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Abstract 

 

Interactions are key drivers of the functioning and fate of plant communities. A traditional way 

to measure them is to use pairwise experiments, but such experiments do not scale up to species-

rich communities. For those, using association networks based on spatial patterns may provide a 

more realistic approach. While this method has been successful in abiotically-stressed 

environments (alpine and arid ecosystems), it is unclear how well it generalizes to other types of 

environments.  

 

We help fill this knowledge gap by documenting how the structure of plant communities changes 

in a Mediterranean dry grassland grazed by sheep using plant spatial association networks. We 

investigated how the structure of these networks changed with grazing intensity to show the 

effect of biotic disturbance on community structure. 

 

We found that these grazed grassland communities were mostly dominated by negative 

associations, suggesting a dominance of interference over facilitation regardless of the 

disturbance level. The topology of the networks revealed that the number of associations were 

not evenly-distributed across species, but rather that a small subset of species established most 

negative associations under low grazing conditions. All these aspects of spatial organization 

vanished under high level of grazing as association networks became more similar to null 

expectations.  

 

Our study shows that grazed herbaceous plant communities display a highly non-random 

organization that responds strongly to disturbance and can be measured through association 

networks. This approach thus appears insightful to test general hypotheses about plant 

communities, and in particular understand how anthropogenic perturbations affect the 

organization of ecological communities.  
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Abstract 

 

Interactions are key drivers of the functioning and fate of plant communities. A traditional way to 

measure them is to use pairwise experiments, but such experiments do not scale up to species-rich 

communities. For those, using association networks based on spatial patterns may provide a more 

realistic approach. While this method has been successful in abiotically-stressed environments (alpine 

and arid ecosystems), it is unclear how well it generalizes to other types of environments.  

 

We help fill this knowledge gap by documenting how the structure of plant communities changes in a 

Mediterranean dry grassland grazed by sheep using plant spatial association networks. We investigated 

how the structure of these networks changed with grazing intensity to show the effect of biotic 

disturbance on community structure. 

 

We found that these grazed grassland communities were mostly dominated by negative associations, 

suggesting a dominance of interference over facilitation regardless of the disturbance level. The 

topology of the networks revealed that the number of associations were not evenly-distributed across 

species, but rather that a small subset of species established most negative associations under low 

grazing conditions. All these aspects of spatial organization vanished under high level of grazing as 

association networks became more similar to null expectations.  

 

Our study shows that grazed herbaceous plant communities display a highly non-random organization 

that responds strongly to disturbance and can be measured through association networks. This approach 

thus appears insightful to test general hypotheses about plant communities, and in particular understand 

how anthropogenic perturbations affect the organization of ecological communities.  

  



Introduction 1 

 2 

Ecological interactions are fundamental bricks of ecological communities and influence key properties 3 

of ecological systems such as productivity, stability or response to perturbations (Tilman 1982, 4 

Thebault and Fontaine 2010). This is in particular true of plant-plant interactions, which can determine 5 

the fate of a given community following environmental perturbations (Verdú and Valiente-Banuet 6 

2008). In some ecosystems, such as drylands (arid and semi-arid grasslands), certain “nurse” plant 7 

species improve local environmental conditions around them, and thereby increase the recruitment, 8 

growth and survival of other species below or close to their canopy (Callaway 2007). Such facilitative 9 

interactions have been shown to influence how ecosystems respond to changes in temperature or biotic 10 

stress (Kéfi et al. 2007). Understanding the effect of global changes in environmental conditions thus 11 

requires knowledge on how those changes will affect species interactions.  12 

 13 

A traditional approach to measure interactions between plant species is to use pairwise experiments 14 

(Engel and Weltzin 2008). However, this can only work for a small set of species (Graff and Aguiar 15 

2011, Holthuijzen and Veblen 2016), because the number of experiments required to measure 16 

interactions among all the pairs of a diverse set of species is prohibitively high. In addition, pairwise 17 

experiments do not always preserve the environmental setting of plant communities, so interactions 18 

measured through experiments may be different from those that occur in situ (Engel and Weltzin 19 

2008). For instance, this can happen because of indirect interactions (when an interaction between a 20 

pair of species is altered by the presence of another; Wootton 1994, Levine et al. 2017). To overcome 21 

this, recent work has sought to revisit an old approach (Vries 1954) and use the spatial associations of 22 

pairs of species in a given community as proxies for their interactions (Saiz and Alados 2011). Put 23 

intuitively, this approach is based on a principle of co-occurrence: individuals of species that facilitate 24 



each other are expected to be found next to each other more frequently than expected by chance (this is 25 

referred to as a positive association hereafter). Conversely, individuals of species that have a net 26 

negative interaction, i.e. exhibit interference with each other, should also exclude one another spatially 27 

(hereafter, a negative association). Therefore, the way sessile species are spatially organized emerges 28 

at least in part from species interactions. However, approaches attempting at recovering pairwise 29 

species interactions from spatial associations have been shown to often fail (Freilich et al. 2018, Rajala 30 

et al. 2019, Blanchet et al. 2020). This may be because intra-specific variability in interaction strengths 31 

(Guimarães 2020), or confounding factors affect the patterns of spatial associations (e.g. shared habitat 32 

preferences, D'Amen et al. 2018), but also because we often lack the statistical power to estimate with 33 

precision the high number of pairwise associations in diverse communities (Rajala et al. 2019). 34 

Nonetheless, recent research has shown that aggregated community-level properties such as the balance 35 

between negative and positive interactions could be predicted with some accuracy using spatial 36 

association patterns (Barner et al. 2018). The analysis of associations thus could, if not precisely 37 

predict pairwise interactions, be a promising way of coarsely evaluating the general structure of 38 

interaction networks in plant communities.  39 

 40 

Another interesting aspect of the association approach is the use of networks. The structure of a 41 

community as captured by pairwise associations can be represented as a network, where nodes are 42 

species, and links represent the significant spatial associations between pairs of species. A sign can be 43 

attributed to each link, either positive when two species tend to cluster in space (for positive 44 

associations), or negative when they tend to segregate in space (for negative associations). The absence 45 

of a link between two nodes in such network materializes the absence of any significant spatial 46 

relationship between two species. Such signed networks are often referred to a “spatial association 47 

networks” or simply “association networks” (used hereafter), as well as “spatial ecological networks” 48 

(e.g. Saiz et al. 2018) or “co-occurrence networks” (Delalandre and Montesinos-Navarro 2018). 49 



Similar to food webs, they provide a unified way to describe the overall structure of a plant community. 50 

For example, the importance of negative associations in a community is formally captured by the 51 

proportion of negative links in its association network (the proportion of negative associations). The 52 

topology of the networks (which species is linked to which) also provides essential information on 53 

functioning: in a community, species that have many positive links with others could allow identifying 54 

nurse species which facilitate many others; such presence of nurse species is expected to lead to a high 55 

heterogeneity in the number of positive associations across species (Saiz et al. 2018). Conversely, in a 56 

plant community where interactions are more symmetrical, such heterogeneity in the number of 57 

significant associations per species should be lower. Association networks thus provide a rich 58 

description of the structure of plant communities. Although they do not replace experimental 59 

measurements of interactions, they provide a glimpse into the structure of communities, and an 60 

opportunity to improve the current knowledge regarding the drivers of community functioning 61 

