfsub3, act4, act5,
act324, act7, act8, swfsub9), frg.RL =

(
(act5, Invok,

act4), (act4, Invok, swfsub3), (act5, Invok, swfsub9),
(act5, Invok, act324), (act324, Invok, act7), (act7,
Invok, act8), (act8, Invok, swfsub9)

)
, frg.sim =

0.961}
This experiment demonstrates that most of the same

or similar relations are discovered, and most suitable can-
didate fragments can be recommended.
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To compare the effectiveness of our approach against
the strategy that recommends single workflows, we con-
duct experiments where the requirement as shown in Fig.
4 is chosen. The similarity for this requirement and work-
flows are calculated as the semantic transition-labeled graph
edit distance [20]. Top three legacy workflows are recom-
mended as follows:
• Candidate 1 = “Phenotype to pubmed”, sim = 0.598
• Candidate 2 = “Pathway and Gene to Pubmed”, sim

= 0.592
• Candidate 3 = “Gene to Pubmed”, sim = 0.560
For example, candidate 1 represents the first workflow

to be recommended, whose title is Phenotype to pubmed.
Workflows of the sample requirement and candidate 1 are
partially relevant with pubmed, which represents a free
database of the biomedical paper search. This result demon-
strates that this requirement can hardly be achieved by
any single legacy workflow, and the discovery of crossing-
workflow fragments is more appropriate.

5.4. Crossing-workflow Fragments Discovery When Changes
Are Applied to Sample Fragments

Novel requirements may not be equivalent or similar to
crossing-workflow fragments in the repository. In this case,
sample fragments are changed to generate sample require-
ments. Changing operations include insertion, deletion,
and replacement as follows:
• Insertion. Sub-workflows and activities not included

in a sample workflow fragment swfsmpl are inserted
as a component of a testing fragment swftst. If some
sub-workflows or activities are specified in another
fragment swfano or newly-made fragment swfnew,
and they express similar topics as swfsmpl, swftst is
usually more appropriate to reuse these similar sub-
workflows or activities. For instance, activity acti1
named “extractDates” is inserted into swftst, and
another activity acti2 named “concat abstract ids” is
contained as shown in Fig. 5.

• Deletion. Sub-workflows or activities are deleted from
a sample fragment swfsmpl. Examples are the sub-
workflow swfsub3 named “Retrive abstracts” and ac-
tivity act8 named “clean text”, which have been deleted
as shown in Fig. 5.

• Replacement. Sub-workflows and activities in a sam-
ple fragment swfsmpl are replaced by the others that
are not specified in swfsmpl. Similar to the scenario
of insertion, if activities or sub-workflows have simi-
lar topics to the replaced activities or sub-workflows,
the testing fragment is usually more inclined to reuse
them in swfsmpl. An example is the activity act6 =
“inppXML” that is to be replaced by a newly con-
structed activity actr6 = “inpp”, and it has similar
descriptive information with act6 as shown in Fig. 5.

Experiments are conducted for changes applied upon
sample fragments. Sample fragments swfsmpl are changed

Invok

swf1: PubMed Search

act4: 

extractPMID

swfsub3: 

Retrive_

abstracts

act8: 

clean_text

swf2: Gene to Pubmed

act5: run_

eSearch

actr6: inpp
act7: 

run_eFetch

swfsub9: 

clean_text

acti1: 

extractDates

acti2: concat_

abstract_ids

Figure 5: The testing requirement is created from Fig. 4, and changes
are made through inserting 2 activities, deleting 1 sub-workflow and
1 activity, and replacing 1 activity.

through insertion, deletion, and replacement operations.
Besides, some novel activities or sub-workflows are con-
structed in sample fragments, and they are more in line
with new features of novel experiments such that certain
requirements put forward by scientists may be different,
but similar to existing ones. Consequently, 10 fragments
are generated to conduct experiments of special require-
ments. An example is shown in Fig. 5, where 2 activities
are inserted, 1 sub-workflow and 1 activity are deleted, and
1 activity is replaced. Specifically, activity acti1 named
“extractDates” is inserted into act7 to build a new relation
triple (act7, Invok, acti1). Besides, the new relation triple
(act4, Invok, acti2) is generated, where an inserted ac-
tivity acti2 named “concat abstract ids” is reconnected to
act4. Sub-workflow swfsub3 and activity act8 are deleted,
and activity act6 is replaced by a newly constructed activ-
ity actr6 that has similar topics as act6.

