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ABSTRACT
We analyse the optical morphologies of galaxies in the IllustrisTNG simulation at z ∼ 0
with a convolutional neural network trained on visual morphologies in the Sloan Digital Sky
Survey. We generate mock SDSS images of a mass complete sample of ∼ 12 000 galaxies
in the simulation using the radiative transfer code SKIRT and include PSF and noise to
match the SDSS r-band properties. The images are then processed through the exact same
neural network used to estimate SDSS morphologies to classify simulated galaxies in four
morphological classes (E, S0/a, Sab, Scd). The CNN model classifies simulated galaxies in
one of the four main classes with the same uncertainty as for observed galaxies. The mass–
size relations of the simulated galaxies divided by morphological type also reproduce well
the slope and the normalization of observed relations which confirms a reasonable diversity
of optical morphologies in the TNG suite. However we find a weak correlation between
optical morphology and Sersic index in the TNG suite as opposed to SDSS which might
require further investigation. The stellar mass functions (SMFs) decomposed into different
morphologies still show some discrepancies with observations especially at the high-mass
end. We find an overabundance of late-type galaxies (∼ 50 per cent versus ∼ 20 per cent) at
the high-mass end [log(M∗/M�) > 11] of the SMF as compared to observations according
to the CNN classifications and a lack of S0 galaxies (∼ 20 per cent versus ∼ 40 per cent) at
intermediate masses. This work highlights the importance of detailed comparisons between
observations and simulations in comparable conditions.

Key words: galaxies: abundances – galaxies: formation – galaxies: photometry.

1 IN T RO D U C T I O N

Understanding the physical processes that lead to the diversity of
galaxy morphologies we see in today’s Universe, i.e. the Hubble

� E-mail: marc.huertas@obspm.fr

Sequence, is still a major goal in the field of galaxy evolution.
Until recently, numerical simulations struggled to simulate galaxies
with realistic morphologies. An improvement of spatial resolution
together with more accurate numerical codes and treatments of
physical processes has triggered the emergence of hydrodynamical
cosmological simulations which produce galaxies with a variety of
morphologies in the local universe (e.g. Dubois et al. 2015; Genel
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et al. 2015; Schaye et al. 2015). This allows us to move from a
qualitative to a more quantitative approach in which the number
densities as well as other scaling relations of different simulated
morphologies can be compared to observations. It requires to
consistently measure morphologies in the simulations as done in the
observations. Radiative transfer codes enable one to forward model
the simulation outputs and produce mock observations under some
assumptions on the conversion from mass to light as well as on the
absorption of light by dust.

However, there have been few works that precisely quantify the
detailed morphologies of the simulated galaxies. This is partly due
to the fact that quantifying galaxy morphology for large numbers of
galaxies has also remained an elusive problem in the observations.
An interesting attempt to process simulated galaxies with the same
methodology was carried out by Dickinson et al. (2018) in the
framework of the Galaxy Zoo project (Lintott et al. 2011). They
classified a complete sample of simulated galaxies from the Illustris
simulation using the citizen science approach developed by the
Galaxy Zoo collaboration and showed that simulated galaxies still
presented important differences with respect to observed ones They
found in particular that simulated galaxies present more substruc-
tures than observed ones, especially at lower masses. One caveat of
this approach is that it is very time consuming to consistently process
different simulations with the same methodology. Other works have
then followed a more automated approach. Bottrell et al. (2017a,b)
performed bulge-disc decompositions of mock Illustris galaxies
finding also significant differences with the observations. They find
in particular a deficit of bulge-dominated galaxies which implies
that the size–luminosity relations of Illustris galaxies present higher
normalizations and smaller slopes than for real galaxies. More
recently, Rodriguez-Gomez et al. (2019) used parametric and non-
parametric morphological proxies of the new IllustrisTNG galaxies
(see also Snyder et al. 2015 for a similar approach). They measured
a significant improvement in terms of scaling relations compared
to the original run but some discrepancies remain on the slopes
and normalizations of the mass–size relations of early and late-type
galaxies. Galaxies from the EAGLE simulation have also recently
been processed through radiative transfer codes (Trayford et al.
2017) and used for example to identify barred systems (Elagali et al.
2018). However, there is no precise quantification of the photometric
morphological mix. Most of the works focus on the morphologies
traced by kinematics (e.g. Correa et al. 2017; Clauwens et al. 2018;
Rosito et al. 2018; Thob et al. 2019; Trayford et al. 2019) which are
more difficult to compare with large observational samples because
of the lack of kinematic data on complete samples.

In recent years, machine learning and more precisely deep
learning has emerged as an extremely efficient tool to estimate
detailed visual like morphologies from images (e.g. Dieleman,
Willett & Dambre 2015; Huertas-Company et al. 2015; Domı́nguez
Sánchez et al. 2018). It offers an interesting and fast approach
to consistently compare theory and observations since it becomes
possible to efficiently apply the exact same methods to simulations
and observations and obtain accurate detailed morphologies. The
realism of the simulated galaxies can be quantified in detail.

The main purpose of this work is thus to quantify the detailed
optical visual morphologies of the new TNG100 simulation of the
IllustrisTNG suite (Nelson et al. ) and compare with observations.
We use to that purpose a convolutional neural network trained on
the SDSS (Domı́nguez Sánchez et al. 2018) to classify a mass
selected [log(M∗/M�) > 9.5] sample of ∼ 12 000 simulated galaxies
at z = 0.05 in four major morphological types (E, S0, Sab, Scd)
in the SDSS r band. Bayesian neural networks are used to quantify

the similarities between observations and simulations. We then
analyse the stellar mass functions (SMFs) and mass–size relations
of simulated galaxies divided by morphological type and compare
with observations.

The paper proceeds as follows. Sections 3 and 2 describe the
simulated and observational samples used in this work, respectively.
We then describe in Section 4 the main methodology used to
quantify galaxy morphologies with Convolutional Neural Networks
(CNNs). In Section 5 we discuss the similarity between simulated
and observed morphologies from the machine learning perspective.
The main results regarding the scaling relations and SMFs of
simulated and observed galaxies are presented in Sections 6 and 7,
respectively.

2 O BSERVATI ONS

2.1 SDSS parent sample: M15

The observational sample used in this work comes from the 670 722
galaxies selected by Meert, Vikram & Bernardi (2015) (hereafter the
M15 sample) from the SDSS DR7 spectroscopic sample. We refer
the reader to the aforementioned work for all the details regarding
the selection. Very briefly, galaxies are selected from the SDSS
DR7 database according to three main criteria: (1) the extinction-
corrected r-band Petrosian magnitude is between 14 and 17.77. The
limit at the bright end is to avoid large nearby galaxies which are
typically split into multiple objects in the SDSS catalogue. The
faint-end limit is the lower limit for completeness of the SDSS
spectroscopic survey (Strauss et al. 2002); (2) the photometric
pipeline classified the object as a galaxy; and (3) the spectrum was
also identified as a galaxy. Some further cleaning of very nearby
objects (z < 0.0005) and objects with catastrophic photometric
redshifts results in sample of 670 722 galaxies. The median redshift
of this sample is ∼0.09 and goes up to z ∼ 0.25 which is slightly
higher than that of the Illustris TNG z = 0.05 snapshot we consider.
In order to reduce the impact of possible morphological evolution,
we select for this work only objects with z < 0.1. This additional
selection results in a final sample of 328 709 galaxies. The volume
probed by the observational sample is roughly 40 times larger than
the simulated TNG volume. The morphological mix, which is the
main property we aim to measure in this work, might eventually
change in small volumes, especially at the high-mass end. This is
addressed in detail in Section 7.

2.2 Structural parameters and stellar masses

A large number of derived quantities exist for the dataset described
above. In particular we use for this work the stellar masses computed
for all galaxies (Bernardi et al. ).1 Stellar masses are derived using
a Chabrier (2003) initial mass function (IMF) and the M/L ratio
from Mendel et al. (2015). We do not include any variation in the
IMF. We refer to Bernardi et al. (2018) for the implications of IMF
gradients in the mass. The luminosity comes from the Sersic best-
fitting models derived for all galaxies (see Meert et al. 2015 for more
details). We also use the effective radii estimated through fitting
Sersic models when comparing the scaling relations of observed
and simulated galaxies. Domı́nguez Sánchez et al. (2018) also
derived detailed visual morphologies for this sample with CNNs.