(Losapio et al. 2019).  62 

 63 

For many ecosystems, forecasting the upcoming ecological changes of the next decades requires 64 

understanding how species interactions drive ecological dynamics. However, this is rendered difficult 65 

by the fact that interactions themselves change with environmental conditions (e.g. precipitation, 66 

Tielbörger and Kadmon 2000), abiotic stress levels (Callaway et al. 2002), or disturbance regimes (Saiz 67 

and Alados 2012). Anticipating the upcoming changes in ecological systems, and plant communities in 68 

particular, thus require the knowledge of how environmental conditions affect interactions, which can 69 

be done by focusing on the way communities change along spatial gradients of increasing stress.  70 

 71 

A major source of biotic stress in plant communities is grazing, which causes recurrent disturbance that 72 

drives not only taxonomic and functional composition (Díaz et al. 2007), but also the structure of 73 

species interactions. Grazing effects on association networks have mostly been studied in drylands so 74 



far, probably because of the striking spatial structure of the vegetation there, which is organized in 75 

vegetation patches rather than homogeneously spread out in space (Verdú and Valiente-Banuet 2008). 76 

This specific spatial structure arises from shrubs providing protection against grazing for other plants, 77 

an interaction known as “associative protection”. This mechanism has been extensively confirmed by 78 

pairwise experiments outside our study area (Baraza et al. 2006, Graff et al. 2007, Graff and Aguiar 79 

2011), and within it to some extent (Buisson et al. 2015). It has been shown to strongly influence the 80 

structure of association networks by producing a unimodal pattern of variation of positive associations 81 

along grazing gradients (Saiz and Alados 2012). Associative protection dominates at intermediate 82 

levels of grazing, but is absent either when grazing is low and net negative interactions between 83 

neighbours are most common (interference), or when grazing is very high, and disturbance is too high 84 

for interactions to matter since grazers eat and trample the majority of the plant biomass. However, it is 85 

unknown whether such mechanisms would be important enough to drive the structure of spatial 86 

association networks in milder climates, and among herbaceous plants.  87 

 88 

To help reduce this knowledge gap, we studied how grazing affected the topology of plant association 89 

networks in a Mediterranean grassland. Contrasting with previous studies, our work focuses on the 90 

variations of associations in fully-herbaceous communities without shrubs, more constrained by 91 

grazing, less by climate, and with a majority of annuals, which have often been ignored in association 92 

studies (e.g. Soliveres and Maestre 2014). We investigated the effect of sheep pressure on several key 93 

structural aspects of association networks that have been shown to vary in previous studies (Saiz and 94 

Alados 2012, Saiz et al. 2018) : (i) the total number of associations (i.e. whether plant communities are 95 

strongly spatially-structured by associations); (ii) the importance of positive and negative associations 96 

and (iii) the heterogeneity of association networks (i.e. a measure of the variability of the number of 97 

associations across species; Saiz et al. 2018). Based on seminal hypotheses regarding plant interactions, 98 

we hypothesized the following regarding the trends in the proportion of association types along the 99 



grazing gradient: 100 

 101 

H1. at low grazing pressure, interference between plant species dominates and the number of 102 

negative associations is therefore at its maximum along the gradient (Michalet et al. 2006):  103 

H2. at intermediate grazing pressure, positive associations should be at their maximum due 104 

to the possible presence of associative protection (Maestre et al. 2009, Smit et al. 2009) 105 

H3. at high grazing pressures, where biotic disturbance levels are the highest, both negative 106 

and positive interactions should have a low impact on spatial structure, and thus there should be fewer 107 

significant plant associations, both negative and positive (Graff and Aguiar 2011) 108 

 109 

After testing these hypotheses and describing the changes in the structure of the association networks, 110 

we discuss how these can be used to improve the assessment of plant community structure. 111 

 112 

  113 



Methods  114 

Sampling site  115 

 116 

We carried out this work in a Mediterranean dry grassland located in the south of France, La Crau 117 

(longitude 4.882 E; latitude 43.548 N), where vegetation has been grazed by sheep for at least 2000 118 

years (Badan et al. 1995). Plant communities are diverse and mostly composed of herbaceous plants 119 

(on average 30 ± 12 species/m² in this study, mean ± s.d.), with very few perennial higher shrubs, 120 

leading to an outstanding steppe-like landscape. Grazing in La Crau is intense relative to other systems 121 

and has been centered around numerous sheepfolds for centuries (Saatkamp et al. 2020), around which 122 

ruderal nitrophilous species dominate as a response to the high grazing and trampling pressure and soil 123 

nutrient levels (Figure (Devaux et al. 1983). Further from sheepfolds, typical dominant species include 124 

Brachypodium retusum P. Beauv. with interspersed Thymus vulgaris L. and Asphodelus ayardii 125 

Jahand. & Maire (Molinier and Tallon 1950, Buisson and Dutoit 2006). This very-well defined 126 

gradient constitutes an ideal “natural experiment” setting, as around sheepfold the effects of grazing 127 

pressure strongly dominate over other environmental characteristics (Figure 1 and Supplementary 128 

Information 1). 129 

 130 

Surveys 131 

We selected six sites, i.e. six sheepfolds, spread out in the study area of 10 500 ha of a steppe-like 132 

ecosystem (Buisson and Dutoit 2006). Surveys were carried out during the plant growing season (Apr 133 

15 – June 10), which is the time of the year where approximately 80% of the species can be detected 134 

and identified. This was done during the years 2016 and 2017. The survey period was comprised within 135 

the grazing season, which is from February to June.  136 



 137 

Computing species spatial associations requires characterizing the spatial structure of plant 138 

communities, which we did using pairs of 5-meter long transects. The grazing gradient is known to 139 

produce a change in vegetation composition, which has been classified into successive types that form 140 

“belts” around a given sheepfold (Molinier and Tallon 1950, Buisson and Dutoit 2006). Around the 141 

sheepfold, species that are most nitrophilous or grazing-resistant predominate, such as Urtica sp. and 142 

Onopordum illyricum L. (Figure 1a, red and yellow areas). Moving away from the sheepfold, these are 143 

replaced by plant assemblages in which Trifolium spp. dominates (Figure 1a, green areas), until the last 144 

type of community is reached, with high covers of Brachypodium retusum (Figure 1a, white dashed 145 

areas; Supplementary Information 1). This latter type constitutes most of the vegetation in the study 146 

area and represents communities where grazing pressure is at its lowest. We identified each belt in 147 

space based on a preliminary quadrat-based survey, and placed the transects in the different vegetation 148 

belts to document a wide range of grazing levels (Supplementary Information 1). We laid out two 149 

replicate transects in each belt, separated from at least 10m but no more than 75m so that we could 150 

consider that the two transects were under similar levels of grazing pressure. The starting point and 151 

direction of each transects were chosen randomly by throwing a pen. To make sure that no 152 

environmental factor would affect spatial associations (e.g. two species co-occurring because they 153 

share a similar microhabitat), we repeated the throw whenever the environmental conditions appeared 154 

to vary along a transect (e.g. when vehicle tracks, water puddle, ant nest or any other visible 155 

heterogeneity was present). For each transect, we laid out a measuring tape, and recorded the length 156 

over which every part of plant individuals overlapped (Figure 2). Individual positions could be 157 

determined with an accuracy of 2 mm, as estimated from repeated measurements: this very fine spatial 158 

grain was chosen to allow the detection of positive and negative associations alike (Araújo and 159 