Regarding these 10 testing workflow fragments, results
for 4 testing workflow fragments return the right recom-
mendations that contain sample fragments, and they are
ranked in the first place regarding the fragment similarity.
An example is swftst27, which spans 4 workflows (e.g.,
swf1661, swf1662, swf1687, and swf1598) and replaces 1
activity. The representation based on AKG for swftst27 is
presented as follows:
• E = {act2, act7, act69, act70, act201, act124}
• R = {Invok}
• S = {(act124, Invok, act70), (act69, Invok, act124),

(act69, Invok, act2), (act2, Invok, act7), (act201,
Invok, act7)}

The recommended workflow fragments with similarity
values are listed as follows:
• Candidate 1 = {frg.ACT = (act2, act7, act69, act70,
act201, act124), frg.RL =

(
(act124, Invok, act70),

(act69, Invok, act124), (act69, Invok, act2), (act2,
Invok, act7), (act201, Invok, act7)

)
, frg.sim = 1.0}
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• . . . . . .
• Candidate 5 = {frg.ACT = (act2, act7, act69, act70,
act201, act123), frg.RL =

(
(act123, Invok, act70),

(act69, Invok, act123), (act69, Invok, act2), (act2,
Invok, act7), (act201, Invok, act7)

)
, frg.sim= 0.960}

This result shows that, when changes are applied upon
sample workflow fragments, our technique can discover ap-
propriate crossing-workflow fragments in most scenarios.

6. Experimental Evaluation

6.1. Performance Metrics
The metrics precision, recall, and F1 are adopted for

our evaluation purpose. Given a testing fragment swftst,
a reusable fragment swfept contained in the repository is
assumed to be included in the expected list of recommen-
dations (denoted SWFept) when the similarity between
swftst and swfept is no smaller than a pre-specified thresh-
old thrdept. In our experiments, an activity stub in swftst

is replaced by relevant activities and sub-workflows in the
dataset, to obtain a series of crossing-workflow fragments,
where links on activities and sub-workflows are checked
whether they are retained based on the relations specified
upon scientific workflows in the repository. Importantly,
similarities of fragments are calculated by line 8 of Algo-
rithm 5 through balancing their structural and semantic
similarities with respect to swftst. We adopt the notation
SWFrec to denote the set of workflow fragments, which are
actually recommended by our technique, and precision, re-
call, and F1 are computed as follows:

precision = (|SWFept ∩ SWFrec|)÷ |SWFrec| (11)

recall = (|SWFept ∩ SWFrec|)÷ |SWFept| (12)

F1 = (precision ∗ recall)
(precision+ recall)/2 (13)

where the symbol “|SWFrec|” refers to the number of frag-
ments in the set SWFrec while the symbol “|SWFept|”
denotes the number of fragments in the set SWFept. The
symbol “|SWFept ∩ SWFrec|” represents the number of
fragments contained in both SWFept and SWFrec.

6.2. Baseline Techniques
The following two methods are chosen as the baselines:
• ClusteringRec [21]: In this technique, abstract activi-

ties are discovered and represented the functional rel-
evance of activities. Following this manner, a modularity-
based clustering algorithm is developed to generate
activity clusters. Specifically, core activities [9] are
determined to represent certain clusters, and they
correspond to the most representative activities in
these clusters. When a requirement is satisfied, the

target cluster is determined with respect to each ac-
tivity stub, where their activities or sub-workflows
are discovered and ranked as candidate activities or
sub-workflows. These candidate activities and sub-
workflows construct a series of crossing-workflow frag-
ments according to invocation relations among them.
Fragments are identified, ranked and recommended
according to their similarity values.

