

Modelling for risk and biosecurity related to forest health

Christelle Robinet, Robbert van den Dool, Dorian Collot, Jacob C Douma

▶ To cite this version:

Christelle Robinet, Robbert van den Dool, Dorian Collot, Jacob C Douma. Modelling for risk and biosecurity related to forest health. Emerging Topics in Life Sciences, 2020, 4 (5), pp.485-495. 10.1042/ETLS20200062 . hal-03123275

HAL Id: hal-03123275 https://hal.science/hal-03123275

Submitted on 27 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Short review			
2				
3				
4	Modelling for risk and biosecurity			
5	related to forest health			
6				
7	Christelle Robinet ^{1*} , Robbert van den Dool ² , Dorian Collot ¹ ,			
8	Jacob C. Douma ²			
9				
10	¹ INRAE, URZF, F-45075 Orléans, France			
11	² Centre for Crop Systems Analysis, Wageningen University, Droevendaalsesteeg 1, 6708PB			
12	Wageningen, The Netherlands			
13				
14	* Corresponding author: christelle.robinet@inrae.fr			
15				
16	Number of words: 4734 words (excluding figure legends and references)			
17	Number of tables: 1			
18	Number of figures: 2			
19				
20	Journal : Emerging Topics in Life Sciences			
21	Special issue : biosecurity (Guest editors : Nicola Spence and Alan MacLeod)			
22	Type of article : Mini review			

23 Abstract

24 Modelling the invasion and emergence of forest pests and pathogens (PnPs) is necessary to quantify 25 the risk levels for forest health and provide key information for policy makers. Here, we make a short 26 review of the models used to quantify the invasion risk of exotic species and the emergence risk of 27 native species. Regarding the invasion process, models tackle each invasion phase, e.g., pathway 28 models to describe the risk of entry, species distribution models to describe potential establishment, 29 and dispersal models to describe (human-assisted) spread. Concerning the emergence process, 30 models tackle each process: spread or outbreak. Only a few spread models describe jointly dispersal, 31 growth and establishment capabilities of native species while some mechanistic models describe the 32 population temporal dynamics and inference models describe the probability of outbreak. We also 33 discuss the ways to quantify uncertainty and the role of machine learning. Overall, promising 34 directions are to increase the models' genericity by parameterization based on meta-analysis 35 techniques to combine the effect of species traits and various environmental drivers. Further 36 perspectives consist in considering the models' interconnection, including the assessment of the 37 economic impact and risk mitigation options, as well as the possibility of having multi-risks and the 38 reduction of uncertainty by collecting larger fit-for-purpose datasets.

39 Introduction

40 Forests provide ecological, economic, social, and aesthetic services. In addition, they largely contribute to carbon sequestration and they could thus represent an important means of climate 41 42 change mitigation [1]. However, forest health is threatened by various pests and pathogens (PnPs). 43 Global change, including climate change but also other changes at global scale such as the 44 intensification of international trade, has triggered the emergence of an increasing number of tree 45 PnPs. The number of biological invasions of exotic species in new areas has been dramatically 46 increasing [2,3], and climate change has been promoting the range expansion or population 47 outbreaks of many native species (so called emergent species; [4-7]). Both invasive exotic species and emerging native species thus represent important risks for forest health. 48

49 To quantify the current and projected risk levels, and to provide key information for decision-support 50 experts and policy makers, modelling the invasion and emergence dynamics of these forest PnPs is 51 necessary. Pest risk mapping is particularly useful to support strategic and tactical decisions [8]. 52 Improving methods contributing to risk mapping has thus become an important challenge during the last few years [9]. Quantitative pest risk assessment allows for a higher transparency, the assessment 53 54 of uncertainty, and the exploration of various risk reduction options [10]. To assess the invasion or emergence risk of a species, one may develop and parameterize a model for that species (so called 55 "species-specific models"). Such an approach requires a lot of information on the not-yet-56 introduced/emerged species. On the contrary, "generic models" utilise what is known about the 57 58 invasion or emergence process of other species by describing species by their traits and feeding 59 those traits into the model. This is an important advantage because the estimation of various parameters has been proven difficult for not-yet-introduced species, and for those that previously 60 did not cause any damage. Generic models can thus be applied more easily and more rapidly to a 61 62 newly arriving or emerging species, but their predictive value should be proven across a range of 63 forest PnPs.

In this short review, we make a synthesis of models developed to assess the invasion risk of exotic forest PnPs, and the emergence risk of native forest PnPs. We also discuss the ways to quantify uncertainty and the role of machine learning. For each part, we also identify promising directions.

67

68 Modelling the invasion risk of exotic forest pests and pathogens

69 The invasion process can be described as a sequence of four phases: entry (transport from country of 70 origin and arrival in the new area), establishment, spread and impact [11]. The factors determining 71 the outcome of each phase can be grouped into three broad categories related to: (i) the vectors 72 carrying the PnPs (understood widely to include animal vectors, abiotic factors such as wind and 73 weather, and human actors), (ii) the environment the pest or pathogen interacts with during the first 74 three phases, and (iii) the characteristics of the pest or pathogen [12]. Modelling entails capturing 75 only the relevant processes and factors to produce tractable and valuable insights for risk assessors 76 and managers. To assess the risk posed to biosecurity, models are needed that tackle each invasion phase [9] (Fig. 1). 77

78 Modelling species entry. Different types of pathway models including epidemic networks and gravity 79 models have been developed so far [13]. They track the PnP from their source area to their 80 destination area where transfer to a suitable host may take place [13-15]. Such models help to 81 identify locations where high propagule pressure (i.e., a set of PnP individuals) is expected (e.g., 82 ports, trucks, ships, or factories) and to explore the effects of phytosanitary measures to prevent 83 entry. The drawback of pathway models is the parameterization. They request many parameters and 84 data for both the species and their vectors on for instance interception and transportation. This 85 information is often scarce, inconsistent and variable in time. Sampling methodology, frequency and 86 reporting of intercepted PnPs may actually differ per commodity, per country and per year. In risk 87 assessment this issue is often solved by simplifying the pathway models [10], and/or using Expert 88 Knowledge Elicitation (EKE) to derive sensible parameter values [16].

