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We study electrical and thermoelectrical properties for a double quantum dot system. We consider
the cases of both single-level and multilevel quantum dots whatever the way they are coupled, either
in a series or in a parallel arrangement. The calculations are performed by using the nonequilibrium
Green function theory. In the case of a single-level double quantum dot, the problem is exactly
solvable whereas for a multilevel double quantum dot, an analytical solution is obtained in the limit
of energy-independent hopping integrals. We present a detailed discussion about the dependences
of electrical conductance, zero-frequency charge susceptibility and Seebeck coefficient on the gate
voltages applied to the dots, allowing us to derive the charge stability diagram. The findings are
in agreement with the experimental observations notably with the occurrence of successive sign
changes of the Seebeck coefficient when varying the gate voltages. We interpret the results in terms
of the bonding and antibonding states produced by the level anticrossing effect which occurs in the
presence of a finite interdot coupling. We show that at equilibrium the boundary lines between
the domains with different dot occupancies in the charge stability diagram, take place when the
bonding and antibonding state levels are aligned with the chemical potentials in the leads. Finally
the total dot occupancy is found to be considerably reduced in the case in parallel compared with
the case in series, whenever the level energies in each dot are equal. We interpret this dip as a direct
manifestation of the interference effects occurring in the presence of the two electronic transmission
paths provided by each dot.

I. INTRODUCTION

The study of double quantum dot (DQD) has been the
focus of an increasing number of research works in the
last years both theoretically and experimentally. One
of the main reasons explaining these developments are
that DQDs are promising candidates to build quantum
bits of spin, i.e. spin qubits1,2, which surpass charge
qubits because of their longer coherence time3. More-
over, a DQD is a readily tunable system4–6: the number
of electrons in each of the two dots can be controlled
by varying gate voltages located at proximity. Proposals
to probe and drive the spin and charge states in DQDs
have also been made7–9. Note that the second dot is
used under certain circumstances to control the spin state
in the first dot benefiting from the Pauli spin blockade
effect10. Initially, experimental DQDs were built from
GaAs heterostructures11–17 but one has witnessed in the
last five years the development of studies in Si-based
DQDs which have the advantage over the former one to
present a longer spin coherence time18–29. The serial-
coupling of the two dots is by far the geometry that has
been the most studied. However, the case of two parallel
coupled dots is interesting too since it may give rise to
interference effects30–32 or other specific effects33–40. In
this paper, both geometries of serial-coupled and parallel-
coupled DQDs are considered.

From the theoretical side, the electrical transport prop-
erties in DQDs have been widely studied by using var-
ious methods going from scattering matrix theory41–43

for noninteracting case to Master or Bloch equa-

tion approaches44–50 and nonequilibrium Green function
methods51–56 for more general cases. A classical theory
has also been developed along which the DQD is mod-
eled as a network of resistors and capacitors which mimic
the tunnel and electrostatic couplings between dots and
leads4–6. The obtained results for the overall evolution
of the linear electrical conductance as a function of gate
voltages are as follows: (i) at weak interdot coupling,
conductance peaks are observed at the nodes of a square
lattice in the (ε1, ε2) phase space, where ε1 and ε2 are the
level energies of each of the two dots, delimiting domains
with different integer occupancies in the charge stabil-
ity diagram, (ii) at intermediate interdot coupling, the
nodes separate into pairs of triple points, corresponding
to the deformation of the square lattice into a honeycomb
lattice in the (ε1, ε2) phase space, and (iii) at strong in-
terdot coupling, the triple point separation reaches its
maximum and the DQD behaves as a single dot with an

occupancy 〈N̂1〉+ 〈N̂2〉, where 〈N̂1〉 and 〈N̂2〉 are the av-
erage rate of electronic occupancy in the dots 1 and 2
respectively.

Charge susceptibility and thermoelectrical properties in
DQDs have aroused much less attention than electri-
cal conductance while the growing-up activity in both
gate-reflectometry experiments23,25,57 and thermopower
measurements58–62 in spin qubits provides a strong mo-
tivation to intensify the theoretical efforts in that direc-
tion. From the theoretical side, one essentially refers to
the works of Refs. 63–65 where the charge susceptibil-
ity of a DQD is discussed in the context of mesoscopic
admittance in either the noninteracting case or the inter-
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acting case where it is affected by the Pauli spin blockade
effect. These works are in line with the seminal works
of Büttiker and collaborators66,67 which demonstrate the
importance of taking the charge susceptibility contribu-
tion into account in the mesoscopic capacitance of the
system, in addition to the standard geometrical capaci-
tances of the dots. The charge susceptibility reflects the
ability of the system when it is open, to adjust the av-
erage rate of electronic occupancy in the dots to the ex-
ternal excitation brought by the gate voltage Vg. It is
the relevant physical quantity behind reflectometry ex-
periments carried out in spin qubit systems and plays
a key role in the context of manipulation, coupling and
readout of qubits. Theoretical works devoted to the ther-
moelectrical properties of DQDs have highlighted specific
features such as the increase of the figure of merit when
the interdot coupling is reduced68, the decrease of the ef-
ficiency at maximum power in the presence of Coulomb
interactions in the dots69. Some other works have fo-
cused on the effects of electron-hole symmetry70,71 and
quantum interferences72,73 on thermopower. Moreover, it
has been shown that a DQD constitutes a minimal ther-
moelectric generator74 and the issue related to energy
harvesting is a central one75–77. All these results demon-
strate the need to develop further theoretical studies on
charge susceptibility and thermopower in DQDs.