• Sub-graphRec [13]: This sub-graph matching algo-
rithm discovers and recommends fragments accord-
ing to certain requirements. Given a requirement
specified in terms of a workflow fragment, this tech-
nique discovers candidate fragments in a constructed
activity network model, where edges reflect invoca-
tion relations between activities. Similarities of can-
didate fragments are calculated through considering
their structural and semantic similarities (like line 8
of Algorithm 5) with respect to the workflow frag-
ment of requirements. Top K2 fragments are recom-
mended according to fragment similarity values.

6.3. Evaluation Results
This section presents and discusses the evaluation re-

sults of our technique (denoted AKGRec), Sub-graphRec,
and ClusteringRec, when the following three parameters
are considered as influential factors:

• thrdept: the pre-specified threshold of the similarity
for generating SWFept as presented in Section 6.1.

• K2: the number of recommended fragments as re-
ferred to line 11 of Algorithm 5.

• β: the relative importance of the structural similar-
ity with respect to the semantic similarity for the
calculation of fragment similarity as referred to line
9 of Algorithm 5.

6.3.1. Impact of thrdept
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Figure 6: Precision, recall and F1 for AKGRec, Sub-graphRec, and
ClusteringRec, when K2 is set to 10, β is set to 0.7, and thrdept is
set from 0.72 to 0.98 with an increment of 0.02.

To investigate the impact of thrdept to precision, re-
call, and F1, we set K2 to 10, β to 0.7, and thrdept to a
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value from 0.72 to 0.98 with an increment of 0.02. Fig.
6 shows that precision drops and recall increases along
with the increase of thrdept, and AKGRec performs better
than Sub-graphRec and ClusteringRec in precision and re-
call. Specifically, the majority of recommended fragments
of Sub-graphRec are not expected. In fact, Sub-graphRec
emphasizes the structural similarity of recommended frag-
ments with respect to the requirement, but the semanti-
cally matching of activities is not the focus. Therefore, the
precision and recall are relatively lower for Sub-graphRec
than that of AKGRec and ClusteringRec. The precision of
ClusteringRec is quite high, since recommended fragments
are mostly included in SWFept. On the contrary, the recall
of ClusteringRec is relatively low. After carefully analyzing
the experiments, it is observed that activities are unevenly
assigned to various clusters, and some clusters may contain
quite a few candidate activities or sub-workflows. Conse-
quently, there may have no enough fragments generated
by ClusteringRec for the recommendation.

Fig. 6 shows that precision decreases, and recall in-
creases, along with the increasing of thrdept for AKGRec,
Sub-graphRec, and ClusteringRec, and the variation of F1
values shows that AKGRec performs better than Sub-graphRec
and ClusteringRec. In fact, SWFrec does not change when
K2 is set to a certain value. Fragments in SWFept may
be fewer when thrdept is set to a relatively large value.
Therefore, more fragments in SWFrec may be missed in
SWFept, which makes the decrease of the precision accord-
ing to Formula 11. Fig. 6 shows that precision for AK-
GRec and ClusteringRec is relatively stable when thrdept

changes from 0.72 to 0.84, since the similarity value for
most expected fragments is within these two ranges. The
number of fragments in SWFept decreases to an extent
when thrdept is set from 0.86 to 0.98, since expected work-
flows whose similarity value is within this range is quite
few. Besides, the difference between the sets of SWFept

∩ SWFrec and SWFept is decreasing, and thus, recall in-
creases for AKGRec, Sub-graphRec and ClusteringRec ac-
cording to Formula 12.