89 Modelling species establishment. The risk of PnP establishment is often modelled using Species 90 Distribution Models (SDMs). These models are generally based on a correlation between presence 91 points (and if available absence points) of the species and climate in the native or already invaded 92 areas [17]. Models are generally purely correlative (e.g., MaxEnt [8]) but more process-based niche 93 models can also be used (e.g., CLIMEX [19]). Caution is needed with such methods, as the resulting 94 potential distribution is a 'worst case' estimate, assuming that the PnP actually arrived in that area. 95 These methods require sufficient spatial data on the target species' presence and eventually absence 96 at large scale. Note that even when a PnP may establish in an area, sufficient propagule pressure is 97 needed to overcome Allee and demographic stochasticity effects occurring at low densities [20].

98 *Modelling species spread*. Once arrived and established, PnPs can disperse in the new area. Spread 99 involves population growth, individual dispersal and population establishment further in the new 100 area. Spread models can be used separately or as part of a combined model with entry and 101 establishment [21,22]. Generally, they focus on the dispersal component only, and describe dispersal

through kernels in case of natural (unassisted and assisted by natural vectors) dispersal or with
network/correlative models in case of human assisted spread, or combinations of the above [23].
Most spread models are pest-specific, requiring detailed information on population and dispersal
characteristics [24-26]. Even simpler models with few parameters may still be difficult to
parameterize for new biosecurity risks [27].

107 Promising approaches. Using models for assessing invasion risk is challenging because of 108 information scarcity on not-yet-introduced species. As a result, one has to rely on existing data of 109 related species – if available, or Expert Knowledge Elicitations, introducing unquantifiable uncertainty 110 in predictions. Because scientific studies in the field of invasion science often focus on a single well characterized pest species, invasion phase, area or vector, it is unclear whether generalisation to 111 112 species with similar traits, propagule pressure and habitat characteristics is possible [12, 25]. Some studies have been performed on finding generalities in establishment and spread characteristics of 113 114 species [28-30, 31]. These studies do not focus on pest-specific drivers, but try to unveil general 115 patterns by going beyond species. For example, Fahrner & Aukema [31] reported in a meta-analysis 116 across 147 studies a four-fold difference in spread rates of univoltine and multivoltine species. Meta-117 analyses, such as the one mentioned are often static analyses, but they could be combined with 118 dynamic models. A recent example is the generic spread model by Hudgins et al. [28]. Hudgins et al. 119 used a spread model with a negative exponential dispersal kernel with its parameters being a 120 function of covariates such as species traits and environmental traits. Optimal parameters for these covariates were obtained by running the model inversely ("inverse modelling" (Table 1, Fig. 1). For 121 122 each species, spread was simulated by running the model from the moment of establishment to the 123 final time of the observed distribution. They compared this final predicted distribution to the 124 observed one of all species to get best fits for the model parameters and structure. Mech et al. [32] 125 also used this kind of approach to compare impact of currently established pest insects with insect 126 and host traits and evolutionary relationships between native and novel hosts and insects to show that the evolutionary history of a pest's host species may be a good predictor for impact. Using meta-127 128 analysis approaches to generalise results across species invasions, by identifying the factors that 129 drive invasions and exploring how these factors interact with species traits, could be the way forward to build models that are fit for purpose. When combined with model selection techniques [33], it is 130 131 ensured that models do not become more complex than warranted by available data.

132

133 Modelling the emergence risk of native forest pests and pathogens

134 Native species or species introduced a long time ago can also cause high damage. As these species 135 are present in the environment for a long time, they have reached an equilibrium (in population size 136 and spatial distribution) and they are generally not subject to specific regulation or official control. 137 Therefore, pest risk assessment and generic approaches are not as well developed as for newly 138 invasive species. However, a change in environmental conditions can break this equilibrium and lead 139 to an increase of the damage incurred by this species. Recently some species, such as *Thaumetopoea* 140 pityocampa [34] and Lymantria monacha [35] have expanded their distribution, while others, such as 141 Operophtera brumata [36], Biscogniauxia mediterranea [37], or Dendrolimus pini [38] have made 142 outbreaks. In the first case, spreading species invade territories that were previously not colonized 143 (mainly involving dispersal and growth processes), while in the second case, outbreaking species 144 suddenly increase in population density in territories (either newly colonized or not) where they have 145 been previously present but at a lower density (mainly involving growth processes). Hereafter, we 146 review models that describe such spread and outbreak dynamics (Fig. 2).

147 Modelling species spread. Many spread models have been developed [24] but very few of them 148 jointly describe population growth, individual dispersal and population establishment beyond the 149 previous species distribution. Although dispersal is the key process in the spread of invasive species, 150 population growth and establishment in new areas are also very important processes in the spread of 151 native species. We can distinguish three main approaches: 1) species distribution models (SDMs) or 152 ecological niche models, 2) dispersal models, and 3) spread models in changing environment (Fig. 153 2A). SDMs are widely used to project the potential establishment area under climate change [39]. 154 Although they do not simulate spread explicitly, they predict the future potential distribution based 155 on climate change scenarios [19, 40]. A drawback of these models is that they ignore dispersal 156 capability and the population dynamics, elements that could limit the extent to which they can track 157 the shift of the climate envelope. In turn, dispersal models, such as reaction-diffusion models or 158 dispersal kernels generally ignore changes in habitat and climate conditions. Only a few spread 159 models describing both population growth and dispersal in a changing environment have been 160 developed [41]. These models could be seen as a mix of SDMs (or other models considering a change 161 in climate conditions on species establishment or survival) and dispersal models (Fig. 2A). However, these models are generally tailor-made for a given species and require many parameters to estimate 162 163 [42]. They are thus not easily applicable to other species.

Modelling species outbreaks. The presence of forest PnPs does not necessarily imply damage on forest trees. Their population size should exceed a given threshold to be considered as an outbreak [43]. Various categories of outbreaks can be distinguished [44]. Populations can suddenly increase in size due to a change in the environment. If the population size is correlated with an environmental 168 factor, the outbreak is called "gradient", while if the population size depends on a threshold of an 169 environmental factor, the outbreak is called "eruptive". Besides, some pests show periodic 170 outbreaks, which are then called "cyclic". Whatever the outbreak category, two kinds of models can 171 be used to describe these outbreaks: models focusing on the PnPs' dynamics (mechanistic models) 172 and models describing the probability that an outbreak occurs (inference models) (Fig. 2B).