In this paper, we simultaneously discuss electrical trans-
port, charge susceptibility and thermoelectrical proper-
ties of a DQD connected to two reservoirs (leads) of elec-
trons, whether the two dots are coupled in series or in
parallel, and contain a single energy level or multiple en-
ergy levels. The calculations are performed by using the
nonequilibrium Green function technique. We study the
evolution of the electrical conductance, Seebeck coeffi-
cient, and zero-frequency charge susceptibility with the
gate voltages applied to the two dots as well as the sta-
bility phase diagram, in various regimes going from weak
to strong interdot coupling. The results are valid at any
temperature, lead-dot and interdot couplings, bias and
gate voltages. They are in qualitative agreement with
experiments, with notably the succession of sign changes
of the Seebeck coefficient when varying the gate voltages
applied to the dots.

The plan of the paper is the following. In Sec. II A, we
present the hamiltonian describing the DQD system. We
adopt a unified presentation which enables to describe
the case when the dots are coupled in series as well as
the case in parallel. In Sec. II B, we give the analytical
expressions for the electrical current which allows us to
derive the linear electrical conductance and the Seebeck
coefficient. In Sec. II C, we derive the expression for the
zero-frequency charge susceptibility related to the occu-
pancies of the dots. The numerical results obtained for
conductance, Seebeck coefficient, occupancies of the dots
and zero-frequency charge susceptibility are presented in
Sec. III in the case when the dots are coupled in series,
and in Sec. IV when the dots are coupled in parallel.
Section V is a conclusion. Details about the determina-

FIG. 1. Schematic representation of the DQD coupled to L
and R leads in the serial (a) and parallel (b) geometries.

tion of the Green functions in the dots are reported in
Appendix A, whereas Appendix B presents the diagonal-
ization of the hamiltonian describing the DQD.

II. MODEL AND EXPRESSIONS FOR
ELECTRICAL CURRENT AND CHARGE

SUSCEPTIBILITY

A. Hamiltonian

We consider two quantum dots 1 and 2 coupled through
a tunnel barrier and connected to two metallic leads as
depicted in Fig. 1. Each of the two quantum dot contains
Nε and Mε discrete levels of energies ε1n and ε2m respec-
tively with n ∈ [0, Nε−1] and m ∈ [0,Mε−1]. The values
of ε1n and ε2m can be tuned by varying the nearby gate
voltages. The two metallic left (L) and right (R) leads
are characterized by their chemical potentials µL, µR and
temperatures TL, TR respectively. In the noninteracting
case that we consider, the hamiltonian of this DQD sys-

tem writes: Ĥ = Ĥdots + Ĥleads + Ĥhop, where Ĥdots and

Ĥleads are the hamiltonian of the disconnected DQD and

that of the disconnected leads respectively, and Ĥhop is
the hopping hamiltonian between the dots and the leads

Ĥdots =
∑
i=1,2
n∈i

εind̂
†
ind̂in +

∑
n∈1
m∈2

V1n,2md̂
†

2md̂1n + h.c. (1)

Ĥleads =
∑

α=L,R
k∈α

εαk ĉ
†
αk ĉαk (2)

Ĥhop =
∑

α=L,R
k∈α

∑
i=1,2
n∈i

Vin,αk ĉ
†
αkd̂in + h.c. (3)
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in which d̂ †in and d̂in are the creation and annihilation
operators of one electron in the dot i with energy εin,

the index i taking the values 1 and 2. ĉ †αk and ĉαk are
the creation and annihilation operators of one electron in
the lead α with momentum k and energy εαk, the index
α taking the values L and R. V1n,2m and Vin,αk are
the hopping matrix elements between the states |1n〉 and
|2m〉 in the dots and those between the states |in〉 in the
dot i and |αk〉 in the lead α. We have V∗1n,2m = V2m,1n

and V ∗in,αk = Vαk,in. The abbreviation h.c. stands for
hermitian conjugate.
We want to emphasize the very general feature of the
expression we introduce for the hamiltonian. It allows
one to describe all the possible assemblies of two dots in
a unified way: the serial assembly corresponding to the
case where V2m,Lk = V1n,Rk = 0 for any index n,m or k
(depicted in Fig. 1(a)), and the parallel one correspond-
ing to the case where Vin,αk 6= 0 for any index i, n, α or
k (depicted in Fig. 1(b)). The spin degree of freedom
can be added without any difficulty, which is essential if
one wants to describe spin qubits or magnetic leads for
instance. However, it will not be included in this pa-
per since we restrict our study to a noninteracting DQD
system connected to nonmagnetic leads.

B. Electrical current

In this section we give the expression for the electrical
current assuming that the noninteracting DQD is in a
steady state. For that we start from the current oper-

ator from the lead α defined as Îα(t) = −edN̂α(t)/dt

where N̂α(t) =
∑
k∈α ĉ

†
αk(t)ĉαk(t) is the average num-

ber of electrons in the lead α. In the steady state the
derivative with respect to the time variable is given by

dN̂α(t)/dt = [N̂α(t), Ĥ]/i~. In the limit of wide flat band
and energy-independent hopping integrals, one obtains

Iα =
e

h

∫ ∞
−∞

Tr
[
Γ
α
Gr(ε) Γ

α
Ga(ε)

]
×
(
fα(ε)− fα(ε)

)
dε (4)

where α = R for α = L and α = L for α = R, fα(ε) is the

Fermi-Dirac distribution function in the lead α, Gr(a)(ε)
is the retarded (advanced) Green function matrix in the
dots defined as

Gr(a)(ε) =

(
G
r(a)
11 (ε) G

r(a)
12 (ε)

G
r(a)
21 (ε) G

r(a)
22 (ε)

)
(5)

and Γ
α

is the dot-lead coupling matrix defined as

Γ
α

= 2πρα

(
|V1α|2 V ∗1αV2α

V1αV
∗
2α |V2α|2

)
(6)

with ρα, the density of states in the lead α. Tr[ ] is the
trace of the matrix. Note that the matrix Γ