6.3.2. Impact of K2
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Figure 7: Precision, recall and F1 for AKGRec, Sub-graphRec and
ClusteringRec when thrdept is set to 0.86, β is set to 0.7 and K2 is
set from 2 to 30 with an increment of 2.

To investigate the impact of K2 to precision, recall,
and F1, we set thrdept to 0.86, β to 0.7, and K2 to a value
from 2 to 30 with an increment of 2. As shown in Fig. 7,
the precision and recall are larger for AKGRec than Sub-
graphRec and ClusteringRec, due to the similar reason as
discussed at the paragraph for Fig. 6. In particular, when
K2 is set to relatively large values, Fig. 7 shows that the
precision of all three technique begins to decrease, since
more fragments should be discovered and recommended,
and they are actually not that relevant and may not exist
in SWFept. Note that the precision for Sub-graphRec does
not perform well, since a large number of fragments are
obtained by the sub-graph matching method. When K2
changes from 2 to 16, recall of all three technique increases
to a large extent, since more expected fragments are rec-
ommended. Besides, recall becomes relatively stable when
K2 changes from 16 to 30, since most expected workflows
have been discovered and included in SWFept.

This figure also shows that F1 values of AKGRec and
ClusteringRec rise steadily, but those of Sub-graphRec ap-
pear a decreased trend when K2 is set to the value starting
at 6. This means that AKGRec and ClusteringRec perform
better than Sub-graphRec in this situation.

6.3.3. Impact of β

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AKGRec: precision 
AKGRec: recall 
AKGRec: F1
Sub-graphRec: precision 
Sub-graphRec: recall 
Sub-graphRec: F1 
ClusteringRec: precision 
ClusteringRec: recall 
ClusteringRec: F1

Figure 8: Precision, recall and F1 for AKGRec, Sub-graphRec and
ClusteringRec, when thrdept is set to 0.86, K2 is set to 10, and β is
set from 0.1 to 0.9 with an increment of 0.1.

As discussed in Section 4.2, the similarities of recom-
mended fragments with a certain requirement are impacted
by β. To investigate this impact to precision, recall, and
F1, we set thrdept to 0.86, K2 to 10, and β to a value from
0.1 to 0.9 with an increment of 0.1. Fig. 8 shows experi-
mental results of β for three techniques. Due to the similar
reason as discussed for Fig. 6 and 7, AKGRec performs
better in precision and recall than Sub-graphRec and Clus-
teringRec. Generally, precision and recall increase along
with the increasing of β, which shows the strong signifi-
cance of structural relevance to recommended fragments.
Concretely, SWFrec does not change when K1 is set to
a certain value, and precision increases when β changes
from 0.1 to 0.6, since more recommended fragments are
contained in SWFept. As to Sub-graphRec, semantically
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matching is not considered in the sub-graph matching al-
gorithm. Therefore, most discovered fragments are not
contained in SWFept and the precision is relatively low.
Fig. 8 also shows that when the importance of structural
information is enhanced, expected fragments in thrdept are
more consistent with fragments recommended by AKGRec
and ClusteringRec. However, the importance of semantics
is gradually decreased from the fragment similarity when
β is set from 0.6 to 0.9, and results show that precision be-
gins to decrease, since more recommended fragments are
not contained in SWFept, in case the fragment similarity
relies on structure while less regard to semantics.

This figure also shows that, when |SWFept ∩ SWFrec|
increases, recall increases as well for three techniques. Specif-
ically, recall for AKGRec has the similar trend as its preci-
sion. Especially, a high recall occurs when β is set to 0.6.
However, the recall of ClusteringRec is lower than AKGRec
and Sub-graphRec. In fact, the number of recommended
fragments is not enough in comparison with recommended
fragments as explained for K2, which is affected by the
clustering effect and selection strategy of candidate activ-
ities or sub-workflows. Generally, the factors of structure
and semantic similarity should be balanced to facilitate
candidate fragment recommendation. AKGRec performs
better than Sub-graphRec and ClusteringRec with current
parameter settings, and the structure relevance performs
an important role than activity semantics in the fragment
similarity calculation. Also shown by the variation trend
of F1 values in Fig. 8, fragments with a higher structural
similarity should be more appropriate to be recommended.