Rozenfeld 2014) as it was close to the typical length over which plants intersected the transect (2 to 3 160 

mm). At some sites, some intermediate vegetation belts were absent or not identifiable in the field and 161 



were therefore not sampled. As a result, one site had two missing belts (i.e. two pairs of transects), and 162 

two others had one belt missing (i.e. one pair of transects). In two sites, we carried out the sampling 163 

both in 2016 and 2017 to increase our sample size, yielding a final dataset with 2 to 8 pairs of transects 164 

per site.  165 

Measuring species associations  166 

Our statistical analyses comprised two broad steps. First, we computed the association networks (one 167 

association network for each pair of transects) and summarized them into community-level metrics 168 

(e.g. the total number of negative links). Then, we investigated how these community-level metrics 169 

changed along the grazing gradient.  170 

 171 

Computing networks and community-level metrics 172 

Computing association networks can be done by defining a metric of association between two species, 173 

and assigning a positive (resp. negative) link when the metric for the pair of species is above (resp. 174 

below) a reference threshold (Sanderson and Pimm 2015). Here, we used the total overlap between 175 

individuals of a pair of species to measure pairwise association (this is equivalent to using the number 176 

of co-occurrence when using discrete sampling). In more formal terms, for a given species 𝑖 177 

intersecting 𝑛 times in a transect, and a species 𝑗 intersecting 𝑚 times, the total overlap 𝑂𝑖𝑗 within a 178 

transect is computed as follows:  179 

𝑂𝑖𝑗 = ∑ ∑ ∫ 𝐼𝑙𝑘(𝑥)𝑑𝑥
𝑥=𝐿

𝑥=0

𝑚

𝑘=1

𝑛

𝑙=1

 180 

where 𝐿 is the length of the transect and 𝐼𝑙𝑘(x) is equal to 1 when both individual 𝑙 and 𝑘 are present at 181 

position 𝑥 along the transect, and 0 elsewhere (Figure 2). As we sampled two transects per vegetation 182 

belt, which can be considered as replicates, we computed 𝑂𝑖𝑗 for both transects, and used their total as 183 

the metric of association between pairs of species. It is worth noting that 𝑂𝑖𝑗 = 𝑂𝑗𝑖 for any 𝑖 and 𝑗, so 184 



associations are symmetric.  185 

For each pair of species, the above procedure yields an observed value of total overlap. It remains to be 186 

determined whether this value is significantly high or low, i.e. whether species significantly cluster or 187 

segregate in space. To do so we used a randomization-based approach that compared the observed 188 

patterns to that of a null expectation with the same total cover for each species, but random spatial 189 

structure. We took the observed pair of replicate transects and randomized the position of each segment 190 

over which plant individuals intersected the transect (one rectangle in Figure 2b). We did so by placing 191 

all segments at a new, random position in the pair of replicate transects (a given individual segment 192 

could thus occur in one of the two replicate transects, but be in the other one after randomization). New 193 

random positions were redrawn if necessary so that no segment in the random transects would extend 194 

past the last segment in the observed transects. Put graphically, no segment would be placed past the 195 

rightmost rectangle in Figure 2b. We generated 1999 pairs of such random transects, and recomputed 196 

the total overlap 𝑂𝑖𝑗 between each species, thus obtaining a null distribution of total overlap for each 197 

species pair. Pairwise associations were then classified into positive, negative or neutral by using a 198 

cutoff value 𝛼 applied to the null distribution. A positive association was considered to occur between 199 

a pair of species when 1 −  𝛼/2 % of the null distribution was below the observed value. Conversely, a 200 

negative association was retained when 𝛼/2 % of the null distribution was above the observed value. 201 

We used a threshold of 25 % (i.e. 𝛼 = 0.25), so for example a positive association was retained when 202 

the observed overlap was above 87.5 % of the null distribution. The value of 𝛼 represents a tradeoff – 203 

lower values produce association networks in which species exhibit strong spatial patterns (spatial 204 

aggregation or segregation), but the resulting networks have very few links, so community-level 205 

metrics may be unreliable. As the choice of such cutoff value may affect the results, we carried out a 206 

sensitivity analysis to make sure that the results were robust to a range of thresholds (Supplementary 207 

Information 3).  208 



 209 

For each pair of transects, this first step of the analysis yields a set of 𝐴+ significant positive and 𝐴− 210 

significant negative associations. This set can be thought as a network where nodes constitute species 211 

and positive and negative associations are positive or negative links between them (Figure 1, b1). We 212 

summarized these networks into six community-level metrics:  213 

 𝐾+, and 𝐾−, the fraction of positive and negative links in the network, computed respectively 214 

as 𝐴+/𝐴𝑚𝑎𝑥 and 𝐴−/𝐴𝑚𝑎𝑥, where 𝐴𝑚𝑎𝑥 is the maximum possible number of links, 𝑆(𝑆 − 1)/2 215 

for an undirected network with S species and no self-interaction 216 

 L the total fraction of links computed as (𝐾+ + 𝐾−), which measures the density of links in the 217 

association network, and thus the general importance of associations on community structure 218 

 𝑅, the ratio of positive to negative links, defined as (𝐾+ − 𝐾−)/ (𝐾+ + 𝐾−) (Díaz-Sierra et al. 219 

2017) 220 

 𝐻+ and 𝐻−, measuring the heterogeneity of associations, as defined in Estrada 2010. This index 221 

captures how close a network is to a star-graph, i.e. whether only one outlying species 222 

establishes all links (maximum index value of one), or whether all species have the same 223 

number of links (minimum value of zero). Such index is well-suited to assess heterogeneity in 224 

small networks for which distribution-fitting is unreliable (Estrada 2010). This index is 225 

computed as follow:  226 

𝐻 =
∑ ( 𝑘𝑖

−0.5 − 𝑘𝑗
−0.5)

2

𝑖,𝑗∈𝐸

𝑁 − 2 √𝑁 − 1
 227 

where the sum is done over the set of all edges in the network 𝐸. 𝑖 and 𝑗 describe the nodes 228 

involved in an edge, with their corresponding degrees 𝑘𝑖 and 𝑘𝑗. 𝑁 here is the total number of 229 

nodes with degree non-zero (i.e. that have at least one link). We computed this metric on 230 

networks made up only of positive links (for positive associations) or negative links (for 231 



negative associations), which yielded 𝐻+and 𝐻−. 232 

Cover-corrected community-level metrics 233 

Despite being taken into account in the null model to derive pairwise associations, species covers still 234 

have an effect on the community-level metrics defined above. To illustrate this, we can consider the 235 

example of rare species. By definition, pairs of rare species have low covers, hence placing them 236 

randomly in a transect will yield a null distribution of overlap mostly composed of zeroes. Because the 237 

overlap cannot be negative, such species pair cannot have an observed overlap below the random 238 

expectation, i.e. a negative association. As a result, as the number of rare species changes along a 239 

gradient, the proportion of negative associations (𝐾−) will vary, masking the biologically-relevant 240 

changes in the spatial behavior of species. A similar dependence on species’ cover distribution affects 241 

all community-level metrics (𝐿, 𝐾+, 𝐾−, 𝑅, 𝐻+, and 𝐻−), so it is necessary to control for this effect to 242 

make meaningful statements about changes in plant associations along a gradient (Tylianakis and 243 