α
is diagonal

in the case of a DQD coupled in series and nondiagonal
in the case in parallel. Equation (4) corresponds to the

Landauer formula for the electrical current with a trans-
mission coefficient equal to

Tαα(ε) = Tr
[
Γ
α
Gr(ε)Γ

α
Ga(ε)

]
(7)

Appendix A gives the details of these calculations per-
formed in the framework of the nonequilibrium Green
function technique78–80. The result for the expression of
the retarded Green function matrix in the dots is

Gr(ε) =
1

Dr(ε)

(
g̃r1(ε) g̃r1(ε)�r12(ε)g̃r2(ε)

g̃r2(ε)�r21(ε)g̃r1(ε) g̃r2(ε)

)
(8)

where Dr(ε) = 1 − g̃r1(ε)�r12(ε)g̃r2(ε)�r21(ε), g̃ri (ε) =
gri (ε)/(1 − �rhop,ii(ε)g

r
i (ε)), g

r
i (ε) is the retarded Green

function in the disconnected dot i defined as gri (ε) =∑
n∈i g

r
in(ε) with grin(ε) = (ε − εin + i0+)−1, and �rij(ε)

is the self-energy given by �rij(ε) = �rhop,ij(ε) + δjiV∗ii
with �rhop,ij(ε) =

∑
α=L,R

∑
k∈α V

∗
iαg

r
αk(ε)Vjα. In the

multilevel case, it has been assumed that the hopping in-
tegrals between the dots, Vin,jm, and between the dots
and the leads, Vin,k, do not depend on the indices n, m
and on the state k.

C. Zero-frequency charge susceptibility and dot
occupancies

The experimental works carried out on DQDs often
focused on establishing the charge stability diagram

which gives information on the charge occupancy 〈N̂i〉 =∑
n∈i〈d̂

†
ind̂in〉 of each of the two dots14,27,81,82. One of

the relevant physical quantity to discuss the charge sta-
bility diagram is the charge susceptibility which is the

linear response in charge Q̂(t) to the external excitation
brought by a time-dependent gate voltage ∆Vg(t) applied

to the system. Q̂(t), the charge accumulated on the ca-
pacitor plates ensuring the coupling between ∆Vg(t) and
the dots, is given by63

Q̂(t) = (C0
1 + C0

2 )∆Vg(t)̂I−
∑
i=1,2

αie∆N̂i(t) (9)

where C0
1 and C0

2 are the geometrical capacitances of
the totally disconnected quantum dots (closed system

with V12 = 0 and Viα = 0, ∀i, α) and Î is the identity
operator. The last term in Eq. (9) comes from the addi-

tional electrons in the dot i, denoted by ∆N̂i(t), induced
by ∆Vg(t) when the dots are connected (open system),
weighted by the lever-arm coefficient, αi measuring the
asymmetry of the capacitive coupling of the voltage gen-
erator to the dot i. The external excitation ∆Vg(t) intro-

duces the additional source term ∆Ĥ(t) = Q̂(t)∆Vg(t) in
the hamiltonian of Eqs. (1)-(3). From the linear response

theory83, the expectation value 〈Q̂(t)〉, up to the first or-
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der in ∆Vg(t), is given by

〈Q̂(t)〉 = (C0
1 + C0

2 )∆Vg(t)

−e2

∫ ∞
−∞

χc(t, t
′)∆Vg(t

′)dt′ (10)

where χc(t, t
′) is the dynamical charge suscepti-

bility given by the Kubo formula: χc(t, t
′) =∑

i,j=1,2 αiαjχij(t, t
′), with

χij(t, t
′) = iΘ(t− t′)〈[∆N̂i(t),∆N̂j(t′)]〉 (11)

By taking the Fourier transform of Eq. (10), one gets

〈Q̂(ω)〉 = C(ω)∆Vg(ω) where C(ω) = C0
1 +C0

2 − e2χc(ω)
is the mesoscopic capacitance66,67 of the DQD system,
with χc(ω) =

∑
i,j=1,2 αiαjχij(ω). Thus, in addition to

C0
1 +C0

2 , C(ω) contains an additional contribution, equal
to −e2χc(ω), related to the dynamical charge suscepti-
bility defined as

e2χc(ω) = lim
∆Vg(ω)→0

∑
i=1,2

αie
d〈∆N̂i(ω)〉
d∆Vg(ω)

(12)

In the following we will focus on the static charge sus-
ceptibility χc(ω = 0). To get it, we will not make use
of Eq. (12) but rather of the alternative and more direct
expression given by

χc(ω = 0) = −
∑

i,j=1,2

αiαj
∂〈N̂i〉
∂εj

(13)

where 〈N̂i〉 is the number of electrons in the dot i at
∆Vg(ω) = 0 given by

〈N̂i〉 = − i

2π

∑
n∈i

∫ ∞
−∞

dεG<in,in(ε) (14)

Equation (13) can be readily obtained from Eq. (12) by
noticing that the role of ∆Vg(ω = 0) comes down to shift
the level energy of the dot j according to εj → ε̃j =
εj − αje∆Vg(ω = 0), therefore

lim
∆Vg(ω=0)→0

d〈∆N̂i(ω)〉
d∆Vg(ω = 0)

=
∑
j=1,2

∂〈∆N̂i(ω = 0)〉
∂ε̃j

× dε̃j
d∆Vg(ω = 0)

= −e
∑
j=1,2

αj
∂N̂i
∂εj

(15)