1Catalogue available at: http://alan-meert-website-aws.s3-website-us-east-
1.amazonaws.com/fit catalog/download/index.html
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However, in this work we perform a new training to ensure that the
neural networks are trained on data with similar properties to the
simulations.

3 SI M U L AT I O N S

3.1 The IllustrisTNG simulation: TNG

The IllustrisTNG Project (Marinacci et al. 2018; Naiman et al. 2018;
Nelson et al. ; Pillepich et al. 2018a; Springel et al. 2018) is a suite of
magneto-hydrodynamic cosmological simulations performed with
the moving-mesh code AREPO (Springel 2010; Pakmor, Bauer &
Springel 2011; Pakmor et al. 2016). See Weinberger et al. (2017)
and Pillepich et al. (2018a) for a description of the TNG simulation
model which is an improved version of the original Illustris
simulation (Genel et al. 2014; Vogelsberger et al. 2014a,b; Sijacki
et al. 2015). The IllustrisTNG model was especially designed to
match some key observables: (i) the global star formation rate
density at z = 0−8, (ii) the galaxy mass function at z = 0, (iii)
the stellar-to-halo mass relation at z = 0, (iv) the black hole-to-
stellar mass relation at z = 0, (v) the halo gas fraction at z = 0,
and (vi) galaxy sizes at z = 0. In this work, we use the highest
resolution version of TNG100, which follows the evolution of
2 × 18203 resolution elements within a periodic cube measuring
75 h−1 � 110.7 Mpc. The main differences with respect to the first
Illustris run consist of a new active galactic nucleus feedback model
that operates at low accretion rates (Weinberger et al. 2017) and a
reworking of the galactic winds (Pillepich et al. 2018a), and the
inclusion of magnetic fields (Pakmor et al. 2011). The simulation
output, along with ancillary data products, has been recently made
publicly available (Nelson et al. ).

3.2 Dataset and synthetic images

In this work, we consider a single simulation snapshot at z =
0.0485 (snapshot 95) as done in Rodriguez-Gomez et al. (2019). The
redshift is consistent with the average redshift of the observational
comparison sample (zmed = 0.06). Within this snapshot, we consider
all simulated galaxies with log(M∗/M�) > 9.5 which is also roughly
consistent with the stellar masses in the observational dataset
detailed in the following section. The sample selected contains
12 468 galaxies (hereafter TNG sample). We do not require a
perfect stellar mass and redshift match between observations and
simulations since all properties will be explored at fixed stellar mass.
It is important though that all types of galaxies are well represented
in the training set used to train the CNNs. We will further explore
this in Section 5.

From the parent sample we create synthetic images for all the
galaxies in the snapshot using the radiative code SKIRT (Baes et al.
2011).2 We refer the reader to Rodriguez-Gomez et al. (2019) for
full details on how the images are created. In short, each galaxy is
observed from a unique random viewing angle perpendicular to the
xy-plane of the simulation volume. The field of view of each image is
equal to 15 times the (3D) stellar half-mass radius of the correspond-
ing galaxy. The number of pixels is tuned to match the SDSS pixel
scale (0.396 arcsec, 0.38 kpc at z = 0.05). The stellar populations
are modelled with the Bruzual & Charlot (2003) stellar population
models for stars older than 10 Myr. Younger stars are considered
starbursting regions and are modelled with the MAPPINGS-III

2http://www.skirt.ugent.be/root/index.html

photoionization code (Groves et al. 2008). All details of how
parameters are set can be found in Rodriguez-Gomez et al. (2019).
For computational reasons, dust is taken into account only if the
fraction of star forming gas is above 1 per cent of the total baryonic
mass. It is assumed for these objects that the dust content is traced
by the star-forming gas. A constant dust-to-metal ratio of 0.3 is also
assumed. The final output is a 3D data cube for each galaxy, con-
sisting of a full rest-frame SED for each pixel. We then assume that
the source is located at z = 0.0485 and generate the data cube that
would be measured by a local observer, taking cosmological effects
such as surface brightness dimming into account. Each SED is then
multiplied by each of the SDSS filter curves (g, r, i, z) and integrated
over the full wavelength range. We use only the r band in this work.

To include instrumental and observational effects, we insert
the SKIRT synthetic images into real SDSS fields following the
statistical observational realism approach of Bottrell et al. (2017a,b).
In this approach, the insertion statistics are guided by a basis
catalogue of real galaxies (with similar properties than the M15
dataset) such that the distributions of sky brightness, PSF resolution,
and crowding by nearby sources for real galaxies are statistically
reproduced in the synthetic images. Consequently, any biases that
these or any other field-related properties may have on predicting
morphology are equally likely to affect the synthetic data (TNG) and
the real data (M15). The adapted Bottrell et al. (2017a) procedure
is as follows for every synthetic image:

(i) A galaxy is randomly selected from the Simard et al. (2011)
bulge + disc decomposition catalog of 1.12 million SDSS galaxies.
The r-band field in which that galaxy resides is extracted and con-
verted to electrons. A source mask is generated using SEXTRACTOR.
An injection site is then selected randomly with the restriction that
the centre of the injected image does not land on another object in
the source mask.

(ii) An SDSS PSF corresponding to the injection site is recon-
structed using the SDSS psField files and the dedicated read PSF
code. The SKIRT synthetic image (electrons s−1) is converted to
electron counts using the SDSS exposure time of 53.9 s, the image
is convolved with the SDSS PSF, and source Poisson noise is added.

(iii) The PSF-convolved and Poisson noise-added synthetic im-
age is inserted into the SDSS Field at the selected location. A cut-out
which now includes a real sky, real PSF, and real additional sources
is then extracted corresponding to the desired FOV – which in our
case is the size of each synthetic image (∼50 arcsec).

A detailed investigation showing the importance of observational
realism for neural network analyses using synthetic images (specif-
ically, with respect to galaxy merger-stage predictions) is carried
out in Bottrell et al. (in preparation). The realism suite is also being
made publicly available in tandem with their investigation.

4 D E E P L E A R N I N G R BA N D VISUAL
M O R P H O L O G I E S

4.1 Training set: N10

The training of the neural networks is performed using the visual
morphologically classified sample of Nair & Abraham (2010) (here-
after N10 sample). The catalogue contains detailed morphologies
of ∼ 14 000 galaxies performed by two professional astronomers.
The authors associate to every galaxy in the sample a numeric
value (T-Type) indicating the morphological type spanning from
−5 (Elliptical) to 10 (Irr) – see table 3 in Nair & Abraham (2010).
We used this dataset instead of the Galaxy Zoo catalogue even
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if it is smaller in size because the classification reflects well the
standard Hubble Sequence which is not the case in the Galaxy
Zoo classification tree. We notice that although the N10 dataset has
been only classified by two astronomers, the classification is shown
to be in very good agreement with other known classifications on
common objects. It is therefore considered as a reference for detailed
optical morphologies in the local Universe. The catalogue contains
galaxies with 0.01 < z < 0.1 which is compatible with the M15
and TNG datasets. However, the classification is only done for
bright galaxies (g < 16) so the S/N is on average higher than for
the M15 and TNG samples. Domı́nguez Sánchez et al. (2018) has
shown that this S/N difference between training and test does not
introduce significant biases in the final classification. Moreover and
most importantly, any eventual bias will be present in both the TNG
and M15 samples since they both have similar properties.

4.2 Network architecture and training

We use the same vanilla architecture as in Domı́nguez Sánchez
et al. (2018) which has been shown to perform well on galaxy
morphology. The network architecture is a standard CNN with four
convolutional layers, each of them followed by a pooling layer
of size (2 × 2). The number of filters in each layer is 32, 64,
128, and 128, respectively, and the kernel sizes are 6, 5, 2, and
3. The convolutional part is then followed by a fully connected
network with two layers of sizes 64 and 1 (output layer). In this
work, we performed a new training instead of directly using the
published catalog because Domı́nguez Sánchez et al. (2018) used
JPEG images from the SDSS to train the networks. Since we want
to make sure in this work that the neural networks see exactly the
same data in the observations and in the simulations, we use fits r-
band images as input for the training. The input stamps are of fixed
size 128 × 128 (∼50 kpc × 50 kpc at z = 0.05) which is larger
than two effective radii of ∼ 90 per cent of galaxies in the sample.
Before being fed into the CNN, images are background subtracted
by removing the median of the pixels in an empty region and
normalized to the maximum value so that all images span a similar
range between 0 and 1. We also tried other non-linear normalizations
such as hyperbolic sine to boost the signal in the outskirts of the
galaxies. However this had no significant impact in the performance
so we decided to keep a simpler linear normalization.