173 The first type of models focuses on the species traits. Using data on the biology and the phenology of 174 the species, these mechanistic models can predict population dynamics in a large set of conditions, 175 even if these conditions have not been observed yet. These models can describe the dynamics of the 176 species alone for instance with a logistic growth function [45], the effects of environmental factors 177 such as predators or parasites in prey-predator systems [46,47], or the effects of host with an alike 178 epidemiological Susceptible-Infected-Recovering-Susceptible model [48]. Natural enemies or host 179 plants are indeed often used to explain cyclic outbreaks [49]. The complexity of these models can 180 increase until it encompasses a precise description of the species traits and microhabitat [50]. 181 However, these models require data about the population size and good knowledge on the species' 182 life cycle. The more complex a model is, the more realistic it could be, but it will also require more 183 data to infer the parameters and generate high uncertainties in the model output. These models also 184 require knowledge of the life-history traits, which are difficult to estimate, even for well-studied 185 species. Therefore, such models can fail to identify a less-known species that could outbreak.

186 The second type of models consist in inferring the probability of an outbreak based on previous 187 outbreaks in the same conditions. In these models, the description of the species is not required as 188 they only use environmental data (e.g., temperature, precipitations, density of host or dead wood) 189 related to the previous outbreak to identify the drivers of the outbreak. These data are analysed 190 using inference methods such as a regression [51] or random forest [52] to identify correlation 191 between past outbreaks and environmental factors and then to determine the probability of a next 192 outbreak. However, the probability model is calibrated on a set of observed conditions. Extrapolating 193 the probability beyond these conditions can lead to errors since the relationship between the 194 outbreak likelihood and the environmental conditions could be different outside the observed range.

Promising approaches. Most of spread and outbreak models for native species are not generic so far. The challenge for spread models is to combine both dispersal capabilities and the effects of changing climate conditions in time and in space on population survival and growth, as a function of the species traits. The challenge for outbreak models is to determine the drivers in a way that the model could be easily applied to other conditions, as a function of the species traits. Such outbreak models do not necessarily describe the temporal dynamics of the population density (which would

201 be data demanding) but rather a probability of outbreaking as a function of environmental 202 conditions. The development of generic spread and outbreak models needs to account for the 203 process drivers, the species traits and eventually the effect of their interaction on the simulated 204 process.

205

206 Parameterizing the models and quantifying uncertainty

207 Parameterisation. To generate predictions, invasion and emergence models need to be 208 parameterized. Typically, three ways of parameterization are used or combined thereof: 1) collecting 209 information on a parameter by setting up experiments or doing field measurements (e.g., by rearing 210 the pest in the lab and running flight-mill experiments to determine the average flight distance [53-211 54]; 2) using existing information from literature, sometimes on related species or vectors (e.g., [15, 212 28, 32, 55]); and 3) the use of Expert Knowledge Elicitation on plausible parameter values. Different 213 EKE methods can be used to estimate the most likely value for the parameters, such as fixed and 214 variable interval, and the roulette method [16]. For example, in the variable interval method the 215 expert can be asked to determine the parameter value at which the cumulative probability (quantile) is 0.05, 0.5 and 0.95. 216

217 *Uncertainty.* Each model output is associated with a given level of uncertainty or confidence level, 218 which could rise from various sources, and notably from: 1) model choice, 2) parametrization, and 3) 219 stochastic processes.. It is thus crucial to communicate the uncertainty related to the model outputs, 220 all the more when these results are used for decision making. In particular, in the frame of pest risk 221 analyses, a large range of questions should be answered regarding entry, establishment, spread and 222 impact. For each question, risk assessors have to provide both a rating regarding the related 223 likelihood and a score of uncertainty [56].

To cope with uncertainty about the model to choose, it is possible: (i) to run various models describing the same mechanism (ensemble prediction; for instance various climate models are available to describe a single climate change scenario), (ii) to consider various scenarios describing possible mechanisms (for instance, various climate change scenarios are considered based on different greenhouse gas concentration trajectories hypotheses), or (iii) to build a consensus model to combine all the tested models (e.g., [57-59]).

To cope with uncertainty in the parameters' estimate for a given model, several approaches could be considered. First, to assess the role of each parameter on the model output, sensitivity analyses are generally conducted. Although it is possible to calculate sensitivity analytically (see [60] for local, and

233 [61] for global analyses) especially for not-too-complex models, the sensitivity is preferentially 234 estimated numerically. These estimations are made by using latin hypercube sampling on an 235 arbitrary range of values (e.g., estimated value or bounds of uniform distributions +/- 10%) for each 236 parameter and then identifying the parameters that have the greatest impact on the model output 237 using partial correlation (e.g. [62-63]). These parameters require a more precise estimate to reduce 238 uncertainty of the model outputs. Second, uncertainty analyses could be done. These consist in 239 assessing the range of possible outputs when varying the parameter values within their confidence 240 intervals. It could result in a confidence interval for the model output (e.g., for a probability of 241 outbreak or probability of introduction), or a series of maps to highlight the best case, the likely case 242 and the worst case (e.g., for potential spread; [27]).

To account for uncertainty arising from highly stochastic processes such as human-mediated dispersal in species potential spread, it is possible to include this uncertainty into the final risk estimates using second-degree stochastic dominance criteria [64].

Promising approaches. Since there is no common rule in the way to handle uncertainty in risk models, it is most important to at least report the known uncertainty in one way or another [8]. Transparency about the main source of uncertainty and the level of confidence of the model outputs is necessary for decision-making and for improving forest managers' trust in modelling approaches. In addition, the combined effects of all uncertainties should be assessed [65].