Morris 2017, Pellissier et al. 2018, Saiz et al. 2018). This bias is further detailed in the Supplementary 244 

Information 4. 245 

 246 

We corrected community-level metrics using the following procedure (Figure 1b). For each pair of 247 

transects, we created 999 'null' pairs, with randomized positions of individuals (mixing individuals 248 

between transects, i.e. carrying the same randomization as in the first step of the analysis). We built 249 

association networks using the same procedure, this time starting with the randomized pairs of 250 

transects. For each pair of replicate transect, we obtained this way 999 association networks that 251 

represent the null expectation of random spatial structure, but similar species total covers. We then 252 

computed the community-level metrics on the null networks to obtain, for each pair of replicate 253 

transects, 999 null values for each metric. For example, we obtained null values for 𝐾− (the proportion 254 

of negative associations) for each pair of replicate transects. We then computed the deviation of the 255 



observed value to its null distribution, using a z-score (or standardized effect size, SES; following 256 

example given for 𝐾−):  257 

𝐾𝑆𝐸𝑆
− = ( 𝐾− −  𝜇𝑛𝑢𝑙𝑙  )/𝜎𝑛𝑢𝑙𝑙 258 

where 𝜇𝑛𝑢𝑙𝑙  is the mean of the null distribution for the community-level metric, and 𝜎𝑛𝑢𝑙𝑙  is its standard 259 

deviation Figure 1, b3). 999 null replicates were considered enough to estimate with reasonable 260 

precision these two parameters. By focusing on the changes in this z-score instead of the raw value of 261 

each community-level metric, we measured the changes in a given aspect of the association network, 262 

controlling for the effect of changing species covers along the gradient (Tylianakis and Morris 2017, 263 

Pellissier et al. 2018).  264 

 265 

Characterizing the grazing gradient 266 

In La Crau, the local grazing pressure (the number of sheep*time unit.ha-1) is known to decrease with 267 

the distance to the sheepfold, but this relationship has not been explicitly measured for most sites. 268 

Previous studies (Dureau 1998; Supplementary Information 2) suggest that it decreases as the inverse 269 

of distance then reaches a minimum, i.e. that grazing pressure 𝐺 can be described by the following 270 

function:  271 

𝐺(𝑥) = 𝐺𝑖𝑛𝑓 +
𝐺0−𝐺𝑖𝑛𝑓

1+𝜏𝑥
=

𝜏𝐺0+𝑥𝐺𝑖𝑛𝑓

𝜏+𝑥
 (equation 1) 272 

where 𝑥 is the distance to the sheepfold, 𝐺𝑖𝑛𝑓 is the grazing pressure far from the sheepfold, 𝐺0 is the 273 

grazing pressure at the sheepfold, and 𝜏 characterizes the spatial extent of the gradient.  274 

 275 

Soil characteristics are expected to follow closely the grazing pressure. This is particularly true for soil 276 

nutrients that are spatially redistributed as grazers feed in a given area and defecate in another 277 

(Steinauer and Collins 1995, Selbie et al. 2015). In our area, we thus expected the variations in the 278 

amount of nutrients in the soil to closely match those in grazing pressure. We therefore carried out 279 



sampling to measure soil properties as a function of the distance to the sheepfold. We sampled soil 280 

wherever a pair of transects was carried out, and complemented these samples with additional ones 281 

where the grazing gradient was very extended (see Supplementary Information 1). Soil was sampled by 282 

mixing subsamples of the upper first five centimeters (after scraping sheep dung) from a circular area 283 

of radius 4 m. Soil sampling took place in October 2017, when sheep flocks were absent. 284 

 285 

We used the total Nitrogen content (𝑁𝑡𝑜𝑡) in the soil (as measured by the Kjeldahl method; Bremner 286 

1960) to characterize the grazing pressure at a given distance from the sheepfold. We assumed that the 287 

total 𝑁 measured from soil samples was linearly-related to the (unmeasured) grazing pressure, i.e. that 288 

𝑁𝑡𝑜𝑡 = 𝑎𝐺(𝑥) + 𝑏 (with 𝑎 and 𝑏 being the slope and the intercept, respectively). Based on equation 1, 289 

this yields the expected relationship between distance 𝑥 and nitrogen content 𝑁𝑡𝑜𝑡, which we fitted to 290 

the empirical data:  291 

𝑁𝑡𝑜𝑡(𝑥) =
𝜏𝑁𝑡𝑜𝑡,0+𝑥𝑁𝑡𝑜𝑡,𝑖𝑛𝑓

𝜏+𝑥
 (equation 2) 292 

Because we had a reduced number of samples per site (2 to 4) and standard non-linear regression was 293 

prone to overfitting, we carried out the regression using a Bayesian setting and weakly conservative 294 

priors. We used the site as a random effect on the estimates of 𝜏, 𝑁𝑡𝑜𝑡,0 and 𝑁𝑡𝑜𝑡,𝑖𝑛𝑓 along with a 295 

Gaussian residual error (see Supplementary Information 2 for details on parameter estimation).  296 

We checked that the estimated values for 𝑁𝑡𝑜𝑡,0 and 𝑁𝑡𝑜𝑡,𝑖𝑛𝑓 were consistent with previous reported 297 

values for the area (Römermann et al. 2005), and then used the estimated 𝑁𝑡𝑜𝑡  in the soil at the given 298 

distance to the sheepfold as a proxy for grazing pressure. 299 

 300 

Effect of grazing pressure on associations 301 

 302 



We characterized the effect of grazing on species associations by investigating the trends of 303 

community-level metrics along the gradient of grazing pressure (as measured by 𝑁𝑡𝑜𝑡). To test whether 304 

the trends were linear or unimodal (hump-shaped), we fitted both a straight-slope and a second-order 305 

polynomial model, with the focal metric as response (e.g. 𝑅𝑆𝐸𝑆), the estimated 𝑁𝑡𝑜𝑡  as predictor and the 306 

site as a random effect on the trend coefficients. We carried out this regression using a Bayesian setting 307 

with uninformative priors, and retained the model that had the lowest error when carrying leave-one-308 

out (loo) cross-validation, following recommendations from Vehtari et al. (2017). We used normal 309 

priors with mean zero and standard deviation 50 for regression coefficients, and an exponential prior 310 

with rate 0.1 for the residual error parameter.  311 

 312 

All analyses were carried out in R v4.0.2 (R Core Team 2020), with regressions carried out using the 313 

package loo v2.3.1 (Vehtari et al. 2017) and brms v2.14.0 (Bürkner 2017). Data and code used for the 314 

analyses are available at https://datadryad.org/stash/dataset/doi:10.5061/dryad.ns1rn8prd [private 315 

during peer-review]. Trait data to compute the percentage of ruderal species was obtained from the 316 

TRY database (Kühn et al. 2004, Kattge et al. 2020). 317 

  318 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.ns1rn8prd


Results 319 

We found that the grazing gradient around sheepfolds had a strong effect on soil conditions, as total 320 

nitrogen of the soil was doubled (model estimation of 1.35 ± 0.36 g.kg-1 far from sheepfolds vs. 321 