6.3.4. Evaluation when thrdept, K2 and β are optimum

Table 3: Comparison of AKGRec with Sub-graphRec and
ClusteringRec when thrdept, K2, and β are set to optimal values.

Precision Recall F1
AKGRec 0.959 0.862 0.908

Sub-graphRec 0.852 0.422 0.564
ClusteringRec 0.454 0.517 0.483

According to experimental results presented in previ-
ous sections, the optimum of thrdept, K2, and β are de-
termined as 0.86, 10, and 0.6, respectively. With this pa-
rameter setting, as shown in Table 3, experimental results
show that AKGRec performs better than Sub-graphRec
and ClusteringRec. Similar to the discussion presented
previously, AKGRec considers both structure-based and
semantic-based characteristics, which can complement each
other to achieve an optimal crossing-workflow fragment
discovery performance.

Generally, the precision and recall should be balanced
somehow to facilitate the discovery and recommendation
of crossing-workflow fragments, such that a more number
of optimal workflow fragments should be recommended.
Results illustrated by Fig. 6 and 7 shows that precision

decreases, while recall increases, when thrdept and K2 in-
crease. This result specifies that thrdept and K2 should
not be set to relatively large values. Experimental results
in Fig. 8 show that the structure relevance should be
considered as more important when discovering crossing-
workflow fragments to achieve a promising result.

7. Related Work and Comparison

7.1. Crossing-Workflow Fragments Discovery
An efficient discovery of crossing-workflow fragments is

of paramount importance to promote the reuse or repur-
posing of legacy scientific workflows, especially when the
requirement of novel scientific experiments is relevant with
multiple workflows in the repository. In [13], a crossing-
workflow fragments discovery mechanism is proposed, where
semantically relevant activities are identified and combined
as abstract ones. A network model is constructed to cap-
ture invocation relations specified upon abstract activi-
ties in legacy workflows. Sub-graph matching algorithm
is adopted to discover fragments from the network model
according to graph-style requirement specifications, and
these fragments are composed of the parts that originated
from various workflows. Note that a network model cap-
tures flat invocation relations, whereas not hierarchical
relations like parent-child ones, between activities. This
suggests that fragments containing activities in various
granularities cannot be discovered. This observation drives
us to construct a knowledge graph for activities in order
to capture both flat invocation and hierarchical parent-
child relations between activities, and these relations are
represented in a semantic fashion [22]. The discovery of
fragments is conducted by a graph query operation upon
the knowledge graph, and this is typically achieved by the
path query technique [23], such that a path captures a se-
quence of invocation relations between activities and sub-
workflows, and fragments may be assembled partially by
multiple workflows with different levels of granularities.

Typical fragments mined from workflows can improve
their sharing and reuse when possible. As presented in
[10], a two-objective evolutionary algorithm is adopted for
the ranking and recommendation of relevant fragments ac-
cording to certain requirements. Common fragments are
extracted through dependency graph calculation in a re-
configurable business process model [11], in order to facili-
tate the composition of business variations from main busi-
ness processes. Authors propose an approach to automat-
ically obtain abstractions from low-level provenance data
[24], where workflow fragments with a larger occurrence
frequency are discovered on workflow execution provenance
and associated with certain templates. An efficient index-
based mechanism is developed to promote the search and
reuse of fragments with various levels of granularities [12].
To summarize, current approaches are to generate structural-
relevant fragments from single workflows, whereas the dis-
covery of crossing-workflow fragments has not been ex-
plored extensively.