251

252 Role of machine learning

253 In classical models in ecology, relationships between variables and parameters should be 254 determined, and a statistical algorithm only infers the values of the parameters. As the number of 255 available data and the number of measured variables increase, the number of possible relationships 256 to test increases as well, and it becomes more and more challenging to choose the most appropriate 257 one(s). Machine learning, defined as "a set of methods that computers use to make and improve 258 predictions or behaviours based on data" [66], allows overcoming this problem. Algorithms can 259 indeed infer the relevant relationships (e.g. the number of variables, the number of parameters, or 260 the shape of the functions), and thus improve or facilitate the development of models describing 261 invasion and emergence risks. The diversity of machine learning algorithms is too large to be 262 described here. However, the next paragraph provides a brief overview of these methods with a 263 focus on Species' Distribution Models (SDMs). More details on machine learning in SDMs can be 264 found in [39, 67-71].

265 Machine learning generally has two main components: (i) defining the structure of the model, and (ii) 266 obtaining realistic predictions with this structure. Many types of structures can be chosen, among the 267 most common, there are decision trees (as random forest, e.g. [52]), maps (SVM, e.g. [72]), or 268 functions (as in neural networks, e.g. [73] or GLM [51]). The algorithm will then build a huge amount 269 of the chosen structures by testing many different combinations of relationships. The second step is 270 to obtain predictions from these structures. To do so, the algorithm can either optimize, i.e. find the 271 structure with the predictions which are the closest to the observed data, or make a consensus of 272 every available prediction (bagging). MaxEnt [18] is commonly used for SDMs. In this method, the 273 structure is a distribution and MaxEnt optimizes this by maximizing the entropy. By doing so, MaxEnt 274 imposes a minimal number of constraints to fit the observed data. Another optimization method is 275 the evolutionary algorithm. Each structure has a score, based on the accuracy of the prediction 276 compared to the data. Different scores can be used for SDMs [74], but the most frequent are the 277 "number of correctly classified instances" and the AUC (Area Under the ROC Curve), which take into 278 account false positives and false negatives. The algorithm then mimics reproduction and natural 279 selection in order to select the prediction with the highest score [67]. On the contrary, random forest 280 [75] is a bagging method. Many different decision trees are built, and the prediction of the model is 281 either the average prediction of every tree (for quantitative predictions) or the result of a vote (for 282 qualitative predictions). More information can be found in [39, 67-71].

283 **Promising approaches.** A huge diversity of algorithms exists, with varying performance depending 284 on the issue they have to address. The differences between the different approaches are mainly 285 linked to the extrapolation to non-observed cases. Each model extrapolates differently and, as long 286 as there is no data, all assumptions are equally true. Therefore, maintaining a diversity of models can 287 be useful, as global changes can lead to situations not observed yet. Another issue is the 288 interpretability of the model, which is not limited to machine learning in ecology [66,76]. Some 289 models are based on assumptions and structure which are easier to interpret, as a decision tree, 290 while others are based on complicated functions which are harder to interpret even if their 291 predictions are accurate. A model easy to interpret is simpler to share with 'non-modellers' and can 292 easily be compared with expert knowledge.

293

294 General perspectives

This review points out the need of making a quantitative synthesis of literature and data to integrate species traits and various drivers into models to allow application to other species. Further model

development, listed hereafter, could improve the risk assessment and the support to policy makersregarding forest biosecurity.

299 Models tackling biological invasions and emergence of native species are generally considered 300 separately. The two processes rely on different mechanisms: the invasive species are in a transient 301 state, as they are arriving and establishing in a new territory, while the native species are initially 302 supposed to be in equilibrium with their environment. Changes in native species are therefore 303 generally triggered by a change in the environment, while changes in invasive species are mostly 304 associated with their own population traits (e.g. growth and dispersal capabilities) and human 305 activities (for their entry and spread). However, some processes such as population dispersal are 306 common to both types of species. In addition, the factors involved in the emergence (spread or 307 outbreak) of native species, such as climate change, also apply to exotic species newly arrived in the 308 territory. As a result, it could be interesting to explore the extent to which both modelling 309 approaches could eventually be merged into a unified framework.

310 As previously explained, various models have already been developed to describe each phase of 311 biological invasions. However, for pest risk analyses and decision-support, decision makers need to 312 have a global estimate of the risk for forest biosecurity. All these models need to be interconnected 313 at the end. Since these models are often very different, it is very challenging to combine them. 314 Therefore, it is of upmost importance to design these models so that they can be interconnected 315 since the beginning of their development. Since pathway models are data-demanding and should 316 cope with different types of uncertainties, considering both entry and establishment simultaneously 317 could be a solution to determine the locations where invasive species could be first established. 318 These locations could then be used as starting points for spread models. The outputs of spread 319 models should then be appropriate inputs for models describing the economic impact of PnPs (not 320 described here).

321 The assessment of the economic impact of forest PnPs is an extra layer that should be considered to 322 have a full risk analysis. It should include not only the direct impact of PnP on the yield reduction and 323 the quality loss, but the indirect impacts such as changes in prices, the demand and supply [77,78]. In 324 addition, this economic impact should also rely on the costs and effectiveness of the risk mitigation 325 options. These final cost-benefit analyses are useful for decision makers to choose the best 326 measure(s). However, this is the final step of a long and complex modelling work, and the uncertainty 327 accumulated along all these interconnected models should be clearly highlighted. Furthermore, the economic impact is only one side of all possible impacts of these forest PnPs. Social and 328

environmental impacts are also of high importance but very difficult to estimate so far, and the totalcost is usually underestimated [79].

331 Lastly, decision-makers do not face a single threat. Modelling researches in forest biosecurity should 332 consider as far as possible multi-risks in forest stands, e.g. simultaneous attacks of several PnPs on the same forest stand, or attack of a given PnP combined with an extreme climate event impacting 333 334 the tree health. Identifying the cause of a tree decline is all the more difficult when different factors 335 are impacting the tree. Modelling can help to analyse threats with multiple factors and to explore the 336 best risk reduction options. A huge amount of data is therefore needed to continuously monitor all 337 these risks and reduce uncertainty of the model. The use of large datasets coming from citizen 338 science (e.g., for species occurrence points) could complement available datasets and thus 339 contribute to refinement of model parameterization [80,81]. However, some specific data can only 340 be collected by specific specialists or official bodies (e.g., inspections at the country border), and standardization is actually needed even for this type of data collection [82]. 341

- 342
- 343

Summary Points

- Developing generic models to describe the invasion of exotic forest pests and pathogens
 (PnPs) and the emergence of native ones is necessary to aid rapid assessment of risks and
 provide support to policy makers.
- Each invasion phase can be described by a set of models but data is often missing and
 uncertainty is often very high. Meta-analysis could be used to identify the main drivers and
 species traits to be considered in parsimonious generic models.
- Most spread and outbreak models for native species are tailor-made for given species.
 Identifying the drivers, species traits and their interaction is also needed to develop generic
 models.
- Collecting appropriate data to parameterize risk models is a big issue. Models should be designed to be easily applicable, even when poor information is available on the PnP.
- Models should be interconnected, linked to economic impact models, and ideally consider
 multi-risks to fully answer the decision-maker's needs.