2.85 ± 0.27 g.kg-1 at the entrance; Figure 3a). Such values are consistent with what has been previously 322 

reported in the study area (Römermann et al. 2005, Saatkamp et al. 2020). The effects of grazing on 323 

soil surface conditions were evidenced by the increase in bare ground from 20 ± 7 % to 42 ± 14 % 324 

(Figure 3b) and dung cover from 9 ± 5 % to 92 ± 12 % (Figure 3c). Grazing favored higher covers of 325 

ruderal species (17 ± 8 % to 63 ± 5 %, Figure 3d) and reduced species richness (49 ± 6 species far, vs 326 

10 ± 1 close to sheepfolds; Figure 3e). 327 

 328 

Regarding plant association metrics, model selection favored linear relationships (straight lines) for all 329 

relationships between association-based community-level metrics and grazing pressure (Figure 4,5). In 330 

particular, we found no support for unimodal variations of the number of positive associations 𝐾𝑆𝐸𝑆
+  331 

along the gradient (Figure 4c).  332 

 333 

Grazing was found to increase the number of links in plant communities (LSES, Figure 4a), as positive 334 

associations decayed quicker than negative associations with grazing (Figure 4b, 4c). Overall, there 335 

was an excess of negative associations compared to positive associations (𝐾𝑆𝐸𝑆
−  was always above zero 336 

and 𝐾𝑆𝐸𝑆
+

 almost always below zero; Figure 4b, 4c). Both negative and positive associations were found 337 

to approach the null expectation (i.e. a value of 𝐾𝑆𝐸𝑆
−  and 𝐾𝑆𝐸𝑆

+  close to zero) as sheep pressure 338 

increased (Figure 4b, 4c). Consistent with these patterns, the association ratio 𝑅𝑆𝐸𝑆 was always 339 

negative regardless of the grazing level, and close to the null expectation where grazing was the highest 340 

(Figure 4d). This suggests that these communities were strongly structured by spatial associations at 341 

low grazing pressure, but became increasingly close to the null expectation with increased grazing.  342 



 343 

The heterogeneity in negative associations 𝐻𝑆𝐸𝑆
−  decreased with grazing pressure (Figure 5a). In other 344 

words, plant species of a given community had similar numbers of negative associations with each 345 

other under high grazing conditions and more variable ones under low grazing. We found no equivalent 346 

effect of grazing on the heterogeneity of positive associations 𝐻𝑆𝐸𝑆
+  (Figure 5b).  347 

 348 

All the above trends were robust to the choice of 𝛼 (Supplementary Information 3). 349 

 350 

 351 

  352 



Discussion  353 

Using continuous transects documenting the spatial associations of plant individuals in a Mediterranean 354 

dry grassland, we found non-random trends in spatial associations along the grazing intensity gradient.  355 

Negative associations were found to dominate over positive ones under low grazing, with a highly-356 

variable number of negative association per species. Grazing was found to reduce all these 357 

characteristics to their null expectations, overall making the communities less structured by 358 

interspecific associations at high grazing levels.  359 

 360 

Association trends 361 

Changes in association trends 362 

We found that negative associations dominated where grazing pressure was lower (H1), which is 363 

consistent with interference driving the assembly of communities (Graff et al. 2007). As grazing 364 

pressure increases, it appears that this imprint of interference on spatial patterns vanishes. This is 365 

consistent with the known effects of grazing in grasslands: as biomass is removed from dominant 366 

species, ground-level light increases and thus spatial exclusion by taller competitors is reduced (Borer 367 

et al. 2014, Odriozola et al. 2017). However, such decrease in negative interactions is usually 368 

associated with an increase in species richness that we did not observe here (Figure 3e). This suggests 369 

that the trends observed here reflect more than a sole reduction in interference. Given the very high 370 

disturbance levels around sheepfolds (more than 1000 sheep being present daily close to sheepfolds), 371 

another factor altering spatial patterns is the direct reduction in covers due to the sheep presence (Adler 372 

et al. 2001, Graff and Aguiar 2011). Disturbance may be too high to allow plants to grow enough 373 

during the grazing season to preempt space and produce significant spatial patterns (Alados et al. 374 

2004). Disentangling this direct effect of disturbance on spatial associations from that of the processes 375 

occurring within the plant community would require additional independent evidence, and constitutes a 376 



limit of relying only on association networks. 377 

 378 

Positive associations exhibited no unimodal trend along the grazing gradient (H2). Instead, we found 379 

that they declined linearly with increasing grazing. This contrasts with previous work reporting 380 

unimodal trends along grazing gradients both experimentally (Smit et al. 2009) and using association 381 

(Saiz and Alados 2012, Le Bagousse-Pinguet et al. 2012). A possible explanation for this pattern is that 382 

our study was carried out in areas where the grazing pressure is always relatively high compared to 383 

other work using association networks. Stocking rates in La Crau often reach above 1 ind.ha-1 (Buisson 384 

et al. 2015), well above the maximum rate of 0.64 ind.ha-1 reported by Saiz et al. (2012). It is thus 385 

likely that we could only document the reduction in the importance of interactions under high 386 

disturbance, as suggested by Graff et al. (2013). Moreover, positive associations were found to be less 387 

frequent than expected by chance at all grazing levels, suggesting that facilitation is rare in our system. 388 

This general absence of facilitation, despite some existing experimental evidence (Buisson et al. 2015), 389 

could emerge from the particular morphology of the plants in the study area. The study area lacks tall 390 

woody shrubs which are a major source of positive associations, as they often act as nurse species 391 

under which herbaceous plants grow in dry areas (Saiz and Alados 2012). Compared to the study of 392 

Saiz and Alados (2012), at our sites, plants are more functionally similar (forbs and grasses of similar 393 

heights), which limits the possibility of plants to aggregate in space by growing on top of, or below, 394 

each other, and thus the proportion of positive associations. This could explain in particular why the 395 

species Brachypodium retusum, which exhibits mostly negative associations in our work, was found to 396 

engage mostly in positive ones in Saiz and Alados (2012). By reducing the necessary complementarity 397 

in height and morphology of the plants for spatial aggregation, i.e. increasing functional similarity, 398 

grazing could reduce the prevalence of positive associations in our study area. 399 

 400 

Heterogeneity in associations 401 



While plant ecology has mostly focused on describing the relative importance of different types of 402 

interactions (e.g. the relative importance of facilitation vs. interference; Callaway et al. 2002, Michalet 403 

et al. 2006, Soliveres et al. 2015), it has seldom focused on the structural aspects of plant-plant 404 

interaction networks. For example, facilitation in abiotically-stressed environments can be asymmetric, 405 

with key nurse plants facilitating many others, or more symmetric, where plants with similar lifeforms 406 

buffer each other against harsh conditions (Lin et al. 2012). In our study, such asymmetry was found in 407 

negative associations. We found that they were more heterogeneous when grazing was low. This 408 

suggests that under low grazing conditions, inter-specific interference is asymmetric, with few species 409 

establishing a high number of negative links, and does not arise from all plants being equally more 410 

competitive. This maps well onto limiting-similarity acting where competition for resources dominates 411 