The training strategy is also a bit different than in Domı́nguez
Sánchez et al. (2018). In that work, they performed a regression
on the T-type of the galaxy. We simplified the problem here into
a hierarchical binary classification problem as done in Huertas-
Company et al. (2011) which is easier to evaluate and train
(see Silla, Carlos & Alex 2011 for a review of hierarchical
classifications). This is enough for our purposes since we will
use only four main classes. We thus train three different binary
classifiers with the same architecture. The first model (Model-1) is
trained to separate early-type (Ttype ≤ 0) from late-type galaxies
(Ttype ≥ 1). Model-1 delivers therefore a probability for a galaxy
to be late-type: P(Late) = 1 − P(Early). A second model (Model-2)
distinguishes Ellipticals (Ttype ≤ −3) from S0/a’s (−3 < Ttype
< 1). Model-2 measures then the probability of being S0 with the
prior that the galaxy is early-type: P(S0/Early) = 1 − P(E/Early).
Finally a third model (Model-3) splits objects between Sab, Sb
galaxies (1 ≤ Ttype < 4) and late-type spirals and irregulars (Ttype
≥ 4) with a training set made only of late-type galaxies. Model-3
estimates the probability for a galaxy to be a late-type spiral given
that it is a late-type galaxy: P(Scd/Late) = 1 − P(Sab/Late). The

Figure 1. Performance of the three morphological classifiers used in this
work (see text for details). The top panel shows the ROC curve and the
bottom panel the precision–recall curve (purity–completeness). The circle,
square, and triangle symbols indicate respectively the early/late, Sab/Scd,
and E/S0 classifiers. The colour bar indicates the corresponding probability
threshold. See text for details.

sizes of the training set decreases as one goes deeper into the tree,
but it is enough to avoid overfitting.

Fig. 1 shows the ROC (receiver operating characteristic) and
precision–recall (or purity–completeness) curves for the three
classifications computed on a test set never used for training. In
a binary classification, the ROC curve shows the fraction of false
positives (i.e. in our case the fraction of galaxies classified as late-
type among all galaxies with an early-type label) versus the fraction
of true positives (i.e. in our case, the fraction of galaxies classified
as late-type among all galaxies with a late-type label). The true
positive rate is typically called in astronomy completeness. Since
the network outputs a probability and not a binary number, one
can change the threshold to define positives (i.e. late-type galaxies).
The smaller the threshold the larger the fraction of true positives
but also the larger the fraction of false positives. This is shown in
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the ROC curve in which every point shows the fractions of false
positives and true positives for different thresholds. The closer the
curve gets to the top left corner, the more accurate the classifier
is. For comparison, a random classifier will always have an equal
fraction of false and true positives. The precision–recall curve is
another indicator in which, instead of plotting the fraction of false
positives, plots the fraction of true positives among all positive
examples classified by the network (i.e. fraction with a true late-
type label among all objects classified as late-type). The latter is a
proxy for purity. For the P-R curve, both quantities need therefore
to be as close as possible to one.

As expected the best accuracy is achieved for the first classifier
(early versus late) with a ∼ 90 per cent purity and completeness
consistent with previous works. The accuracy slightly decreases
when more detailed morphologies are considered but still remains
above 80 per cent in both purity and completeness. This is achieved
for a typical probability threshold around 0.5 as expected for a well
calibrated classifier. It is worth noticing that in building these ROC
curves for E/S0s and Sab/Scds, we assume that the samples are free
of contaminations. We also emphasize that the main purpose of this
work is not to obtain the best possible match with a human-based
classification but to apply exactly the same model to observations
and simulations.

We then use the three models to classify both the TNG and M15
samples. Every galaxy in both samples has therefore three different
probabilities. The output of Model-2 has however little meaning for
galaxies classified as late-type by Model-1. The same is true for the
output of Model-3 and galaxies classified as early-type by Model-1.
Therefore we associate four probabilities to every galaxy using the
Bayes theorem:

P (E) = P (Early) × P (E/Early)

P (S0) = P (Early) × P (S0/Early)

P (Sab) = P (Late) × P (Sab/Late)

P (Scd) = P (Late) × P (Scd/Late)

. (1)

We then simply put a galaxy in the class of maximum probability.
In the following, early-type galaxies include ellipticals and S0/a’s
(also called lenticulars) and late-type galaxies include Sabs and
Scds. We will also refer to Sab galaxies as early-type spirals, and
to Scd objects as late-type spirals. Figs 2–5 show some example
stamps of galaxies classified in the four types ordered by increasing
stellar mass both in the TNG and in the M15 datasets. As can be
appreciated, elliptical galaxies are mostly bulge-dominated systems.
S0 or lenticular galaxies have a dominant bulge component but tend
to have a disc with no marked features. Sab galaxies (early-type
spirals) have smaller but still noticeable bulges and large discs with
spiral arms and/or visible structure in the disc. Finally, Scd galaxies
(late-type spirals) have a very small bulge or no bulge at all and a
clumpy disc component or with irregular morphology.

The first thing to notice is that the CNN model trained on SDSS
successfully identifies galaxies in the TNG simulation in the four
morphological types and that simulated and observed galaxies in
a given class share some obvious features. We emphasize that
this does not mean that simulated and observed galaxies are not
distinguishable. The network is forced to put galaxies in any of the
four classes by construction. The fact that there are objects in the
four classes, means only that some of the features learned by the
networks to identify the different morphologies in the images are
present both in the simulations and in the observations. As a matter
of fact, Fig. 5 clearly reveals some discrepancies between simulated
and observed Scd galaxies. Simulated objects appear systematically

more extended and also generally more clumpy than observed Scds.
The two edge-on systems also appear to be thicker than observed
edge-on systems. However, the CNN still finds that the closest
morphological type is a late-type spiral.

5 H OW REALI STI C ARE THE TNG
M O R P H O L O G I E S F RO M T H E MAC H I N E
LEARNI NG PERSPECTI VE?

The previous section has shown that the CNNs trained on the visual
morphologies from the N10 samples find objects in all four classes
also in the TNG simulation. One first interesting question is how
confident the networks are about the classification in the simulation.
Machine learning algorithms will always try to associate objects
with the classes they were trained with because there is an implicit
assumption that there is a perfect match between the training and
test datasets. This is not necessarily the case in this work since
we are training in the observational domain and inferring in the
simulated one.

In the following we try to quantify the similarity between the
simulated and observed morphologies from the neural network
perspective. We adopt two different approaches. First we measure
the network confidence by inferring the uncertainties through a
bayesian approach. Secondly, we compare the features learned by
the CNN in the simulated and observed samples. We stress that this
exercise is not probing whether simulated and observed galaxies
can be distinguished.

5.1 Bayesian neural networks

Dropout was first introduced as a method to reduce the risk of
overfitting when training deep neural networks (Hinton et al. 2012).
By randomly removing some neurons during the training phase, we
do not allow neurons to become too specific and ease generalization.
Gal & Ghahramani (2015) have shown that Monte Carlo dropout
in the inference phase can be formally used to approximate the
model uncertainty. We adopt this approach in this work to associate
an uncertainty measurement to all classified galaxies. Every galaxy
is classified 500 times dropping out a variable fraction of neurons
ranging from 30 per cent to 50 per cent at each layer, including the
convolutional layers. That way, instead of having a single soft-
max probability value, every galaxy has an associated probability
distribution, arising from the 500 classifications. We repeat the
dropout sampling for the three trained models and then compute the
uncertainty for every galaxy by quadratic addition of the standard
deviations of the different distributions:

σtot =
√

σ 2
Model1 + σ 2

Model2 if Morphology = E, S0

σtot =
√

σ 2
Model1 + σ 2

Model3 if Morphology = Sab, Scd.