Author contributions

360 CR and JCD designed the structure of this short review, RvdD and JCD mainly focused on the invasion

part, CR and DC mainly focused on the emergence part, and CR lead the paper writing, all others

362 contributed to later versions of the manuscript.

363

364 **Declaration of Interests**

365 None.

366 Acknowledgements

We thank Monique Mourits (Wageningen University, NL) with whom we interacted on the economic impact, and the guest editors, Nicola Spence and Alan MacLeod (DEFRA, UK), who invited us to contribute to this special issue on biosecurity.

370

371 Funding

- 372 This project has received funding from the European Union's Horizon 2020 Programme for Research
- 373 & Innovation under grant agreement No 771271, project called HOMED «HOlistic Management of
- 374 Emerging forest pests and Diseases ». <u>http://homed-project.eu/</u>

375

376 **References**

- Canadell, J.G. and Raupach, M.R. (2008) Managing forests for climate change mitigation. *Science* 320, 1456-1457.
- 379 2 Brockerhoff, E.G. and Liebhold, A.M. (2017) Ecology of forest insect invasions. *Biol. Invasions* 19, 3141-3159.
- 3 Ghelardini, L., Luchi, N., Pecori, F., Pepori, A. L., Danti, R., Della Rocca, G. et al. (2017) Ecology of
 invasive forest pathogens. *Biol. Invasions* 19, 3183-3200.
- 4 Rosenzweig, C., Casassa, G., Karoly, D.J., Imeson, A., Liu, C., Menzel, A. et al. (2007) Assessment of
 observed changes and responses in natural and managed systems. Climate Change 2007: Impacts,

- Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report
 of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J.
 van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 79-131.
- 388 5 Robinet, C. and Roques, A. (2010) Direct impacts of recent climate warming on insect populations.
 389 *Integr. Zool.* 5, 132-142
- 390 6 Jactel, H., Petit, J., Desprez-Loustau, M.-L., Delzon, S., Piou, D., Battisti, A. et al. (2012) Drought
 391 effects on damage by forest insects and pathogens : a meta analysis. *Glob. Change Biol.* 18, 267392 276.
- 393 7 Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G. et al (2017). Forest
 394 disturbances under climate change. *Nat. Clim. Change* 7, 395-402.
- Venette, R.C., Kriticos, D.J., Magarey, R.D., Hoch, F.H., Baker, R.H.A., Worner, S.P. et al. (2010)
 Pest risk maps for invasive alien species : a roadmap for improvement. *BioScience* 60, 349-362.
- 397 9 Venette, R.C. (2015) Pest risk modelling and mapping for invasive alien species. Boston: CAB
 398 International, pp. 252.
- 10 EFSA PHL Panel (2018) Guidance on quantitative pest risk assessment. *EFSA Journal* 16, 5350. DOI:
 10.2903/j.efsa.2018.535011 Blackburn, T.M., Pyšek, P., Bacher, S., Carlton, J.T., Ducan, R.P.,
 Jarošik, V. et al. (2011) A proposed unified framework for biological invasions. *Trends Ecol. Evol.*26, 333-339.
- 403 12 McGeoch, M.A., Genovesi, P., Bellingham, P.J., Costello, M.J., McGrannachan and C., Sheppard, A.
 404 (2016) Prioritizing species, pathways, and sites to achieve conservation targets for biological
 405 invasion. *Biol. Invasions* 18, 299-314.
- 406 13 Douma, J.C., Pautasso, M., Venette, R., Robinet, C., Hemerik, L., Mourits, M. et al. (2016) Pathway
 407 models for analyzing and managing the introduction of alien plant pests an overview and
 408 categorization. *Ecol. Model.* 339, 58-67.
- 409 14 Douma, J.C., Robinet, C., Hemerik, L., Mourits, M.M., Roques, A. and van der Werf, W (2015)
 410 Development of probabilistic models for quantitative pathway analysis of plant pests introduction
 411 for the EU territory. *EFSA supporting publication* EN-809. 435pp.
- 412 15 Douma, J.C., Hemerik, L., van der Werf, W., Magnusson, C. and Robinet, C. (2017) Development of
 413 a pathway model to assess the exposure of European pine trees to pine wood nematode via the
 414 trade of wood. *Ecol. Appl.* 27, 769-785. DOI: 10.1002/eap.1480