(Chesson 2000), which favors functional divergence in traits (Valiente-Banuet and Verdú 2008) and 412 

plant strategies. Some plants may engage in “Competitive confrontation” (sensu Novoplansky 2009) by 413 

maximizing interference with their neighbors, while other may display “Competitive avoidance” or 414 

tolerance and avoid such behavior (Gruntman et al. 2017). This diversity in plant strategies may be a 415 

factor explaining the heterogeneity in negative links. As grazing increases, communities converge 416 

towards grazing-tolerant strategies (Carmona et al. 2012 and Figure 3d), resulting in the observed 417 

reduction of network heterogeneity. Such hypotheses could be tested with theoretical models exploring 418 

the link between plant traits and strategies, and the structure of interaction networks in plant 419 

communities. More generally, this line of thought could also be extended to other network properties 420 

such as modularity, nestedness (Verdú and Valiente-Banuet 2008) or structural balance (Saiz et al. 421 

2017). Research on food webs has produced several of such theoretical models of network assembly 422 

from species traits (e.g. Williams and Martinez 2000): equivalent work for plant association networks 423 

is still burgeoning (Lin et al. 2012). 424 

 425 



Moving forward with associations 426 

Using associations as proxies to estimate plant-plant interactions seems to have been deemed a 427 

reasonable solution for plants in arid drylands, as evidenced by the breadth of papers relying on this 428 

method (e.g. Verdú and Valiente‐Banuet 2008, Saiz and Alados 2012, Delalandre and Montesinos-429 

Navarro 2018). This may be motivated by the fact that facilitation (e.g. between nurse plants and their 430 

protected species, a type of interaction which is particularly frequent in arid ecosystems) has been 431 

shown to be well-captured by association patterns (Freilich et al. 2018). However, our work suggests 432 

that plant-plant associations provide valuable information in other ecosystems as well. Strengthening 433 

this approach further would require additional evidence to assess whether interactions in a community 434 

effectively give rise to the expected association patterns. Such piece of evidence could come from 435 

independent trait data (Soliveres et al. 2014). For example, increased functional similarity between two 436 

plants could be associated with a higher likelihood of observing a negative association between them 437 

(Conti et al. 2017). Another avenue to put the association approach to the test would be to rely on 438 

experimental approaches directly measuring interaction strengths (Choler et al. 2001). Given the 439 

ballooning number of studies based on plant associations (Losapio et al. 2019), it becomes more and 440 

more timely to test such assumptions.  441 

 442 

Another hurdle lying ahead of association-based work is methodological in nature. Much work outside 443 

of plant ecology shows that many factors can bias the interaction strengths estimated from spatial 444 

associations, such as the scale of sampling (Araújo and Rozenfeld 2014, McNickle et al. 2018, 445 

Delalandre and Montesinos-Navarro 2018), the species’ habitat preferences (Morueta-Holme et al. 446 

2016) or the method used for inference (Barner et al. 2018). Working at the local scale, where the 447 

imprint of ecological interactions is generally thought to be stronger, and with sessile species may 448 

alleviate some of those shortcomings, but probably not all of them. For example, shared residual 449 



differences in micro-habitat may drive some of the associations between species. Here, our sampling 450 

avoided any apparent fine-scale variations in soil characteristics, but residual bias may still be present. 451 

For example, in our transects, the presence of pebbles (typical size of 5-20 cm) may make plant 452 

individuals only grow in those remaining areas where pebbles are not present. This can produce 453 

artefactual positive associations that are not due to any biotic interaction, as plant will cluster in the 454 

remaining areas with free bare ground. In our case, this effect is unlikely to affect the trends given the 455 

large predominance of negative associations, but it highlights the limits to the precision of association-456 

based approaches.  457 

 458 

Relying on spatial patterns to make general statements about interactions in plant communities will 459 

also require a standardization of methods. One acute point worth highlighting when considering trends 460 

in association networks along gradients is controlling for changes in species abundances (Pellissier et 461 

al. 2018). If networks are being compared without correction, the trends may not reflect changes in 462 

species’ behaviors but rather changes in cover. For example, rare species cannot produce negative 463 

associations, because even though they may strongly exclude other species in space, their total cover is 464 

not sufficient to produce significant spatial segregation (Supplementary Information 4). Reporting 465 

ecologically-meaningful variations in community-level metrics (e.g. the total number of negative links, 466 

𝐾−) must be done with indices that control for species covers (e.g. 𝐾𝑆𝐸𝑆
− ). Misinterpreting this property 467 

of associations can lead and has led to spurious interpretation of patterns (e.g. Calatayud et al. 2020). 468 

 469 

To adequately anticipate how ecological communities will respond to global changes, it is necessary to 470 

better map empirical interaction networks. This may not always be possible, as pairwise experiments 471 

may be prohibitively expensive, or previous knowledge may be missing for the ecosystem of interest 472 

(e.g. Kéfi et al. 2015). Association-based approaches provide an alternative yet objective basis to map 473 

interactions in situ, preserving the environmental setting in which they occur, and for systems where 474 



previous knowledge is scarce. They could thus greatly complement traditional approaches, but come 475 

with their own sets of methodological challenges. Obtaining detailed and accurate empirical interaction 476 

networks will thus require leveraging the complementarity of both experimental and observational 477 

approaches.    478 

 479 
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Figures 632 

 633 

 634 

Figure 1. General variation of vegetation around a sheepfold and procedure used to calculate 635 

community-level network properties. Vegetation can be divided into different “belts” (a1), whose 636 

spatial extents depend on the grazing pressure (a2) and which are most extended towards the south-east 637 

because of the sheepfold buffering the herds against dominant winds (a1). We carried out two transects 638 

per vegetation type (i.e. per belt) in the south-east direction, leading to one observed association 639 

network and 999 ‘null’ networks per pair of transect (b1). Both observed and null networks were 640 

summarized into summary metrics, for example 𝑅, the relative frequency of positive to negative 641 

associations (b2). The deviation of the observed summary metric from the null expectation was then 642 

computed using standardized effect size, yielding cover-corrected community-level metrics such as 643 

𝑅𝑆𝐸𝑆 (b3).  644 

 645 

 646 



Figure 2. Design of the transect surveys. Panel (a) represents a top-down view of plant individuals 647 

spread along a line transect (black line). We recorded all intersections of the line with plant parts, along 648 

with a class of height (b). The total overlap between species was then computed along the transect. For 649 

example, here 𝑂12, the total overlap between species 1 and 2 is given by 𝑂12 = 𝑙1 + 𝑙2. We used pairs 650 

of transects in the field but in this figure, only one transect is represented for simplicity. 651 



 652 



Figure 3. Variations in soil nitrogen, bare ground, dung cover, percentage of ruderal species, species 653 

richness as a function of distance to the sheepfold. The shape of the points and the separate trend lines 654 

indicate the different sites. Red trend lines are fits of a saturating function (the relationship described in 655 

equation 2), with different link functions depending on the nature of the response variable 656 

(proportional, continuous or discrete). The percentage of ruderal species is the proportion of the total 657 

plant cover made up of ruderal species sensu Grime’s CSR classification (Grime 1977). 658 
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 660 



Figure 4. Total fraction of links (𝐿𝑆𝐸𝑆), fraction of negative (𝐾𝑆𝐸𝑆
− ), positive links (𝐾𝑆𝐸𝑆