The above equations assume that the probability distributions
estimated through dropout are well approximated by Gaussian
distributions. We inspected several of them and verified that they
do not present complex shapes with double peaks. The Gaussian
approximation is thus justified. We then compute the uncertainties
for the M15 and TNG samples (see Section 2). The cumulative
distributions of uncertainties for both datasets are shown in Fig. 6.
We find that the distributions are very similar for both datasets
indicating that the degree of uncertainty is comparable in the
simulations and in the observations. This confirms the realism of
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1864 M. Huertas-Company et al.

Figure 2. Example stamps of galaxies classified as Es (ellipticals) by the CNN sorted by increasing stellar mass. The left-hand panel shows simulated galaxies
and the right-hand panel observed ones. The stamps are all 128 × 128 pixels (50 arcsec FoV). For visualization purposes, images have been normalized
and converted to jpg with a non-linear hyperbolic sine normalization to better appreciate the outskirts. The grey scale is arbitrary. The bottom panels show
the attribution maps of the same images computed through integrated gradients. Blue and red colours indicate negative and positive values, respectively. No
response (0 values) are represented in white. The maps are normalized between the maximum and minimum values so the units are arbitrary and they only
reflect variations from a blank image.

galaxy morphologies in the TNG run or at least that the features
learned by the CNNs to identify the different morphologies are
found in both the simulations and the observations. One interesting
question that arises is what are these features. We try to address this
in the following section by exploring the attribution maps.

The fraction of outliers can also be used to quantify differences
between real and synthetic data. We use the observational dataset
as a reference to define objects with large uncertainties in the TNG
dataset. To that purpose we compute the median error value and the

standard deviation of the distribution of uncertainties in the M15
dataset and define as outliers objects with a measured uncertainty
larger than three times the standard deviation (dashed vertical line in
Fig. 6). The number of outliers defined that way is only ∼ 1 per cent
in TNG. From this we confirm that simulated galaxies do not
show more uncertain classifications than observations. In Fig. 7,
we investigate the nature of outliers in both datasets. The top row
of the figure shows images of the 16 galaxies in TNG and M15
with the largest uncertainties. In the majority of the cases, the large
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TNG morphologies 1865

Figure 3. Example stamps of galaxies classified as S0s (lenticulars) sorted by increasing stellar mass. The left-hand panel shows simulated galaxies and the
right-hand panel observed ones. The stamps are all 128 × 128 pixels (50 arcsec FoV). Images have been converted to jpg with a non-linear hyperbolic sine
normalization to better appreciate the outskirts. The grey scale is arbitrary. The bottom panels show the attribution maps of the same images computed through
integrated gradients. Blue and red colours indicate negative and positive values, respectively. No response (0 values) are represented in white. The maps are
normalized between the maximum and minimum values so the units are arbitrary and they only reflect variations from a blank image.

uncertainties are due to the presence of very bright companions
(stars or galaxies) or too large galaxies that do not fit in the stamps.
This confirms that our error measurement is sensitive to outliers and
also that the observational realism included in the TNG dataset is
satisfactory given that the fractions of such cases are comparable
(except for the centring problems which are not included in TNG).

Finally, the measurement of uncertainties also allows us to
quantify how stable are the morphological classes in the simulated
sample as compared to the observed one. To that purpose, we
perform 500 different classifications for all galaxies by randomly

changing probabilities with a Gaussian random number with a stan-
dard deviation equal to the dropout uncertainty. We then compute
the typical scatter in the final morphological type. A value lower
than 1 means that the galaxy does not change morphological class.
Results are shown in the right-hand panel of Fig. 6. The fraction
of objects with a morphological standard deviation larger than 1 is
very small indicating that for most of the galaxies the morphological
type is well constrained. Also the distributions are almost identical
for the TNG and M15 datasets, which is an indication that the
probability distributions are very similar for both populations. This
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1866 M. Huertas-Company et al.

Figure 4. Example stamps of galaxies classified as Sabs (early-type spirals) sorted by increasing stellar mass. The left-hand panel shows simulated galaxies
and the right-hand panel observed ones. The stamps are all 128 × 128 pixels (50 arcsec FoV). Images have been converted to jpg with a non-linear hyperbolic
sine normalization to better appreciate the outskirts. The grey scale is arbitrary. The bottom panels show the attribution maps of the same images computed
through integrated gradients. Blue and red colours indicate negative and positive values, respectively. No response (0 values) is represented in white. The maps
are normalized between the maximum and minimum values so the units are arbitrary and they only reflect variations from a blank image.

is somehow in contrast with the main findings of Dickinson et al.
(2018). It points to an improvement of TNG with respect to the first
Illustris (Rodriguez-Gomez et al. 2019) but also might indicate that
the CNNs are sensitive to different features than human classifiers.
In the bottom row of Fig. 7 we show some random examples
of galaxies with large morphological uncertainty [σ (Ttype) > 1].
Those are typically small objects sometimes in crowded regions.
This is expected since the N10 sample does contain few examples

of small galaxies and also because the resolution prevents a proper
morphological classification of these objects. Also the fraction of
crowded fields in the N10 sample is limited which explains the
large uncertainty. Additionally and more interestingly, there are
several cases in TNG of bulge-dominated galaxies presenting a ring
of clumpy star formation around which do not seem to exist in the
observations. A deeper exploration of the formation history of these
systems might be interesting.

MNRAS 489, 1859–1879 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/2/1859/5556956 by guest on 28 M
ay 2023



TNG morphologies 1867

Figure 5. Example stamps of galaxies classified as Scds (late-type spirals) sorted by increasing stellar mass. The left-hand panel shows simulated galaxies
and the right-hand panel observed ones. The stamps are all 128 × 128 pixels (50 arcsec FoV). Images have been converted to jpg with a non-linear hyperbolic
sine normalization to better appreciate the outskirts. The grey scale is arbitrary. The bottom panels show the attribution maps of the same images computed
through integrated gradients. Blue and red colours indicate negative and positive values, respectively. No response (0 values) is represented in white. The maps
are normalized between the maximum and minimum values so the units are arbitrary and they only reflect variations from a blank image.

5.2 Comparison of attribution maps and features learned

Deep neural networks have been proved to produce very high
classification accuracies. The price to pay is less control on the
features used by the networks to perform the classification. In
this section we try to explore the similarity between the features
extracted by the network in the simulations and in the observations
as a way to quantify how close are the morphologies between TNG
and SDSS. Figs 2–5 show the attribution maps for the same galaxies
represented in the top panels. The maps indicate the pixels that
contributed most to the network decision for a given image. They

are computed here using Integrated Gradients (Sundararajan, Taly &
Yan 2017), but other attribution techniques we tested gave similar
results. The maps are directly not translatable into a physical set
of features but can help localizing where in the galaxies is the
information used for classification. We do see that the attribution
maps generally trace the pixels belonging to the galaxy, confirming
that the network is ignoring the noise when classifying galaxies.
This might appear like a trivial statement, but it is not given that
there might be some S/N trends in the training set. For example, Scd
galaxies tend to be fainter than Ellipticals so the networks might
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1868 M. Huertas-Company et al.

Figure 6. Left-hand panel: Cumulative distribution of the logarithm of uncertainties of the morphological classification estimated through Monte Carlo
dropout. The blue histogram corresponds to the TNG sample and the red one is for the M15 dataset. The fraction of outliers defined as the fraction of objects
with uncertainties larger than three times the standard deviation of the M15 distribution is also indicated. The red solid line shows the median value and the
dashed line is the 3σ limit used to define outliers. Right-hand panel: Standard deviation distribution of the morphological type for the M15 (green) and TNG
(blue) datasets.

have learned that a lower S/N is correlated with the morphological
type. The attribution maps show it is not the case. We do also
observe that for elliptical galaxies the important pixels seem to be
more concentrated towards the central regions than for later types
which indicates that the network is focusing on the bulge component
for these systems as one would expect. The attribution maps also
reveal that in cases where there are several galaxies of comparable
brightness in the stamps, they both contribute to the morphological
classification. As discussed in the previous section, this might be
a consequence of the lack of such objects in the training set. It
also explains the larger uncertainty measured in these systems (see
Section 5.1). We emphasize that this bias is the same for synthetic
and real data.