Incorporating Eq. (15) into Eq. (12), one obtains
Eq. (13). We set α1 = α2 = 1 in the rest of the pa-
per. However, the influence of asymmetric capacitive
couplings can be readily studied by using the results we
obtain for arbitrary values of α1 and α2.
In this section one has analytically derived all the ingre-
dients needed to characterize the electrical and thermo-
electrical properties of a DQD whether it is in serial or
parallel geometry. In the next two sections, one succes-
sively considers the DQD in series and in parallel for both

FIG. 2. The four studied geometries: (a) SL-DQD in series,
(b) ML-DQD in series, (c) SL-DQD in parallel, and (d) ML-
DQD in parallel. We take ε1n = ε1 + n∆ε1 and ε2n = ε2 +
n∆ε2 with the integer index n ∈ [0, 2] in panels (b) and (d)
since one considers three energy levels in each of the two dots
in the ML-DQD case. The dotted black lines symbolize the
couplings between the various parts of the system.

single-level (SL) and multilevel (ML) dots. The electri-
cal conductance G = dIL/dV , with V = (µL − µR)/e
the bias voltage between the two leads, and the Seebeck
coefficient S = G−1dIL/d∆T , with ∆T the temperature
difference between the left and right leads84, are calcu-
lated numerically with the help of Eq. (4). The zero-
frequency charge susceptibility χc(0) and the total DQD

occupancy N = 〈N̂1〉+〈N̂2〉 are calculated from Eqs. (13)
and (14). The calculations are performed in the linear re-
sponse regime, i.e. in the limit V → 0 and ∆T → 0, but
can be readily extended to the nonlinear response regime.
We study the variations of G, S, N , and χc(0) as a func-
tion of gate voltages which act on the positions of energy
levels ε1n and ε2n of the two dots constituting the DQD
system.

III. DISCUSSION FOR A DQD IN SERIES

A. SL-DQD in series

We first consider the case of a DQD system in series with
a single energy level in each of the two dots (see Fig. 2(a)).
Figure 3 shows the color-scale plots of G, S, N , and χc(0)
as a function of the energies ε1 and ε2, whereas Fig. 4
shows the plots of the same physical quantities as a func-
tion of ε1 along either the first or the second diagonal
of equation ε1 = ε2 or ε1 = −ε2, respectively. We de-
scribe the results obtained in Figs. 3 and 4 and then
provide an interpretation for them. In a general way, we
point out that all the color-scale plots in Fig. 3 have two
axes of symmetries which are the first and second diag-
onals. Figure 3(a) shows that the conductance G is the
largest in the central region surrounding the origin point
O (ε1 = 0, ε2 = 0), with the presence of two peaks along



5

FIG. 3. Color-scale plots of (a) the linear conductance G,
(b) the Seebeck coefficient S, (c) the total dot occupancy N ,
and (d) the zero-frequency charge susceptibility χc(0) for a
SL-DQD connected in series as a function of ε1 and ε2 for
µL,R = 0, kBT = 0.01, V12 = 0.1, and ΓL,11 = ΓR,22 = 0.1.
In panel (a) the black line marks the first diagonal of equation
ε1 = ε2, whereas the red line shows the second diagonal of
equation ε1 = −ε2 along which the plots of Fig. 4 are drawn.

In panel (c) the domain with occupancies 〈N̂1〉 and 〈N̂2〉 of

the dots 1 and 2 are indicated under the form (〈N̂1〉, 〈N̂2〉),
and the dashed and dotted black arcs represent the boundary
lines B+ and B− between domains with different occupancies.
Panel (d) shows the four quadrants: I (top right), II (top left),
III (bottom left) and IV (bottom right).

the first diagonal, equidistant from O. Besides, O behaves
as a saddle point in the sense that G is maximal at that
point when sweeping along the second diagonal direction,
while it is a local minimum along the first diagonal one
(see Fig. 4(a)). When getting farther from the origin O,
G gradually decreases forming a star-shaped pattern in
the plane (ε1, ε2) as displayed in blue color in Fig. 3(a),
until reaching the zero value in the remaining parts of
the plane. The color-scale plot of the Seebeck coefficient
displayed in Fig. 3(b) shows that S is zero (green color)
along the boundary lines B+ and B− located in quadrants
III and I, as well as inside a band located on either side of
the second diagonal. It takes positive values (red color)
inside the top-right domain delimited by the boundary
line B−, and vice-versa negative values (violet color) in-
side the respective bottom-left domain delimited by B+.
In the intermediate area located between the two bound-
ary lines, S exhibits pockets of local maxima and minima
located in the vicinity of B+ and B−. In the plot of S as
a function of ε1 along the first and second diagonal dis-
played in Fig. 4(b), one can see that S is zero all along
the second diagonal, while it changes of sign three times
when sweeping along the first diagonal, once at ε1 = 0

FIG. 4. Dependences as a function of ε1 along the first di-
agonal ε1 = ε2 and the second diagonal ε1 = −ε2 of (a) the
linear electrical conductance G, (b) the Seebeck coefficient S,
(c) the dot occupancy N , and (d) the zero-frequency charge
susceptibility χc(0) for a SL-DQD connected in series. The
choice of parameters is the same as in Fig. 3

and the two other times at the positions of the maxima
of G observed in Fig. 4(a). The behavior for S which we
obtain with these three observed changes of sign, are in
agreement with both the theoretical results of Ref. 85
and the experimental results obtained in GaAs/AlGaAs
heterostructures which are reported in Fig. 3 of Ref. 58
and Fig. 4 in Ref. 61. We underline that in the experi-
mental works Vth = −S∆T is plotted instead of S in the
results presented here. Figure 3(c) shows the evolution
of N as a function of ε1 and ε2. It reveals the charge
stability diagram with the presence of four domains de-