+ ) and association 661 

ratio (𝑅𝑆𝐸𝑆) as a function of grazing pressure. Trend lines indicate linear regressions along the grazing 662 

gradient, as measured through total Nitrogen, with dashed lines representing the 95% credible interval 663 

on the predicted mean. Red and blue backgrounds highlight the areas corresponding to positive and 664 

negative values, respectively. Point shapes indicate different sites.  665 

 666 

 667 

Figure 5. Trends of the heterogeneity of negative (𝐻𝑆𝐸𝑆
−  , a) and positive (𝐻𝑆𝐸𝑆

+ , b) links. Red and blue 668 



backgrounds highlight the areas corresponding to positive and negative values, respectively. Trend 669 

lines indicate linear regressions along the grazing gradient, as measured through total Nitrogen, with 670 

dashed lines representing the 95% credible interval on the predicted mean. The posterior distribution 671 

for the 𝐻𝑆𝐸𝑆
+  slope included zero between its 2.5% and 97.5% quantiles, suggesting no effect of grazing, 672 

so the trend is represented with a dotted line. 673 

 674 



Supplementary information S1

1. Description of the site and sampling protocol

In La Crau, herds of sheep are not within enclosures but lead by shepherds within open, extensive
but delimited areas (most of them above 70 ha, with a maximum of 540 ha; Tatin et al., 2013).
Most of these areas include a sheepfold built next to a shelter for the shepherd. Sheep are gathered
in the sheepfold at night or, because of the large size of the herds (on average 1,600 individuals;
Tatin et al., 2013), in temporary enclosures next to it. As a result, sheep spend more time near
the sheepfold than elsewhere in the grazing area, resulting in a natural gradient of grazing pressure
and other impacts related to the presence of sheep (e. g. nutrient enrichment through dung/urine
deposition and trampling). This gradient is most extended towards the south-east, which is the
main direction of strong dominant winds.

Vegetation communities respond to this grazing gradient, resulting in a strong species turnover
with ruderal, nitrophilous communities near the sheepfold (Figure S1, and typical “Coussoul”-type
communities (dominated by Brachypodium retusum and Asphodelus ayardii) where grazing is at
its lowest, away from the sheepfold (Molinier & Tallon, 1950; Gomila, 1987). Previous work often
classifies vegetation communities in four types, two being the ones described above, along with two
others corresponding to intermediate levels of grazing, one defined by the presence of Onopordum
illyricum, and another by the dominance of Trifolium subterraneum (Molinier et Talon, 1950). In
the absence of accurate measurement of the grazing pressure, we reused these four known vegetation
types to guide our surveys and ensure that we documented a large range of grazing levels.

We first carried a quadrat-based survey and recorded the presence/absence of all species in a grid of
5 by 5 20x20 cm subquadrats (resulting in a quadrat size of 1m2). The first quadrat was placed as
close as possible to the sheepfold entrance. The spacing between quadrats then followed a geometric
series, i.e. the second quadrat was placed at d2=2m from the first, then subsequent quadrats were
placed such that dn+1 = b ∗ dn. b was between 1.2 and 1.5 depending on each site. Adjustments
to this spacing rule were made to avoid local disturbances unrelated to grazing (e.g. dirt roads).
We recorded in a 3x6m area around each quadrat the presence of indicator species, which were
those used in the literature to define the four aforementioned vegetation types (Molinier & Tallon,
1950; Gomila, 1987). Basing the sampling on these indicator species allowed us to make sure we
documented all vegetation types, hence a large range of grazing pressures, even in the absence of
its direct measurement. At a given site, we stopped surveying once two quadrats were done in
the “Coussouls”-type community (the criterion used was Brachypodium retusum at more than 50%
cover in a quadrat).

Based on indicator species, we assigned in the field each quadrat to one of the four types of
community. We thus obtained ranges of quadrats for each site and type of plant community. For
example, for a site, we could have quadrat 1 to 3 in the most nitrophilous community, then 3-5
in the first intermediate community, 5-8 in the second intermediate community, then 8-10 in the
“Coussouls”-type community. We then carried out a pair of transect in each community type, and
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because this sampling was repeated twice for some sites, it resulted in at most 8 pairs of transects
per site (i.e. 16 transects in total).

Figure S1 - Graphical summary of the different types of surveys carried out for a given site. Four plant community
types have been identified based on a set of indicator species, as indicated by colors and labels. Labels indicate
notable species present in each belt. Quadrats were carried out at different distances from the sheepfold entrance. In
each belt, a pair of 5m transects was laid out to measure the spatial distribution of species individuals. Soil was also
sampled at least four times per site at the average distance of each pair of transects.

In addition to quadrats and transects, soil samples were taken between Oct. 16 and Oct. 31 2017
(when sheep are absent). One sample was taken at the average distance of each transect pair,
sometimes complemented by samples placed at quadrat positions so that soil characteristics could
be interpolated at each quadrat and transect position. This resulted in 4 to 6 soil samples per site.
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Each soil sample was taken by mixing 16 regularly-spaced sub-samples in a circle of 4 m around
a center point. All surface litter was scraped and approximately 125 cL of soil was sampled at
each point between 0 and 10cm. All subsamples were mixed in a bowl and a compound sample
of 400g was taken. This latter sample was dried for at least 72h at 40°C, sieved to 2mm and sent
for analyses (Laboratoire Teyssier, 5 route des Junchas, 26460 Bourdeaux, France). Soil analyses
included pH (in water), Metson total CEC (Cation Exchange Capacity), total CaCO3, total organic
matter, total Nitrogen, total Phosphorus (Olsen method), exchangeable K, Mg, Ca and Na.

2. Estimating Grazing pressure

A stated earlier, grazing in La Crau is centered around sheepfolds. During the day the shepherd will
lead the sheep out and come back at night close to the sheepfold (Figure 2). As a result, disturbance
due to the presence of sheep is strong next to the sheepfold, and decreases as one moves away from
it. However, there are very few direct measurements of the shape of this relationship.

a) b)

Figure S2 - (a) Aerial view of a sheepfold (Google maps), in which the nitrophilous plant communities (dark green)
are clearly visible. (b) The sheep stays close to the sheepfold at night, then the herd is conducted during the day by
the shepherd: as a result, sheep spend more time close to the sheepfold than far from it.

To our knowledge, only one study (Dureau, 1998) attempted to measure such relationship directly.
Extracting the reported values and plotting grazing pressure against distance, we obtain the fol-
lowing relationship:
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Figure S3 - Relationship found between distance to the sheepfold and grazing pressure by Dureau et al. (1998).

The above plot suggests that grazing pressure is well-described by the following relationship (drawn
as a red line above), where x is the distance to the sheepfold:

G(x) = Ginf + G0 − Ginf

1 + λx
(1)

where λ characterizes how fast the grazing pressure decays as a function of distance to the sheepfold
entrance. Writing τ = 1/λ and ∆G = Ginf − G0, this equation can be rewritten as:

G(x) = τG0 + (G0 + ∆G)x
τ + x

(2)

In this equation,

• τ characterizes the extent of the spatial gradient
• G0 characterizes the grazing pressure near the sheepfold entrance
• ∆G characterizes the difference in grazing pressure between the areas near the entrance and

areas far from the sheepfold (“at infinite distance”).