- 415 16 EFSA (2014) Guidance on Expert Knowledge Elicitation in Food and Feed Safety Risk Assessment.
 416 *EFSA Journal* 12, 3734. DOI: 10.2903/j.efsa.2014.3734
- 417 17 Franklin, J. (2010) Mapping species distributions: spatial inference and prediction. Cambridge418 University Press.
- 419 18 Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum entropy modeling of species
 420 geographic distributions. *Ecol. Model.* 190, 231–259.
- 421 19 Kriticos, D.J., Maywald, G.F., Yonow, T., Zurcher, E.J., Herrmann, N.I. and Sutherst, R.W. (2015)
 422 CLIMEX Version 4: Exploring the effects of climate on plants, animals and diseases. CSIRO,
 423 Canberra. 184 pp.
- 424 20 Liebhold, A. and Bascompte, J. (2003) The Allee effect, stochastic dynamics and the eradication of
 425 alien species. *Ecol. Lett.* 6, 133-140.
- Lustig, A., Worner, S.P., Pitt, J.P., Doscher, C., Stouffer, D.B. and Senay, S.D. (2017) A modeling
 framework for the establishment and spread of invasive species in heterogeneous environments. *Ecol. Evol.* 7, 8338-8348.
- 22 Yemshanov, D., Koch, F.H., McKenney, D.W., Downing, M.C. and Sapio, F. (2009) Mapping invasive
 species risks with stochastic models: a cross-border United States-Canada application for Sirex
 noctilio Fabricius. *Risk Analysis: An International Journal* 29, 868-884.
- 432 23 Robinet, C., Roques, A., Pan, H., Fang, G., Ye, J., Zhang, Y. et al. (2009). Role of human-mediated
 433 dispersal in the spread of the pinewood nematode in China. *PLoS One* 4, e4646.
 434 doi:10.1371/journal.pone.0004646.
- 24 Chapman, D.S., White, S.M., Hooftman, D.A.P. and Bullock, J.M. (2015) Inventory and review of
 quantitative models for spread of plant pests for use in pest risk assessment for the EU territory. *EFSA supporting publication*, EN-795. 190 pp.
- 438 25 Leung, B., Roura-Pascual, N., Bacher, S., Heikkilä, J., Brotons, L., Burgman, M.A. et al. (2012)
 439 TEASIng apart alien species risk assessments: a framework for best practices. *Ecol. Lett.* 15, 1475440 1493.
- 26 Parry, H., Sadler, R. and Kriticos, D. (2013) Practical guidelines for modelling post-entry spread in
- 442 invasion ecology. *NeoBiota* **18**, 41-66. <u>https://doi.org/10.3897/neobiota.18.4305</u>

- 27 Robinet, C., Kehlenbeck, H., Kriticos, D.J., Baker, R.H.A., Battisti, A., Brunel, S. et al. (2012) A suite
 of models to support quantitative assessment of spread in pest risk analysis. *PLoS ONE* 7, e43366.
 doi:10.1371/journal.pone.0043366s.
- 28 Hudgins, E.J., Liebhold, A.M. and Leung, B. (2017) Predicting the spread of all invasive forest pests
 in the United States. *Ecol. Lett.* 20, 426-435.
- 448 29 Ward, S.F., Fei, S. and Liebhold, A.M. (2019) Spatial patterns of discovery points and invasion
 449 hotspots of non-native forest pests. *Global Ecol. Biogeogr.* 28, 1749-1762.
- 30 Branco, M., Nunes, P., Roques, A., Fernandes, M.R., Orazio, C. and Jactel, H. (2019) Urban trees
 facilitate the establishment of non-native forest insects. *NeoBiota* 52, 25–46.
- 452 31 Fahrner, S. and Aukema, B.H. (2018) Correlates of spread rates for introduced insects. *Glob. Ecol.*453 *Biogeogr.* 27, 734-743. <u>https://doi.org/10.1111/geb.12737</u>
- 454 32 Mech, A. M., Thomas, K. A., Marsico, T. D., Herms, D. A., Allen, C. R., Ayres, M. P. et al. (2019).
 455 Evolutionary history predicts high-impact invasions by herbivorous insects. *Ecol. Evol.* 9, 12216456 12230.
- 33 Burnham, K.P. and Anderson, D.R. (2002). A practical information-theoretic approach. Model
 selection and multimodel inference, 2nd ed. Springer, New York.
- 34 Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A. et al. (2005) Expansion of
 geographic range in the pine processionary moth caused by increased winter temperatures. *Ecol. Appl.* **15**, 2084-2096.
- 462 35 Fält-Nardmann, J.J.J., Tikkanen, O.P., Ruohomäki, K., Otto, L.F., Leinonen, R., Pöyry, J. et al. (2018)
 463 The recent northward expansion of *Lymantria monacha* in relation to realised changes in
 464 temperatures of different seasons. *Forest Ecol. Manag.* 427, 96–105.
- 36 Jepsen, J.U., Hagen, S.B., Ims, R.A. and Yoccoz, N.G. (2008) Climate change and outbreaks of the
 geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a
 recent outbreak range expansion. *J. Animal Ecol.* 77, 281–291.
- 468 37 Henriques, J., Inacio, M.L., Lima, A. and Sousa, E. (2012) New outbreaks of charcoal canker on
 469 young cork oak trees in Portugal. *Integrated Protection in Oak Forest* **76**, 85–88.
- 470 38 Matek, M. and Pernek, M. (2018) First record of *Dendrolimus pini* outbreak on aleppo pine in
- 471 Croatia and severe case of population collapse caused by entomopathogen *Beauveria bassiana*.
- 472 South-East European Forestry **9**, 91–96.

- 473 39 Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A. et al. (2006) Novel
 474 methods improve prediction of species' distributions from occurrence data. *Ecography* 29, 129475 151.
- 40 Thuiller, W., Lavorel, S. and Araúja, M.B. (2005) Niche properties and geographical extent as
 predictors of species sensitivity to climate change. *Global Ecol. Biogeogr.* 14, 347-357.
- 478 41 Roques L, Roques A, Berestycki H, Kretzschmar A (2008) A population facing climate change: joint
 479 influences of Allee effects and environmental boundary geometry. *Popul. Ecol.* 50, 215–225.
- 42 Robinet, C., Rousselet, J. and Roques, A. (2014) Potential spread of the pine processionary moth in
 France: preliminary results from a simulation model and future challenges. *Ann. Forest Sci.* 71,
 482 149-160.
- 483 43 Dajoz, R. (1998) Les insectes et la forêt. Paris : Editions Tec & Doc, Lavoisier, pp.594
- 484 44 Berryman, A.A. (1987) The theory and classification of outbreaks. In: Barbosa P & Schultz JC (eds),
 485 Insect outbreaks, 3-30.
- 486 45 Aparicio, J.P., Corley, J.C. and Rabinovich, J.E. (2013) Life history traits of *sirex noctilio* F.
 487 (Hymenoptera: Siricidae) can explain outbreaks independently of environmental factors. *Math.*488 *Biosci. Eng.* 10, 1265–1279. <u>https://doi.org/10.3934/mbe.2013.10.1265</u>
- 46 Wilder, J.W., Voorhis, N., Colbert, J.J. and Sharov, A. (1994) A three variable differential equation
 model for gypsy moth population dynamics. *Ecol. Model.* 72, 229–250.
 https://doi.org/10.1016/0304-3800(94)90085-X
- 47 Van Der Putten, W.H., Macel, M. and Visser, M.E. (2010) Predicting species distribution and
 abundance responses to climate change: Why it is essential to include biotic interactions across
 trophic levels. *Philos. T. Roy. Soc. B* 365, 2025–2034. https://doi.org/10.1098/rstb.2010.0037
- 48 Nenzén, H.K., Filotas, E., Peres-Neto, P. and Gravel, D. (2017) Epidemiological landscape models
 reproduce cyclic insect outbreaks. *Ecol. Complex.* **31**, 78-87.
- 497 49 Turchin, P., Ellner, S.P., Kendall, B.E., Murdoch, W.W., Fischlin, A., Casas, J. et al. (2003) Dynamical
 498 effects of plant quality and parasitism on population cycles of larch budmoth. *Ecology* 84, 1207499 1214.
- 50 Baier, P., Pennerstorfer, J. and Schopf, A. (2007) PHENIPS-A comprehensive phenology model of
 Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. *Forest Ecol. Manag.* 249, 171–186. https://doi.org/10.1016/j.foreco.2007.05.020