The comparison between the maps in TNG and SDSS qualita-
tively reveals that similar features are found in both datasets at fixed
morphology. For Sab galaxies for example (Fig. 4) we appreciate
how the activation pixels similarly trace the disc region and even
a kind of spiral structure when it is visible. In summary the maps
provide limited information (or at least not easily interpretable in
terms of physical quantities measured in images) but allow one to
confirm that no major differences are found between the simulated
and observed samples.

In order to better understand if the CNN appreciates noticeable
differences between the TNG and SDSS datasets we perform an
exploration of the features learned by the network of Model1. We
extract the features after the last convolutional layer before the dense
part of the network and compare them. To that purpose we create a
feature vector for a subsample of 500 galaxies from the N10 sample
used for training, 500 additional galaxies from the M15 dataset,
and 500 galaxies from TNG. Since the feature space is highly
dimensional (∼ 100 000) we project it into a two-dimensional
space for visualization purposes using the dimensionality reduction
algorithm tSNE (t-distributed stochastic neighbour embedding, van
der Maaten & Hinton 2008). We use a learning rate of 900 and a

perplexity value of 30. However changes in these parameters do
not change the main trends. The result of this exercise is shown
in Fig. 8. Recall that the axes have arbitrary units and do not
encapsulate any physical meaning. The TNG (blue squares) and
the TNG (green circles) samples form a unique cluster in the space
defined by the two features extracted with tSNE. It confirms that
similar features are found by the CNN in both datasets, which
trigger comparable responses of the neurons. We also observe that
data points from the M15 and TNG samples are slightly off centred
with respect to the N10 sample (red crosses). The reason seems to
be that the M15 and TNG samples contain fainter galaxies. This
is in some sort a limitation of the approach followed in this work
since we are using a sample of bright galaxies to train while we are
inferring on significantly fainter objects. As explained in previous
sections, this is not critical in this work since the same biases are
propagated to both TNG and M15 samples. It confirms however that
the visualization of the feature space is sensitive to differences in the
galaxy properties. The main conclusion from this plot is therefore
that simulated galaxies do not show significant differences in the
feature space.

From these different tests, we can conclude that, at least from the
neural network perspective, comparable features are found in the
simulations and in the observations. Training on N10 and inferring
in TNG seems justified. We can be confident that the morphologies
estimated in the TNG sample are reliable. In the next sections, we
analyse their physical properties and abundances as compared to
observations.

6 STRUCTURAL PRO PERTI ES

We now explore the similarity between simulated and observed
galaxies from a more physical perspective, i.e. by looking at the
structural properties and scaling relations.
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TNG morphologies 1869

Figure 7. Top row: Objects with the largest uncertainties as inferred from the Monte Carlo dropout technique used in this work. Bottom row: Galaxies for
which the morphological uncertainty [σ (Ttype)] is larger than one type. See text for details. The left-hand (right-hand) panels show the TNG sample and the
right-hand panels the M15 one.

6.1 Sersic index distributions and kinematic morphology

The Sersic index (n) is commonly used as a proxy for morphology.
It is therefore interesting to see how well the relation between n
and morphological type is reproduced in the simulations. For the
simulations, Rodriguez-Gomez et al. (2019) performed also Sersic
fits on the projected 2D light maps that we use here. Although both
studies did not use strictly speaking the same method we assume
that the one-component Sersic fits are stable enough so that no
major systematics are introduced. Fig. 9 shows the distribution
of Sersic indices for the four morphological types considered
in this work. The different morphological types show clearly
different distributions in the M15 dataset which confirms that the

CNN classification is identifying galaxies with different structural
properties. Galaxies of type Scd have a Sersic index distribution
clearly peaking at 1 which is indicative of a pure exponential profile
with no bulge. For elliptical galaxies the distribution is skewed
towards values larger than three typical of pure bulge-dominated
systems. In between the Sab galaxies have low Sersic index values
but larger than Scds which is indicative of the presence of a
bulge. Finally, S0s present the broadest distribution which is also
something expected. We notice that this also shows that S0s and
Elliptical galaxies have different structural properties. Simulated
galaxies qualitatively follow similar trends but the differences in the
distributions are less clear. In particular, we notice the distribution
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1870 M. Huertas-Company et al.

Figure 8. Visualization of the features learned by the CNN in a two-
dimensional space obtained with tSNE (see text for details). The red points
show the N10 sample, the green points are galaxies in the M15 dataset, and
the blue points are simulated galaxies from TNG.

for elliptical peaks at n ∼ 2 instead of n ∼ 4 in SDSS. The
difference between S0 and Sab galaxies is also less apparent
in the simulations. A word of caution should be raised when
interpreting these differences since the methods used to compute
the Sersic index in simulations and observations are different.
However, if these differences are confirmed, it would indicate that
the surface brightness profile of these simulated galaxies (especially
ellipticals) differs from observations. This does not necessarily
prevent the CNN to establish a morphological class for TNG
galaxies with high confidence as detailed in the previous section.
It suggests that other global morphological features are used to
classify galaxies.

For simulated galaxies, we have also access to kinematic mor-
phology measurements which is an independent indicator. We plot,
in Fig. 10, the distribution of the κ rot parameter for the four
morphological types. κ rot measures the fraction of the kinetic energy
that is invested in ordered rotational motion (e.g. Sales et al. 2012;
Rodriguez-Gomez et al. 2017). It is defined as the fraction of the
total kinetic energy contributed by the azimuthal component of the
stellar velocities, where the z-axis coincides with the total angular
momentum of the galactic stellar component (see Sales et al. 2012;
Rodriguez-Gomez et al. 2017 for details):

κrot = 1

K

∑
i

1

2
mi

(
jz,i

Ri

)2

,

where K is the total kinetic energy of the stellar component, mi

represents the mass of the particle, jz,i is the z-component of the
specific angular momentum, and Ri is the projected radius. The
figure shows that, as expected, ellipticals are the ones with the lower
average value of rotational support (κ rot ∼ 0.4) and Scd galaxies
present the larger value on average (∼0.55). S0s and Sabs are in
between. Globally, ∼ 60 per cent of galaxies with κ rot < 0.5 are
early-type and ∼ 75 per cent of objects with κ rot > 0.5 are late-type.
This confirms that the CNN-based optical morphologies do correlate
with stellar kinematics as one would expect. However, the distribu-
tions are quite broad showing that a selection based on kinematics
does not perfectly match an optical-based selection (e.g. Emsellem
et al. 2007; Bernardi et al. 2019). We emphasize however that the
purpose of this work is to compare the morphological properties
of simulations and observations in comparable conditions, not to
find the optimal definition of morphology. This said, comparing
the relation between optical and kinematic morphology in ob-
servations and simulations might provide additional constraints.
It could be done by simulating for example Manga (Bundy
et al. 2015) cubes of TNG galaxies (Pérez-Montaño et al., in
preparation).

Figure 9. Sersic index distributions for simulated galaxies (left-hand panel) and observed (right-hand panel) for the four morphological types considered in
this work.
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TNG morphologies 1871

Figure 10. Distribution of κ rot for the four different morphological types
in TNG. κ rot measures the fraction of the kinetic energy that is invested in
ordered rotational motion (see text for details). The vertical dashed lines
show the median values.

6.2 Stellar mass–size relation

We now focus on the stellar mass–size relation. We use the
semimajor axis of the best Sersic model as a size estimator for
galaxies both in the simulations and in the observations. As detailed
in Section 2, the fitting approach in the M15 sample is fully
described in Meert et al. (2015). For the stellar mass in the SDSS, we
use, for consistency, the stellar mass estimated using the luminosity
from the best single Sersic model. In the simulations we use an
aperture of 30 kpc. This aperture has been shown to provide stellar
mass estimates in good agreement to those within Petrosian radii in
observations (Schaye et al. 2015) and a reasonable compromise for
comparison with observations also towards the highest-mass end
(Pillepich et al. 2018a). As will be shown in Section 7, the 30 kpc
aperture provides an excellent match to the observed SMF.