We found that many soil-related variables showed trends that could be described by such relation-
ship, suggesting that soil parameters could be used as a proxy for the position of a given transect
along the grazing gradient (Figure S4).
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Figure S4 - Soil variables measured at different distances to the sheepfold, and inverse-distance fits (similar to the
form presented in Equation 2). Points indicate soil samples and trend lines indicate trends for different sites. Note
that to simplify computations, the fits assume a normal error around the mean, even though this may not be realistic
for all variables. The fits presented here include all displayed points, including outliers.

We focused on the variations of total nitrogen to estimate grazing pressure because it was expected
to be the most directly correlated to herbivore defecation around and in enclosures (Selbie, et
al. 2015, Steinauer and Collins 1995), and was well-measured by the soil analyses (compared to
phosphorus for instance for which small concentrations had similar measured values). Other soil
variables were more indirectly linked to sheep presence (e.g. pH), or results reported by the soil
analyses were unreliable (e.g. total Ca, were values are only 0 or 1). It is worth noting however
that most soil variables showed correlated trends along the grazing gradient.

Assuming that the total N in the soil is linearly related to sheep activity (i.e. that N ≈ a ∗ G + b
with a and b being constants), we can model its relationship with distance to obtain an estimate
of grazing index. In the main text analyses, we removed three outliers from the regression that did
not fit model assumptions (points with N > 0.0035 in figure S4). These outliers exhibited a much
higher content in Ntot that was predicted by an inverse-distance relationship, and were probably
the result of sample contamination (probably a sampling error involving remaining dung in the soil
sample).

For the analyses described in the main text, we fitted a model of the following form:

N(x) = τN0 + (N0 + ∆N)x
τ + x

(3)

5



where :

• N0 is the estimated soil Nitrogen content at the sheepfold entrance
• ∆N is the estimated difference in soil Nitrogen content between areas far from the sheepfold

(where grazing pressure is at its minimum) and areas close to it
• τ is the spatial extent of the gradient (proportional to the distance at which grazing pressure

has decayed by half of its maximum value). It represents a distance (in meters).

We fitted this model using a bayesian setting and the following conservative priors (to prevent
overfitting) on population-level effects:

N0 ∼ N (µN , 3 ∗ σN )

∆N ∼ N (0, 3 ∗ σN )

τ ∼ N (200, 200)

where σN is the standard deviation of the observed values of total nitrogen, pooled for all sites. We
used a site-level random effect on the estimates of N0, ∆N) and λ, and used the following Student
distributions with three degrees of freedom and the following parameters:

N0 ∼ Student3(mean = 0, sd = 5 ∗ σN )

N ∼ Student3(mean = 0, sd = 5 ∗ σN )

τ ∼ Student3(mean = 0, sd = 200)

We modelled a correlated group-level effect between N0 and ∆N because it was found to produce
better fits (checked visually).

The model was fit using the R package brms (see the included file functions.R, line 109 for the
implementation).

For all pairs of transect, we took the average predicted total N value as an index of grazing pressure.

3. Sensitivity to association cutoff α

We retained a positive association between two species when their total overlap was above the
87.5% quantile of the null distribution, i.e. using α=0.25 cutoff (100% - α/2 = 0.875 or 87.5%).
Similarly, we retained negative associations when the total overlap was below the 12.5% quantile
(α/2). α here represents a tradeoff. Larger values of α yield networks with a higher proportion of
links, which may be interesting to compute aggregate statistics such as the proportion of links (L).
However, these associations can be weak (i.e. they only weakly aggregate or segregate in space).
Smaller values of α will yield networks with links between plants that are only strongly positively
or negatively associated, but these networks can be very sparse (low number of links) and thus
some community-level metrics (e.g. the total number of links) can be badly estimated.

In figure S5, we investigate the influence of the value of α on the trends we observe along the
gradient. We report the estimates on the slopes of the linear trends displayed in Figure 4 and 5 in
main text, but with varying values of α.
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Figure S5 - Results of sensitivity analyses. Black bars indicate the 2.5% and 97.5% quantiles of the credible interval
on the slope, and the black points the mean estimate. Red crosses indicate values of α for which a quadratic model
was selected over a linear model to describe the trends of the network metric along the gradient. The dashed vertical
line indicates the value chosen for the trends reported in main text (0.25).

For most metrics, it appears that the trends stay stable for a wide variety of α cutoffs, suggesting
that our conclusions are robust and not the result of a specific choice of value for α. While some
values of α yield quadratic models, this behavior is sporadic and does not reflect the general pattern.

4. Species’abundances and bias in associations

The ability of a species to exhibit negative or positive associations varies with its abundance.
Specifically, species under a given total cover cannot exhibit positive associations. We run here a
small simulation with synthetic data to highlight this bias in association networks.

We first consider a transect with two large individuals totalling 50% cover each. Figure S6 represents
a transect with such individuals, which is of the same nature as the data recorded in this study.
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Figure S6 - A transect with two large individuals. The x-axis is the length along the transect, and the y-axis is the
height of the plant individuals (see also Figure 2b in main text).

In such situation, the total observed overlap is 0.2 (20%). The null distribution of overlap (given
randomized positions of the individuals along the transect) for the species pair is in Figure S7.
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Figure S7 - Null distribution of overlap for a transect with a pair of species with high cover (50%). The continuous
lines indicate the quantiles above or under which a significant positive or negative association is retained, respectively
(for α = 0.25). The dashed line indicates the observed value.

We see that the null distribution has values above and below the cutoff used to retain a positive
or negative associations (the red and blue areas, respectively). Thus, the two species can exhibit
both a positive or a negative association, depending on their observed overlap.

Note that this distribution has no values above 0.5 (50%), which is the maximum possible overlap
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between the two species.

We now consider the case of two rare species with low cover (10%) :
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Figure S8 - A transect with two small individuals. The x-axis is the length along the transect, and the y-axis is the
height of the plant individuals (see also Figure 2b in main text).

We run the same analysis as before to obtain the null distribution of overlap between the two species
(Figure S9).
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Figure S9 - Null distribution of overlap for a transect with a pair of species with low cover (10%). The continuous
lines indicate the quantiles above or under which a significant positive or negative association is retained, respectively
(for α = 0.25). The dashed line indicates the observed value. Note that the observed value and the lower quantile
lines are superposed.
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This distribution is heavily skewed, and has a high excess of zeroes (no overlap between the two
species). As a result, the lower cutoff is zero (i.e. the 12.5% quantile is zero), which is also the
natural bound for the metric of overlap, which cannot be negative. As a result, such two rare species
cannot exhibit an overlap lower than the cutoff, and thus cannot exhibit a negative association,
regardless of their ability to exclude spatially other species.

We can produce this null distribution of overlaps for different values of cover of the two species and
track when the lower quantile of the null distribution is zero. Simulations show that for the case
above, the lower quantile of the null distribution is zero up to the cover of 41%. This means that
two species with a cover below this number will never exhibit a negative association for statistical
reasons.

This asymmetrical detection of associations has a very strong effect on the estimates of the com-
munity scale metrics (e.g. the total number of negative links), as natural communities have a few
abundant species and a lot of rare ones. To correctly interpret trends along gradients where species
abundances change, it is thus necessary to compare, not the raw values of community metrics, but
how much they deviate to what is expected given the distribution of abundances (see Methods in the
main text).
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