- 503 51 Buse, J., Schröder, B and Assmann, T. (2007) Modelling habitat and spatial distribution of an
 504 endangered longhorn beetle A case study for saproxylic insect conservation. *Biol. Conserv.* 137,
 505 372–381. https://doi.org/10.1016/j.biocon.2007.02.025
- 506 52 Ismail, R., Mutanga, O. and Kumar, L. (2010) Modeling the Potential Distribution of Pine Forests
 507 Susceptible to *Sirex Noctilio* Infestations in Mpumalanga, South Africa. *Transactions in GIS* 14,
 508 709–726. https://doi.org/10.1111/j.1467-9671.2010.01229.x
- 53 Taylor, R.A., Bauer, L.S., Poland, T.M. and Windell, K.N. (2010) Flight performance of *Agrilus planipennis* (Coleoptera: Buprestidae) on a flight mill and in free flight. *J. Insect Behav.* 23, 128-48.
 <u>https://doi.org/10.1007/s10905-010-9202-3</u>
- 54 Robinet, C., David, G. and Jactel, H. (2019) Modelling the distances travelled by flying insects
 based on the combination of flight mill and mark-release-recapture experiments. *Ecol. Model.*402, 85-92. https://doi.org/10.1016/j.ecolmodel.2019.04.006
- 515 55 Robinet, C., Van Opstal, N., Baker, R. and Roques, A. (2011) Applying a spread model to identify the entry points from which the pine wood nematode, the vector of pine wilt disease, would 516 517 13, 2981-2995. spread most rapidly across Europe. Biol. Invasions https://doi.org/10.1007/s10530-011-9983-0 518
- 56 Holt, J., Leach, A.W., Knight, J.D., Griessinger, D., MacLeod, A., van der Gaag, D.J. et al. (2012)
 Tools for visualizing and integrating pest risk assessment ratings and uncertainties. *Bulletin OEPP/EPPO Bulletin* 42, 35-41. https://doi.org/10.1111/j.1365-2338.2012.02548.x
- 57 Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K. and Thuiller, W. (2009) Evaluation of
 consensus methods in predictive species distribution modelling. *Diver. Distrib.* 15, 59-69.
 https://doi.org/10.1111/j.1472-4642.2008.00491.x
- 525 58 Boulanger, Y., Gray, D.R., Cooke, B.J. and de Grandpré, L. (2016) Model-specification uncertainty
 526 in future forest pest outbreak. *Glob. Change Biol.* 22, 1595-1607.
 527 <u>https://doi.org/10.1111/gcb.13142</u>
- 528 59 Fournier, A., Barbet-Massin, M., Rome, Q. and Courchamp, F. (2017) Predicting species 529 distribution combining multi-scale drivers. *Glob. Ecol. Conserv.* **12**, 215-226. 530 https://doi.org/10.1016/j.gecco.2017.11.002
- 60 Caswell, H. (2019) Sensitivity analysis : matrix methods in demography and ecology. Springer
 International Publishing, pp. 299. <u>https://doi.org/10.1007/978-3-030-10534-1</u>
- 533 61 Sobol, I.M. (2001) Global sensitivity indices for nonlinear mathematical models and their Monte

- 534 Carlo estimates. *Math. Comput. Simulat.* 55, 271–280. <u>https://doi.org/10.1016/S0378-</u>
 535 <u>4754(00)00270-6</u>
- 536 62 Koch, F.H., Yemshanov, D., McKenney, D.W. and Smith, W.D. (2009) Evaluating Critical
 537 Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk. *Risk analysis* 29, 1227538 1241. <u>https://doi.org/10.1111/j.1539-6924.2009.01251.x</u>
- 63 Blower, S.M. and Dowlatabadi, H. (1994) Sensitivity and uncertainty analysis of complex models of
 disease transmission: an HIV model, as an example. *Int. Stat. Rev.* 62, 229-243.
 https://doi.org/10.2307/1403510
- 542 64 Yemshanov, D., Koch, F.H., Lyons, D.B., Ducey, M. and Koehler, K. (2012) A dominance-based
 543 approach to map risks of ecological invasions in the presence of severe uncertainty. *Divers.*544 *Distrib.* 18, 33-46. https://doi.org/10.1111/j.1472-4642.2011.00848.x
- 545 65 EFSA Scientific Committee, Benford, D., Halldorsson, T., Jeger, M.J., Knutsen, H.K., More, S., et al.
- 546 (2018) Scientific Opinion on the principles and methods behind EFSA's Guidance on Uncertainty
 547 Analysis in Scientific Assessment. *EFSA Journal* 16, 5122, pp. 235.
 548 https://doi.org/10.2903/j.efsa.2018.5122
- 66 Molnar, C. (2020) Interpretable Machine learning. A Guide for Making Black Box Models
 Explainable. Ebook, pp. 312. https://christophm.github.io/interpretable-ml-book/
- 551 67 Gobeyn, S., Mouton, A.M., Cord, A.F., Kaim, A., Volk, M. and Goethals, P.L.M. (2019) Evolutionary
- algorithms for species distribution modelling: A review in the context of machine learning. *Ecol. Model.* 392, 179–195. <u>https://doi.org/10.1016/j.ecolmodel.2018.11.013</u>
- 68 Guisan, A., Thuiller, W. and Zimmermann, N.E. (2017) Habitat suitability and Distribution models
 with applications in R (Ecology, Biodiversity and Conservation). Cambridge: Cambridge University
 Press, . <u>https://doi.org/10.1017/9781139028271</u>
- 69 Guisan, A. and Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. *Ecol. Model.* 135, 147–186. <u>https://doi.org/10.1016/S0304-3800(00)00354-9</u>
- 559 70 Lorena, A.C., Jacintho, L.F.O., Siqueira, M.F., De Giovanni, R., Lohmann, L.G., De Carvalho,
 560 A.C.P.L.F. et al. (2011) Comparing machine learning classifiers in potential distribution modelling.
- 561 *Expert Syst. Appl.* **38**, 5268–5275. <u>https://doi.org/10.1016/j.eswa.2010.10.031</u>
- 562 71 Maher, S.P., Randin, C.F., Guisan, A. and Drake, J.M. (2014) Pattern-recognition ecological niche
 563 models fit to presence-only and presence-absence data. *Meth. Ecol. Evol.* 5, 761–770.
 564 <u>https://doi.org/10.1111/2041-210X.12222</u>