Fig. 11 shows the mass–size relations for early- and late-type
galaxies. We observe a reasonably good match between observed
and simulated galaxies. Namely the simulations reproduce well the
largely reported trend in the observations that late-type galaxies are
larger than early-type galaxies at fixed stellar mass (e.g. Bernardi
et al. 2014). The slopes of both relations are also well captured
in the simulations. Notice that using the same synthetic images,
Rodriguez-Gomez et al. (2019) found no significant differences in
the sizes of early- and late-type galaxies in TNG. This might be
due to the fact that they used only the Sersic index to define the
two morphological classes while here we are using a definition
based on the global appearance of the galaxies. It emphasizes the
importance of using accurate global descriptors of morphology.
This is a remarkable improvement as compared to the first Illustris
run which showed significant discrepancies in the scaling relations
(i.e. Bottrell et al. 2017a), namely shallower slopes and higher
normalizations than in the observations. Fig. 11 shows instead that
both the slope and the normalization match reasonably well the
observations. The simulations present still a slightly larger scatter in
size at fixed stellar mass. Note that Genel et al. (2018) also measured
a size difference between quenched and star-forming galaxies in

Figure 11. Stellar mass–size relation of early- and late-type galaxies in
IllustrisTNG and in SDSS. The shaded red (blue) regions show the observed
median mass–size relations along with the 1 − σ scatter for early- (late-
) type galaxies. The red (blue) points show the distribution of individual
simulated early- (late-) type galaxies. The large dots with error bars indicate
the medians and scatters in bins of stellar mass, respectively.

the TNG simulation (with no morphological selection), also in
reasonable agreement with observations not only at z = 0 but also
to higher redshifts. One possible explanation of this improvement
could also be that the mass–size relations match by construction.
The neural networks could indeed use the size as a parameter to
estimate the morphology. There are several reasons why this is
unlikely. First of all not all galaxies of a given morphology have the
same size. The effective radius depends both on redshift and mass
as shown in Fig. 11. The effective radii of elliptical galaxies for
example changes by a factor of ∼10 from low to high mass. This
would imply that the CNN has learned both the redshift and mass
dependence which is even more unlikely given that the training set
(N10) is not complete (it contains brighter galaxies). Finally, the
fact that the scatter in size at fixed mass is significantly larger in the
simulations suggests that size is not a primary estimator used by the
network.

In Fig. 12 we now explore the mass–size relations divided in finer
morphological classes. We also do find a remarkable agreement
between observed and simulated galaxies for all the morphological
types. The median sizes in TNG generally within the 1σ confidence
interval of the observations.

7 ST E L L A R MA S S FU N C T I O N S O F
DI FFERENT HUBBLE TYPES

We explore in this section the SMFs of the different morphologies
in the observations and in the simulations. Fig. 13 shows first the
total SMF as well as the SMF of early- and late-type galaxies. The
bottom panels of Fig. 13 indicate the fraction of early- and late-type
galaxies as a function of stellar mass as well as the ratio between
simulated and observed galaxies in bins of stellar mass. The total
SMF is in excellent agreement with the results of Bernardi et al. (),
i.e. to the 20–40 per cent level. This is not too surprising given that
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1872 M. Huertas-Company et al.

Figure 12. Stellar mass–size relation of observed and simulated galaxies divided in four morphological types as labelled. The shaded regions indicate the
observed relations. Small dots indicate individual TNG galaxies and the large dots with error bars are median values and scatter.

the TNG model was designed to improve upon the original Illustris
in matching the SMF at z = 0 (Pillepich et al. 2018a).

Surprisingly, when considering the SMF divided by two broad
morphological types, we observe that relative fractions are well
reproduced until a stellar mass of ∼1011 solar masses where TNG
presents an excess of late-type galaxies as compared to SDSS. In
the SDSS, the high-mass end is clearly dominated by early-type
galaxies (∼ 80 per cent) as reported by many previous works (e.g.
Bernardi et al. 2013). However, in TNG the high-mass end of the
SMF appears to have around 50 per cent of late-type galaxies. As
described in Section 2, the volume probed by the simulations is
∼40 times smaller than in the observations. The morphological mix
at the high-mass end could be affected by small statistics. In order to
evaluate the impact of this, we recompute the SMF in the SDSS in
40 smaller volumes. The result is shown with dashed lines in Fig. 13.
The difference measured between observations and simulations

is larger than the variations caused by measuring abundances in
smaller volumes. Therefore, even if TNG is able to produce realistic
morphologies, this result suggests that the abundances might require
some additional tuning.

We explore further the origins of this discrepancy by dividing the
sample in finer morphological classes as described in Section 4.
The results are shown in Fig. 14. It confirms that most of the
discrepancies come from the early-type population.

At intermediate masses, the number densities are a factor of ∼8
smaller in TNG for S0/a galaxies. This effect is the opposite in the
elliptical population of similar mass. The S0 class is traditionally
the more challenging one since it is the most difficult to define.
S0 and elliptical galaxies differ on the disc component. However,
the disc is not always obvious, especially when it is seen face-
on. As detailed in the previous sections, the difference between
S0s and Sabs classes resides essentially in the size and structure
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Figure 13. SMFs of all (top left panel), early- (top right panel) and late-type (top middle panel) galaxies. The solid lines show the IllustrisTNG measurements
and the dashed lines are in SDSS. The dotted lines show the variations due to volume and the shaded regions are Poisson errors. The bottom panels show the
fraction of early- and late-type galaxies as a function of stellar mass in the observations (dashed lines) and in the simulations (solid lines). The dotted lines
show the maximum fluctuation in the relative abundances due to volume.

of the disc component. Sa galaxies are expected to have more
features in the disc such as spiral arms. This is not always easy
to appreciate with limited spatial resolution. For example, using
a different classification method based on support vector machines
and colour information, Bernardi et al. (2013) finds more Sa galaxies
at the low-mass end (in detriment of S0s) than our measurements
here. However since the same CNN model was used to classify both
the simulations and the observations, there is an internal consistency
which allows us to safely argue that the discrepancy is real. The
TNG simulations presents a lack of S0 galaxies at intermediate
masses. Also notice that, as shown in the previous section, the
scaling relations of S0, Sab, and elliptical galaxies are different
and well reproduced by the simulations. If this was a problem of
classification errors in the simulations we would have measured
some deviations in the mass–size relations in Fig. 12.

At the very high-mass end, in which observations are completely
dominated by elliptical galaxies, the simulations present an over-
abundance of late-type systems (Sabs). Although, TNG presents
limited statistics at these stellar masses, the difference seems a bit
too large in order to be fully explained by volume issues. In Fig. 15,
we show some examples of massive late-type galaxies [log(M∗/M�)
> 11] in IllustrisTNG. Although the galaxies have a prominent
bulge component, and are on average rounder than typical discs,
they also present a clear extended featured structure which is most
probably the feature used by the network to classify the galaxy as a
late-type system. These galaxies are in particular different from the
typical elliptical galaxies of similar mass shown in the right-hand
panel of Fig. 15 and closer to Sab galaxies (Fig. 4) in the sense
that the extended low surface brightness component presents more
structure, probably due to on-going star formation. This probably
causes the network to interpret the structure as a disc. We notice that
the difference between these two populations of massive galaxies is
not measurable using the Sersic index as a proxy. Fig. 16 shows the
Sersic index distribution of massive galaxies [log(M∗/M�) > 11]

classified as late and early type. Both distributions look very similar
indicating that the central bulge dominates the surface brightness
distribution and is also very similar in both populations as can also
be appreciated in Fig. 15. The difference in classification is certainly
driven by the diffuse disc component. As a matter of fact, the right-
hand panel of Fig. 15 shows that the distribution of κ for the disky
population is more skewed towards larger values, suggesting that
the different CNN classifications are justified.

At the low mass end, the simulated and observed SMFs match
reasonably well. The galaxy population below 1010 solar masses is
essentially dominated by Scd galaxies in both datasets.