noted as (〈N̂1〉, 〈N̂2〉) inside which 〈N̂1〉 and 〈N̂2〉 take
values close to (0,0), (1,0), (0,1) or (1,1). As can be
seen, the (0,0) and (1,1) domains are shrunk within the I
and III quadrants, compared to the uncoupled DQD case
(at V12 = 0) for which the diagram would have shown a
tiling on a square lattice set on the four quadrants (see
Figs. 13(a), (c), and (e) in Appendix B). Note that the
boundary lines B− and B+ delimiting the (0,0) and (1,1)
domains have the shape of arcs and that N takes a con-
stant value along the second diagonal (see red curve in
Fig. 4(c)). The evolution of the zero-frequency charge
susceptibility χc(0) displayed in Figs. 3(d) and 4(d) fol-
lows the same trend. It shows the presence of two lines
of maxima, located precisely on the boundary lines B+

and B− highlighted in Fig. 3(c). As for G, the origin
O behaves as a saddle point, χc(0) being maximal when
sweeping along the second diagonal direction, while it is
a local minimum along the first diagonal one.
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The results obtained for G, S, N and χc(0) can be in-
terpreted in a simple way by relying on the properties
presented in Appendix B. It is explained how, when the
DQD system is disconnected from the leads, the hamil-

tonian Ĥdots describing the system can be diagonalized
leading to the eigenenergies E+

dots and E−dots, the val-
ues of which are given by Eq. (B2). The correspond-
ing antibonding and bonding eigenstates4,33 |+〉 and |−〉
are defined by Eqs. (B3) and (B4). Consequently the
spectral density A11(ε) in the dot 1, respectively A22(ε)
in the dot 2, is a linear combination of delta functions
within a multiplicative factor 2π, centered at the val-
ues of eigenenergies E+

dots and E−dots, corresponding to
the spectral densities of eigenstates A+(ε) and A−(ε),
with weighting factors equal to |u|2 and |v|2, respectively
|v|2 and |u|2 in the dot 2, where |u|2 and |v|2 are de-
fined by Eqs. (B5) and (B6). The physical meaning of
this diagonalization is that the DQD system behaves as
an effective single quantum dot with two energy levels at
energies E−dots and E+

dots. The charge stability diagram of
the disconnected DQD system can easily be derived from
the latter results. At equilibrium the boundary lines be-
tween the domains of different occupations are obtained
when any of the two levels of energies E+

dots and E−dots is
aligned with the chemical potential of the leads, taken to
0 (µL,R = 0). The equations of the boundary lines B+

and B−, hence given by E+
dots = 0 and E−dots = 0, are

ε1ε2 = |V12|2 (see Appendix B). They correspond to the
two branches of an hyperbole as shown in Figs. 13(a),
(c), and (e) for different values of the interdot coupling
V12. The distance between the two branches is minimal
along the first diagonal, taking the value of 2|V12|. They
correspond to the two boundary lines found in quadrants
I and III in Fig. 3(c): the curve B− of equation E−dots = 0
corresponds to the boundary line in quadrant I, whereas
the curve B+ of equation E+

dots = 0 corresponds to the
boundary line in quadrant III. Inside the top-right do-
main delimited by the curve B−, both E−dots and E+

dots
are positive and the two corresponding energy levels are
empty. It gives rise to the domain (0,0) in the charge
stability diagram (by making use of the results on the
spectral densities Aii(ε) mentioned above and by noticing
that |u|2+|v|2 = 1). Inside the bottom-left domain delim-
ited by the curve B+, both E−dots and E+

dots are negative
and the corresponding two energy levels are occupied. It
gives rise to the domain (1,1) in the charge stability dia-
gram. Inside the area located between the two boundary
lines B+ and B−, centered around the second diagonal,
E−dots is negative while E+

dots is positive, hence only the

lower energy level at E−dots is occupied. It corresponds
either to the domain (1,0) or (0,1) in the charge stability
diagram. The line of separation between these latter two
domains is along the first diagonal. The results obtained

above from the diagonalization of Ĥdots apply to the case
of a DQD disconnected from the leads. However it is easy
to realize that connecting the DQD system to the leads,
would introduce a broadening of the eigenenergy levels
described above together with an eventual renormaliza-

tion of the eigenenergies values. It would not change the
general shape of the charge stability diagram discussed
above, but would simply widen the boundary lines sep-
arating the different domains. It allows one to explain
the charge stability diagram obtained in Fig. 3(c) with
a remarkable agreement on the value of the minimal dis-
tance observed between the two boundary lines, equal
to 2|V12|.
We now interpret the results obtained for the lin-
ear electrical conductance as reported in Figs. 3(a)
and 4(a). From Eqs. (A41) and (B3-B6), the lin-
ear conductance at zero temperature is proportional to:
ΓL,11ΓR,22|uv|2[A+(0) + A−(0)]. The spectral densities
A+(0) and A−(0) are maximal when the point (ε1, ε2)
corresponding to the energies of the dots falls in one of
the boundary lines B+ and B−. However in order to get
the linear conductance, one has to weight the result for
the spectral densities of eigenstate at ε = 0 by a multi-
plicative coherence factor equal to |uv|2. Typically |uv|2
is the largest along the first diagonal (ε1 = ε2) where it
equals the value 1/4. Moreover u → 1 and v → 0 along
the end-part of the boundary lines asymptotic to the ε2-
axis, whereas u → 0 and v → 1 along the end-part of
the boundary lines asymptotic to the ε1-axis. Combining
these arguments, the peaks of G in the plane (ε1, ε2) arise
at the intersection of the boundary lines B+ and B− and
of the first diagonal as seen in Figs. 3(a) and 4(a). The re-
sults obtained for the Seebeck coefficient in Figs. 3(a) and
4(a) can be interpreted in the same way. From Ref. 86,
the Seebeck coefficient is proportional to the average en-
ergy of the charge carriers: S = −〈E − µ〉/kBT which is
zero in two types of situations: either when the chemical
potential µ (with µ taken to 0 here) falls at the center of
one of the peaks of the spectral density of states, that is
to say at E+