- 72 Boogar, A.R., Salehi, H., Pourghasemi, H.R. and Blaschke, T. (2019) Predicting habitat suitability
 and conserving *Juniperus* spp. habitat using SVM and maximum entropy machine learning
 techniques. *Water* 11, 2049. https://doi.org/10.3390/w11102049
- 568 73 Watts, M.J. and Worner, S.P. (2011) Modelling insect habitat suitability with artificial neural networks. Chapter 8 in: "Insect Habitats: Characteristics, Diversity and Management". Publisher: 569 570 Editors: Edina Harris, Newell Ε. Davies. Novascience Press. L. 163-195 pp. 571 https://www.researchgate.net/publication/211369311
- 572 74 Mouton, A.M., De Baets, B. and Goethals, P.L.M. (2010) Ecological relevance of performance
 573 criteria for species distribution models. *Ecol. Model.* 221, 1995–2002.
 574 https://doi.org/10.1016/j.ecolmodel.2010.04.017
- 575
 75 Breiman,
 L.
 (2001)
 Random
 forests.
 Mach.
 Learn.
 45,
 5–32.

 576
 https://doi.org/10.1023/A:1010933404324
- 577 <u>76</u> Murdoch, W.J., Singh, C., Kumbier, K., Abbasi-Asl, R. and Yu, B. (2019) Definitions, methods, and
 578 applications in interpretable machine learning. *P. Natl. Acad. Sci. USA* **116**, 22071–22080.
 579 <u>https://doi.org/10.1073/pnas.1900654116</u>
- 580 77 Soliman, T., Mourits, M.C.M., van der Werf, W., Hengeveld, G.M., Robinet, C. and Oude Lansink,
- A.G.J.M. (2012) Framework for modelling economic impacts of invasive species, applied to pone
 wood nematode in Europe. *PLoS ONE* 7, e45505. doi:10.1371/journal.pone.0045505
- 78 Petucco, C., Lobianco, A. and Caurla, S. (2020) Economic evaluation of an invasive forest pathogen
 at a large scale: the case of ash dieback in France. *Environ. Model. Assess.* 25, 1-21.
- 585 79 Bradshaw, C.J.A., Leroy, B., Bellard, C., Roiz, D., Albert, C., Fournier, A. et al. (2016) Massive yet
 586 grossly underestimated global costs of invasive insects. *Nat. Commun.* 7, 12986.
- 587 80 Dickinson, J.L., Zuckerberg, B. and Bonter, D.N. (2010) Citizen science as an ecological research
 588 tool : challenges and benefits. *Annu. Rev. Ecol. Evol. Syst.* 41, 149–172.
- 589 81 César de Sá, N., Marchante, H., Marchante, E., Cabral, J.A., Honrado, J.P. and Vicente, J.R. (2019)
 590 Can citizen science data guide the surveillance of invasive plants ? A model-based test with Acacia
 591 trees in Portugal. *Biol. Invasions* 21, 2127-2141.
- 592 82 Eschen, R., Rigaux, L., Sukovata, L., Vettraino, A.M., Marzano, M. and Grégoire, J.-C. (2015)
 593 Phytosanitary inspection of woody plants for planting at European Union entry points: a practical
 594 enquiry. *Biol. Invasions* 17, 2403-2413.

595 **Figures and tables**

597 Figure 1: Two different approaches (forward modelling and inverse modelling) could be used to

598 describe the risk of invasion from entry to impact.

599

596

600

601 Figure 2: Models describing population spread (A) and outbreak (B) emerging species. The dark 602 grey area indicates the current species distribution and light grey area the change in the species 603 distribution with climate change. (A) The climate envelope extends from the full black curve to the 604 projected envelope (dotted black curve) due to climate change in the direction indicated by the 605 arrow. Three types of models could describe spread: they take into account climate suitability, 606 dispersal capability, and eventually both together. . (B) Two kind of models could describe outbreak: they are either based on statistical correlations (inference models - appropriate within the current 607 608 range) or mechanistic processes (more robust in new conditions).

Model type	Phase	Modelling approach	Limitations
Pathway	Entry Establishment	Forward	Data on entry quite limited, this approach has high uncertainty
Species distribution	Establishment Spread	Inverse (mostly)	Result is worst-case scenario, no temporal dynamics, limited by occurrence data quality
Mechanistic spread	Spread	Forward	Often requires detailed PnPs information
Network model / stochastic spread	Spread	Inverse / Forward	Limited by occurrence data quality
Meta-analysis	Any	Inverse	Needs sufficient data on PnPs and predictor variables for a meaningful model

Table 1: Overview of model types for each invasion phase from entry to spread.