As a final note, one could argue that these discrepancies might
be partially caused classification errors in the observations since
the training set used lacks faint galaxies (see Section 5). We have
checked that this is not the case by computing the abundances of the
different morphological types only in the N10 sample. We measure
very similar trends as in the whole M15 sample although with
more noise given the incompleteness and low statistics. Another
potential source of discrepancy could arise from the way images
of simulated TNG galaxies are generated. Discreteness effects from
the finite particle resolution and smoothing procedure applied to the
stars (e.g. as discussed/explored in Torrey et al. 2015) influence the
presence of feature/structure that can be interpreted by the CNNs as
discs (Bottrell et al. 2017a). In future work, we plan to quantify the
impact of this by experimenting with the smoothing prescription in
low stellar density regimes.

8 D ISCUSSION: THE ASSEMBLY HISTORIES
O F D I F F E R E N T M O R P H O L O G I E S

The previous sections have shown that the visual morphologies of
galaxies in the TNG simulation reproduce fairly well the observed
morphologies both in terms of global, visual morphology and
scaling relations. However, there are still some discrepancies in the
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Figure 14. SMFs of different morphological types as labelled. The solid lines indicate the TNG simulations and the dashed lines show the measurements in
the SDSS. The small panels show the fractions with respect to the total as function of stellar mass.
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Figure 15. Example of stamps of massive galaxies (M∗/M� > 1011) classified as late-type galaxies (left) and early-type by the CNN in the IllustrisTNG
simulation.

abundances of early- and late-type galaxies. It suggests that while
the assembly channels of the different morphological types produce
a realistic morphological distribution, the relative importance of
the different mechanisms does not seem to be fully correct so the
number densities are not always well reproduced.

In order to better understand the origin of the morphological
classes, as well as possibly of these discrepancies especially at the
high-mass end, we explore in Fig. 17 some tracers of the assembly
histories. In particular, we first look at the contribution of mergers
in the stellar mass assembly. The left-hand panel of Fig. 17 shows
the fraction of ex situ stellar mass as a function of stellar mass (Ex
situ Stellar Mass). By ex situ we mean stars that have formed not in
situ, i.e. from gas condensing within the innermost regions of the
observed galaxy (or its main progenitors) but in other galaxies that
have been accreted, stripped and that have possibly merged with a
galaxy prior to the time of observation (see Rodriguez-Gomez et al.
2016 and Pillepich et al. 2018b for operational definitions and basic
results from Illustris and the IllustrisTNG simulations). The ex situ

stellar mass fraction should be a proxy of the importance of mergers
in the assembly histories.

First, as previously shown (e.g. Rodriguez-Gomez et al.
2016, Pillepich et al. 2018b and reference therein), the ex situ
fraction is a very strong function of galaxy mass. Below ∼1010.5

solar masses, the amount of accreted stellar mass is negligible (<15–
20 per cent) for all morphologies. Fig. 14 shows that ∼ 40 per cent
low-mass galaxies in TNG have a bulge component (typically S0
or Sab galaxies). Depending on the bulge-to-total mass fraction,
it could be that bulges in these systems might have grown through
(also or exclusively) internal processes. Above ∼1010.5 solar masses,
the amount of accreted stellar mass starts to be significant and
reaches almost 80 per cent at 1011.5 solar masses, with large galaxy-
to-galaxy variations. The scatter in ex situ fraction at fixed galaxy
mass for different morphological types is also large. Yet, we do
observe that massive ellipticals have on average larger ex situ
fractions than later types, at least around the 1011 M� scale:
e.g. 65 per cent versus 45 per cent at 1011.25 M�. This finding
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Figure 16. Left-hand panel: Sersic index distribution of massive galaxies (M∗/M� > 1011) classified as late-type (blue) or early-type (red). Right-hand panel:
κ rot distribution for the same massive galaxies.

Figure 17. Fraction of the stellar mass formed outside the galaxies as a function of stellar mass and morphology. The left-hand panel shows the fraction as
function of stellar mass at fixed morphological type. The right-hand panel shows the relative fraction of ex situ mass for a fixed morphological type as compared
to the mean ex situ mass in a given stellar mass bin. The dotted line indicates a relative fraction of 1 for reference. Error bars are errors on the median values.
Only points with more than five galaxies are plotted.

is consistent with the results of Rodriguez-Gomez et al. (2017).
However, S0 galaxies seem to exhibit lower ex situ fraction than
all other types at all masses. Although this might be a conse-
quence of low statistics, it appears to be a systematic trend at all
masses.

We expand on these trends in the right-hand panel. Ex situ
fractions are plotted at fixed stellar mass for different morphologies,
by focusing on the mass regime where the ex situ contribution is
non-negligible. The panel shows the relative excess of ex situ mass
fraction of a given morphological type as compared to the average ex
situ mass in a given stellar mass bin. The curves show a weak trend of

average ex situ fraction with morphology in bins of stellar mass, with
a strong under abundance of ex situ mass for massive S0 galaxies
(again possibly due to low statistics, as revealed by the SMFs of
Section 7). At the highest mass end (>1011.3), the differences in
ex situ mass fractions across morphological types are very small
(curves are essentially flat). This result does not mean that massive
elliptical galaxies are not formed through mergers. Indeed the high
mass end of the SMF in TNG is populated by a significant fraction of
ellipticals which are likely formed through mergers given the large
fraction of ex situ mass. However, it looks like a significant fraction
of mergers do not produce early-type galaxies. Instead, the final
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Figure 18. Left-hand panel: Fraction of the stellar mass formed through major mergers as a function of stellar mass and morphology. Right-hand panel: Mean
gas fraction integrated over all the merger events as a function of morphology and stellar mass. Error bars are errors on the median values. Only points with
more than five galaxies are plotted.

morphologies are also Sab galaxies which therefore dominate the
high mass end of the SMF. The figures show that there are no strong
differences in the assembly histories of different morphologies,
suggesting that subtle differences in assembly histories may be
responsible for changes in the morphological type. If the merger
history is similar, what determines that a massive galaxy will end
up as Sab or Elliptical? The answer might be in the properties of
the mergers and accretion events.

In Fig. 18 we plot the fraction of mass coming from major mergers
only (left-hand panel) as well as the median gas fraction involved in
the mergers (right-hand panel). Consistently with the ex situ mass
fraction findings, below 1010.5 M� galaxies mostly accrete stars via
minor mergers. The relative contributions of major merges is again
a strong function of galaxy mass above ∼1011 solar masses. At
the high mass end, the figure suggests that the merger mass ratio
might be a relevant factor in determining the final morphology in
the simulation. Elliptical galaxies tend to have a larger fraction
of stellar mass coming from major mergers than early-type spirals
(0.4 versus 0.2). Surprisingly there is little difference in terms of gas
fraction, although elliptical galaxies tend to be formed in slightly
dryer mergers, whereas S0 in more gas-rich events.

The tentative picture that seems to emerge is that at the low-
mass end (< 1010.5 M�) the assembly history has very little to
null impact in setting galaxy morphologies. At the massive end
(> 1010.5 M�), if the accretion and merger histories contribute to
determine galaxy morphologies, their manifestations are subtle. The
amount and types of mergers do manifest differently for different
morphological types, but this is the case only for those galaxy
masses where there is significant ex situ contribution and with
relatively weak trends. Furthermore, in our model, a larger fraction
of major mergers will tend to form an elliptical galaxy. In at least
half the cases however (recall that the massive end of the SMF
is populated by a significant amount of Sab galaxies in TNG) the
galaxies will end up with a disky morphology even if ∼50 per cent
of their stellar mass is accreted. It is unclear if this is because the
mergers are not big enough to destroy the disc or because there

is still a fairly large amount of available gas that is re-accreted.
In fact, it is likely that morphological transformations are also
associated with the nature and strength of the feedback mechanisms
in place, particularly the feedback from the central supermassive
black holes, which may act in conjunction with galaxy mergers to
set galaxy morphologies. We postpone to future work the investi-
gation of the relation between morphological types and feedback
history.