15



7.2. Workflow Similarity Assessment
Similarity assessment promotes the reuse and repur-

posing of workflows [4]. Traditional methods take an-
notations into account [5], where experiments show that
semantics represented in the ontology can promote the
workflow similarity examination. Annotations and text
descriptions have also been adopted in our technique to
facilitate the computation of semantic similarity between
activities or sub-workflows. Besides, structure-based ap-
proaches are developed [6], where a graph-based work-
flow recommendation is proposed to improve business pro-
cess modeling, and graph mining method and graph edit
distance are used to extract and calculate process pat-
terns from the repository. Generally, these techniques are
efficient when rich annotations are provided to describe
workflows, and users can be provided by several work-
flow recommendation strategies to automatically or semi-
automatically augment their developing-in-progress work-
flows, leveraging both structural and semantic similarities
between workflows and guiding information extracted from
current workflows [25].

Recent attempts to consider data in business process
management and the support of data modeling in business
process standards have led to the creation of multiple busi-
ness models with data access [7, 26]. A systematic data-
driven approach is proposed to assist situational appli-
cation development and extract certain information from
multiple sources to abstract service capabilities and repre-
sent in terms of tags [8]. Different from this data-driven
mechanism, we adopt invocation data information to com-
plement the similarity assessment of discovered fragments.
Specifically, we have developed a workflow similarity com-
putation technique [9], where workflows in the myExperi-
ment repository are transformed into layer hierarchies that
reflect hierarchical relations between workflow, its sub-
workflow and activities. This technique is to promote the
reuse or repurposing of workflows as the whole, and it fails
to work when crossing workflow fragments are to be dis-
covered to satisfy novel requirements.

7.3. Service Discovery
The discovery of workflow fragments is closely related

to service discovery, whose approaches mostly focus on
WSDL-based keyword search [27], and semantic matching
based on domain knowledge or ontologies [28], context-
awareness [29, 30, 31], or QoS-based discovery [32, 33].
Machine learning techniques are usually adopted to ex-
amine service relevance [34]. Authors present an activity
clustering method to promote activity reuse, and this tech-
nique can improve the performance of the retrieval and
recommendation of relevant services. Taking text descrip-
tions of services into consideration, topic models have been
used to promote service discovery. As presented in [35], a
novel Web service discovery mechanism is proposed, where
common topic groups are mined from the service-topic dis-
tribution matrix generated by topic modeling methods,

and these topic groups promote to match user queries with
relevant Web services. A theoretical approach is developed
to extract latent service co-occurrence topics, which facili-
tate the discovery about the trend of service compositions,
and promote the precision and recall of the service recom-
mendation [36]. In this paper, latent topics are chosen as
an important metric when discovering candidate activities
or sub-workflows. Particularly, the structure of Web ser-
vices is converted into W eighted Directed Acyclic Graphs
(WDAG), and BTM is adopted to generate topics [37].
The similarity for the pairs of WDAGs takes the topic simi-
larity into computation. Different from current techniques,
we adopt representative topics to represent topic distri-
bution, and the relevance of activities and sub-workflows
depends on the similarity of their topics and text descrip-
tions. Experimental results demonstrate the efficiency of
this mechanism.

8. Conclusion

This paper proposes a novel crossing-workflow frag-
ment discovery mechanism to promote the reuse or re-
purposing of legacy scientific workflows. Specifically, an
AKG is constructed to represent flat invocation relations
between activities, and hierarchical parent-child relations
specified upon sub-workflows and their corresponding ac-
tivities. The semantic relevance of activities and sub-
workflows is quantified by their representative topics gen-
erated by BTM . Given a requirement specified in terms
of a workflow template, individual candidate activities or
sub-workflows are discovered leveraging their semantic rel-
evance and short documents, and they are composed into
fragments according to relations specified in AKG. Can-
didate fragments are evaluated through balancing their
structural and semantic similarities against the require-
ment specification. Extensive experiments have been con-
ducted, and evaluation results demonstrate that our ap-
proach is accurate in discovering appropriate crossing-workflow
fragments in comparison with the state of art’s techniques.
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