dots and E−dots, or when the chemical poten-
tial falls at equal distance from the two peaks. In either
case, there are as many carriers with negative energies
than carriers with positive energies and hence the aver-
age energy of carriers is zero (electron-hole symmetry).
This explains why the zeros of S in Fig. 3(b) occur along
the boundary lines B− and B+, as well as along the sec-
ond diagonal, where (E+

dots +E−dots)/2 = 0 since ε1 = −ε2

there, as seen in Figs. 4(b). The cancellation of S could
be used to measure the value of the interdot coupling V12

which is directly given by the distance between the can-
celing points. The interpretation of the results obtained
for the zero-frequency charge susceptibility follows in the
same way: χ(0) determined from Eq. (13) is maximal in
the plane (ε1, ε2) when the spectral densities A+(0) and
A−(0) are maximal, i.e. when the point (ε1, ε2) falls in
one of the boundary lines B+ and B−.

B. ML-DQD in series

We examine the case of a ML-DQQ in series. As an ex-
ample we consider the situation where each of the quan-
tum dots i = 1, 2 has three energy levels of energies
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εin = εi + n∆εi with the integer index n ∈ [0, 2] and
∆εi = 1 (see Fig. 2(b)). The results obtained for the
color-scale plots of G, S and N , χc(0) as a function of ε1

and ε2 are reported in Figs. 5 and 6 respectively in the
different interdot coupling regimes.

In the weak interdot coupling regime, i.e. for |V12| �
ΓL,11,ΓR,22, the electrical conductance G displayed in
Fig. 5(a) exhibits peaks centered at the nodes of a square
lattice constituted by the vertical lines ε1n = 0 and
horizontal lines ε2n = 0. Moreover in the continua-
tion of these peaks, one glimpses a slight enhancement
of G along the lines of the square lattice. The results
for N reported in Fig. 6(a) reveals the charge stabil-
ity diagram with the presence of 4 × 4 = 16 domains
where N changes by plateau. The boundary lines sepa-
rating the domains coincide with the lines of the square
lattice highlighted above. The top-right corner domain
corresponds to the completely empty DQD system de-
noted as (0,0). Whereas one would have expected a com-
pletely filled DQD system in the bottom-left corner do-
main with an occupation (3,3), we point out that the
maximal value of N reached there is close to 5, instead
of 6, due to the relatively weak value of the dot-lead cou-
plings (ΓL,11 = ΓR,22 = 0.1). In the color-scale plot of
χc(0) shown in Fig. 6(b), χc(0) is maximal along the same
boundary lines as for N , reaching the zero value inside
the delimited domains. Finally the color-scale plot of S
displayed in Fig. 5(b) shows that S changes of sign sev-
eral times in the plane (ε1, ε2) as previously highlighted
in Ref. 87.

In the intermediate interdot regime, i.e. for |V12| of the
order of ΓL,11,ΓR,22, the results for the color-scale plots
of G displayed in Fig. 5(c) are strongly reminiscent of
the results obtained in the case of the single-level DQD
in series (see Fig. 3(a)). G is the largest in the central
areas surrounding the nodes of the square lattice, with
the presence of two peaks on either side of the nodes.
These two peaks are located along a line parallel to the
first diagonal. When getting farther from these nodes, G
gradually decreases along lines forming a characteristic
star-shaped pattern, whereas it is zero in the remaining
part of the plane. The results for N displayed in Fig. 6(c)
still show the presence of 16 domains of different occupan-
cies. The boundary lines between these domains are no
longer straight lines but becomes sinuous, the vertices of
the square lattice having separated into two triple points
in complete agreement with standard results4,5. These
triple points are at the intersection of the boundaries
delimiting three domains of different occupancies. In the
color-scale plot of χc(0) shown in Fig. 6(d), χc(0) is max-
imal along the same boundary lines as in Fig. 6(c), reach-
ing the zero value inside the delimited domains. Finally
the color-scale plot of S displayed in Fig. 5(d) shows that
S exhibits successive changes of sign in the plane (ε1, ε2),
being of positive sign in the areas delimited by the con-
vex parts of the sinuous boundary line facing top-right,
i.e. similar to the area in quadrant I of Fig. 3(b), and of
negative sign in its concave parts facing bottom-left, i.e.,

similar to the area in quadrant III in Fig. 3(b). Besides S
is zero inside broad strips surrounding either the second
diagonal or the two lines parallel to the second diagonal.
Hence S changes sign nine times when sweeping along
the first diagonal, instead of five times in Fig. 5(b).

In the strong interdot coupling regime, i.e. for |V12| �
ΓL,11,ΓR,22, the square lattice structure visible in the
previous figures has disappeared, giving place to an
oblique structure in the direction of the second diago-
nal as can be seen in Figs. 5(e) and 5(f), and Figs. 6(e)
and 6(f) for G, S, N and χc(0). This means that the two
quantum dots have merged into one single quantum dot

of occupation 〈N̂1〉 + 〈N̂2〉. In Fig. 6(e), one sees that
the change of N by plateau observed in the weak and
intermediate regimes, is replaced by a smooth variation.
The orders of magnitude obtained for N and χc(0) are
ten times smaller in the case of strong coupling regime
compared to the weak and intermediate coupling regimes,
the observed reduction being of the same magnitude as
the reduction of ΓL,11 and ΓR,22 values. The results for
S shown in Fig. 5(f) are in qualitative agreement with
the experimental ones obtained in GaAs/AlGaAs het-
erostructures displayed in Fig. 2 of Ref. 58.