A possible resulting effect of what is seen thus far seems to be
that the TNG simulations lack of an efficient way to form lenticular
galaxies. It seems that either the disc is fully destroyed or it remains
too important and featured to be considered an S0. A possible
explanation could be that S0s are preferentially formed in high-
density environments such as clusters. Some observational works
have shown that there is a larger fraction of S0 galaxies in clusters as
compared to the field (e.g. Mei et al. 2009; Huertas-Company et al.
2013). Since the TNG volume is relatively small (∼ 100 Mpc3),
the number of haloes at the cluster scale is small (about 10 haloes
more massive than 1014 M� in total mass) and so the environmental
effects may not be well represented in comparison to the Universe’s
demographics. This could be investigated with the larger TNG300
volume, however at the expenses of resolution. Here we point out
that a quick inspection of the fraction of different morphological
types as a function of halo mass in the SDSS sample shows that S0
and Sab galaxies live in very similar environments. Elliptical galax-
ies do tend to live in denser environments but their number densities
are better reproduced. It is therefore unlikely that the discrepancy
we measure can be fully explained by environmental considerations.

In order to better understand the origin of these discrepancies
especially at the high mass end we explore in Fig. 17 some tracers
of the assembly histories of the different morphologies in the
simulation. In particular, we first look at the contribution of mergers
in the assembly. The left-hand panel of Fig. 17 shows the fraction
of stellar mass formed outside the galaxies as a function of stellar
mass (ex situ stellar mass). This should be a proxy of the importance
of mergers in the assembly histories. Interestingly we see very mild

MNRAS 489, 1859–1879 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/489/2/1859/5556956 by guest on 28 M
ay 2023



1878 M. Huertas-Company et al.

dependence with the morphological type. The trend seems to be
essentially driven by stellar mass. Below ∼1010.5 solar masses, the
amount of accreted stellar mass is negligible for all morphologies.
Fig. 14 shows that the majority of low mass galaxies in TNG have
a bulge component (S0 and Sab galaxies account for ∼ 80 per cent
of the number densities). The bulges in these systems must have
grown through internal processes. Above ∼1010.5 solar masses, the
amount of accreted stellar mass starts to be significant and reaches
almost 80 per cent at 1011.5 solar masses. However this trend seems
to be still pretty independent of the morphological type. We do
observe a slight tendency for a larger ex situ fraction for elliptical
galaxies as one would expect (60 per cent versus 40 per cent), but
all morphologies remain consistent at the 1σ level. This is roughly
consistent with the results of Rodriguez-Gomez et al. (2017). The
right-hand panel confirms this trend. Ex situ fractions are plotted
at fixed stellar mass for different morphologies. The curves are
mostly flat. There seems to be a decrease for massive S0 galaxies
but this is likely due to low statistics as revealed by the SMFs
of Section 7. Notice that this result does not mean that massive
elliptical galaxies are not formed through mergers. Indeed the high
mass end of the SMF in TNG is populated by a significant fraction
of ellipticals which are likely formed through mergers given the
large fraction of ex situ mass. However, it looks like mergers are
also efficient in producing Sab galaxies. The figures show that
there are no strong obvious differences in the assembly histories
of different morphologies, suggesting that subtle differences only
change the morphological type. If the merger history is similar, what
determines that a massive galaxy will end up as Sab or Elliptical?
The answer might be in the properties of the merger. In Fig. 18 we
plot the fraction of mass coming from major mergers (mass ratio
larger than 0.25) only (left-hand panel) as well as the median gas
fraction involved in the mergers (right-hand panel). Although the
trends are still very mild, the figure suggests that the merger mass
ratio might be a relevant factor in determining the final morphology
in the simulation. Elliptical galaxies tend to have a larger fraction
of stellar mass coming from major mergers than early-type spirals
(0.4 versus 0.2). Surprisingly there is little difference in terms of
gas fraction although elliptical galaxies tend to be formed in slightly
dryer mergers. The tentative picture that seems to emerge is that at
the massive end, all galaxies seem to have a comparable contribution
of merger to their assembly history. However, a larger fraction of
major mergers will tend to form an elliptical galaxy. In the majority
of the cases though (recall that the massive end of the SMF is
dominated by Sab galaxies in TNG) the galaxies will end up with
a disky morphology even if ∼ 50 per cent of their stellar mass is
accreted. It is unclear if this is because the mergers are not big
enough to destroy the disc or because there is still a fairly large
amount of available gas that is re-accreted. The resulting effect
seems to be that the simulations lack of an efficient way to form
lenticular galaxies. It seems that either the disc is fully destroyed
or it remains too important and thin to be considered an S0. A
possible explanation could be that S0s are preferentially formed
in high-density environments such as clusters. Some observational
works have shown that there is a larger fraction of S0 galaxies in
clusters as compared to the field (e.g. Mei et al. 2009; Huertas-
Company et al. 2013). Since the TNG volume is relatively small
(∼ 100 Mpc3), the number of haloes at the cluster scale is small
and so the environmental effects are not well incorporated. A quick
inspection of the fraction of different morphological types as a
function of halo mass in the SDSS shows that S0 and Sab galaxies
live in very similar environments. Elliptical galaxies do tend to

live in denser environments but their number densities are well
reproduced. It is therefore unlikely that the discrepancy we measure
can be fully explained by environmental considerations.

9 SU M M A RY A N D C O N C L U S I O N S

We have analysed the visual morphologies of galaxies at z ∼ 0 in the
IllustrisTNG simulation. We have trained a CNN on detailed visual
morphologies estimated on 14 000 galaxies in the SDSS and applied
the same network to classify a complete sample of 12 000 galaxies
in TNG with stellar mass larger than 109.5 solar masses. In order
to produce images with similar properties than in the observations,
the output of the simulations was post-processed with a radiative
transfer code to create realistic mock observations with realistic
instrumental effects. Our morphological classes include early-type
galaxies, in turn divided in ellipticals E and lenticulars S0/a, and
late-type galaxies, in turn classified as early-type spirals (Sab) and
late-type spirals (Scd), the latter including irregulars.

Our main results are as follows:

(i) The TNG simulation reproduces well the diversity of mor-
phologies in the local universe. A CNN trained on the SDSS is able
to find galaxies in different morphological types in the simulation
with comparable uncertainty. Even if some differences might exist,
it means that the main features learned by the networks at the
SDSS resolution are present both in the simulations and in the
observations. An analysis of these features shows indeed that they
cluster similarly. However, the TNG suite shows a weak correla-
tion between optical morphology and Sersic index as opposed to
observed galaxies. This discrepancy should be further investigated
using exactly the same fitting methods on both datasets.

(ii) The mass–size relations of simulated galaxies reproduce well
the slope and the normalization of the observed relations for all
morphological types. This includes the global trends for the early-
and late-type populations, but also when galaxies are divided in
finer morphological classes. The scatter at fixed stellar mass remains
slightly larger in the simulations. This is a significant improvement
as compared with the original Illustris run.

(iii) We measure some discrepancies in the SMFs divided by
morphological type especially at the high-mass end. The high-mass
end of the SMF in the simulation presents an overabundance of late-
type systems as compared to SDSS (∼ 50 per cent of galaxies more
massive than 1011 solar masses are found to be late-type in TNG
as opposed to ∼ 20 per cent in SDSS). We show that this is due to
a lack of lenticular galaxies in the TNG simulation at intermediate
masses and ellipticals at the high-mass end, probably because there
is still too much available gas to build discs.

(iv) At the low-mass end (< 1010.5 M�) the merger histories of
galaxies have no manifest impact in setting morphologies There
is a small (but statistically significant) difference between the
merger histories of massive galaxies with different morphologies. At
log(M∗/M�) ∼ 11, the fraction of accreted mass through mergers in
elliptical galaxies is ∼ 10 per cent larger than in spiral galaxies. The
nature of the mergers is also different. Elliptical galaxies have on
average ∼ 20 per centBerna more stellar mass coming from major
mergers. However, the influence of assembly history in setting the
other morphological types remains unclear.

This work has shown that there is potentially interesting infor-
mation to be learned by consistently comparing simulations and
observations in the same observational frame. In particular, detailed
morphologies which can be now estimated with high accuracy can
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provide additional constraints on the physical processes driving
galaxy assembly and help improving the next generation of simu-
lations. In future work we will extend this analysis to high redshift
using the high-resolution TNG50 simulations (Nelson et al. 2019;
Pillepich et al. 2019) and Hubble Space Telescope imaging. We also
plan to explore generative models as a more general way to confront
models of galaxy formation and observations.
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