The whole set of these results can be physically inter-
preted by relying on the properties presented in Ap-

pendix B where it is shown how the hamiltonian Ĥdots

describing the three-level DQD system can be diagonal-
ized leading to six eigenenergies Eλdots whose values are
determined numerically. The charge stability diagram
showing N can easily be derived from that. As in the
case of the SL-DQD system, the boundary lines between
the domains of different occupations are obtained when
any of six levels of energies Eλdots is aligned with the
chemical potentials of the leads both taken to 0 at equi-
librium (µL,R = 0). The boundary lines of equations
Eλdots = 0 are precisely the equienergetic curves repre-
sented in Figs. 13(b), 13(d), and 13(f) for different values
of the interdot coupling V12. One recovers the shapes of
the boundary lines obtained above, going from straight
lines on a square lattice in the weak interdot coupling
regime to sinuous lines in the intermediate and strong
interdot coupling regime. As emphasized in Appendix B,
as soon as V12 becomes finite, a level anticrossing effect
takes place at the vicinity of the nodes of the square lat-
tice, the vertices of the square lattice splitting into two
triple points as observed in Fig. 13. The interpretation
of the other results obtained for G, S, and χc(0) is mod-
eled on the one given above in the single-level case with
the presence of some coherence factors which plays a role
of extinction for some parts of the equienergetic curves
Eλdots = 0.
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FIG. 5. Color-scale plots of G and S for a ML-DQD connected
in series as a function of ε1 and ε2 at µL,R = 0, kBT = 0.01
for: (a), (b) weak interdot coupling (V12 = 0.01, ΓL,11 =
ΓR,22 = 0.1); (c), (d) intermediate interdot coupling (V12 =
ΓL,11 = ΓR,22 = 0.1); and (e), (f) strong interdot coupling
(V12 = 0.5, ΓL,11 = ΓR,22 = 0.01).

IV. DISCUSSION FOR A DQD IN PARALLEL

A. SL-DQD in parallel

The schematic diagram of the DQD in parallel with a
single level in each dot is depicted in Fig. 2(c). The color-
scale plots for G, S, N and χc(0) as a function of ε1 and
ε2 are shown in Fig. 7. The results are very different from
those obtained in the case in series even if in all the plots
in Fig. 7, one still glimpses the presence of the boundary
lines B+ and B− in places almost unchanged compared
to the case in series. Strikingly, whereas the color-scale
plots of Fig. 3 obtained in the serial cases had two axes of
symmetry along the first and the second diagonals, only
the axial symmetry with respect to the first diagonal is
conserved in Fig. 7 while the one with respect to the sec-
ond diagonal is lost. The color-scale of G in Fig. 7(a)
shows that instead of the two peaks for G in the serial
case which occurred at the intersection of the boundary
lines B+ and B− and of the first diagonal, the positions

FIG. 6. Color-scale plots of N and χc(0) for a ML-DQD
connected in series as a function of ε1 and ε2. The parameters
are the same as in Fig. 5.

of the maxima of G now spread all along the bound-
ary line B+ in the bottom-left corner, whereas those in
the top-right corner are located along the end-parts of
the boundary line B−. Moreover one can notice that
the conductance ridges thus formed are much broader in
the bottom-left corner than in the top-right corner, with
higher values reached along the former rather than along
the latter ones. We also point out that the amplitude of
the conductance to the maximum is about 40% higher
than in the serial case. The plots of G along the first and
second diagonals displayed in Fig. 8(a) bring a comple-
mentary information to that. When sweeping along the
first diagonal, G exhibits a single peak at a negative value
of ε1 in perfect agreement with the result displayed in
Fig. 2 of Ref. 33, whereas the peak of G along the second
diagonal is centered at the zero value.

The results obtained for S displayed in Fig. 7(b) shows
that S still takes positive values inside the top-right do-
main and negative values inside the bottom-left domain
as it was the case for the single-level DQD case, with a
strong reduction in the order of magnitude of the ampli-
tude compared to the serial configuration results shown
in Fig. 3(b). In the intermediate area located between
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FIG. 7. Color-scale plots of (a) the linear electrical conduc-
tance G, (b) the Seebeck coefficient S, (c) the total dot oc-
cupancy N , and (d) the zero-frequency charge susceptibility
χc(0) for a SL-DQD connected in parallel as a function of ε1
and ε2 for µL,R = 0, kBT = 0.01, V12 = 0.1, and Γα,ij = 0.1
for both α = L,R and i, j = 1, 2.

these two domains, S exhibits a series of minima of neg-
ative sign inside a pair of two triangular pockets along
the boundary line delimiting the top-right domain as in
Fig. 3(b). Nevertheless we point out three major differ-
ences: (i) the base of these triangles is a straight line
parallel to the second diagonal shifted to the top-right
corner from the second diagonal by a distance equal to
|V12| and one has S = 0 on this base; (ii) the two trian-
gles are disjoint at the center showing a gap around the
first diagonal in which S takes a positive value close to
zero; and (iii) the negative values reached inside the tri-
angles are about twice larger than inside the bottom-left
corner. Moreover one still observes the presence a series
of maxima of positive sign inside a pair of two triangular
pockets as in Fig. 3(b), the difference in the parallel case
is that these two triangular pockets are contiguous to the
previous ones. Besides they share with the negative sign
triangles the same three peculiarities i.e. (i), (ii), and
(iii) as far as we speak of their positive sign values. Fi-
nally S gradually decreases keeping a positive sign inside
the area located between the latter positive sign trian-
gles and the boundary line surrounding the bottom-left
domain, exhibiting a gap around the first diagonal. The
plots of S along the first and second diagonals displayed
in Fig. 8(b) completes this information. Along the first
diagonal, S goes from negative to positive values with in-
creasing ε1, showing one change of sign instead of three in
the serial configuration. Along the second diagonal, S is
no longer zero since the electron-hole symmetry holding
in the serial case is now lost, instead S keeps a positive

FIG. 8. Dependences as a function of ε1 along the first diag-
onal ε1 = ε2 and second diagonal ε1 = −ε2 of (a) G, (b) S,
(c) N , and (d) χc(0) for a SL-DQD connected in parallel. The
parameters are the same as in Fig. 7.

value all along the second diagonal with a marked min-
imum around ε1 = 0. The electron-hole symmetry is
however restored with S = 0 on a line which corresponds
to the base of the triangles discussed there before (see the
green line parallel to the second diagonal in Fig. 7(b)).

The color-scale plot of N displayed in Fig. 7(c) still
shows the presence of the boundary lines in top-right
and bottom-left corners as in Fig. 3(c). However one
can notice important differences in comparison to the
results obtained for the case in series: (i) the value of
N is strongly reduced inside the domain in the bottom-
left corner, reaching the value 0.8 instead of 1.6; (ii) an
elongated tip is formed along the first diagonal extend-
ing from the domain in the top-right corner to the other
side where it cuts the bottom-left corner domain in half.
Strikingly the value of N is strongly reduced along this
tip going from 0 to 0.8 when sweeping along the first
diagonal as shown in Fig. 8(c). Moreover the plot of
N along the second diagonal displayed in Fig. 8(c) too
shows a marked minimum at ε1 = 0 at the crossing with
the elongated tip previously reported.

Finally the evolution of χc(0) displayed in Fig. 7(d) fol-
lows the same trend. It shows lines of maxima along the
same boundary lines highlighted in Fig. 7(a) but the max-
ima are much more pronounced along the boundary lines
in the top-right corner in comparison to the ones in the
bottom-left corner. Besides these two lines of maxima are
cut into half at the crossing with the first diagonal with
the opening of a gap around it. As shown in Fig. 8(d),
when sweeping along the first diagonal, χc(0) exhibits a
peak at a negative sign value of ε1, whereas χc(0) along
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FIG. 9. Dependences as a function of ε1 of N along (a) the
first diagonal and (b) the second diagonal as a function of ε1
at µL,R = 0, kBT = 0.01, V12 = 0.1 for ΓL,11 = ΓR,22 = 0.1,
all the other dot-lead couplings being equal to ΓP , meaning
that the SL-DQD is in series when ΓP = 0 (black curves)
and in parallel when ΓP = 0.1 (blue curves). The red curves
correspond to an intermediate situation (ΓP = 0.05).

the second diagonal exhibits two peaks located on both
sides of the zero value.
As far as the physical interpretation of the results ob-
tained for G, S, N , and χc(0) is concerned, we would say
that even though the basic feature comes from the forma-
tion of the boundary lines which occurs when one of the
eigenenergies in the system is aligned with the chemical
potential of the leads with the coherence factors acting as
extinction factors, as explained in Sec. III A, the paral-
lel configuration introduces some noticeable changes with
comparison to the serial configuration as the existence of
more than one transmission channels. The differences
observed in the behaviors of G, S, N , and χc(0) com-
pared to the case in series results from the interference
effects which take place in the presence of two transmis-
sion channels as it is the case in the parallel configuration.
We give below some simple arguments, developed within
the zero temperature and zero interdot coupling limit,
which help in elucidating the origin of the formation of
the elongated tip mentioned above. In the limit of zero
temperature and zero interdot coupling, the expression
of N can be derived analytically from Eq. (14). One gets
for a SL-DQD in series

Nseries = 1− 1

π
arctan

(
2ε1

ΓL,11

)
− 1

π
arctan

(
2ε2

ΓR,22

)
(16)

This result explains why according to the sign of ε1 and
ε2, the total occupancy N varies by plateau along which
it takes either the value 0, 1 or 2 at most, with a change
from one plateau to the other spreading over a width
ΓL,11 or ΓR,22. For a SL-DQD in parallel, one gets when
ε1 = ε2,

Nparallel =
1

2
− 1

π
arctan

( ε1

2Γ

)
(17)

where Γ = Γα,ij for any α = L,R and i, j = 1, 2, i.e.,
for symmetrical couplings. This expression has to be

compared to 〈N̂〉series = 1−(2/π) arctan(2ε1/Γ) obtained
from Eq. (16) when ε1 = ε2. In the limit of large negative
ε1 compared to Γ, it leads to Nseries ≈ 2 and Nparallel ≈ 1,
explaining the reduction of N by a factor two along the
first diagonal (see Fig. 9). Physically, it corresponds to
the decoupling of one of the two eigenstates of the DQD,
the bonding eigenstate, from the leads.

B. ML-DQD in parallel

We examine the case of a ML-DQQ in parallel schemat-
ically represented in Fig. 2(d) taking as an example the
case of three energy levels of energies as in the case of the
ML-DQD in series. The results obtained for the color-
scale plots of G, S and N , χc(0) as a function of ε1 and
ε2 are reported in Figs. 10 and 11, respectively, in the
different interdot coupling regimes.

In the weak interdot coupling regime, i.e., for |V12| �
Γα,ij , the color-scale plot for G reported in Fig. 10(a) is
strongly modified compared to the configuration in series,
showing conductance ridges along the lines of a slightly
distorted square lattice. The color-scale plot of χc(0)
shown in Fig. 11(b) looks like that of G, with maxima
along the lines of a lattice, with the presence of additional
pairs of localized peaks around the nodes of the lattice.
The results for N reported in Fig. 11(a) reveal the charge
stability diagram with the presence of 4×4 = 16 domains
as for the configuration in series. However one notices an
important difference which is provided by the presence
of elongated tips along the first diagonal as well as along
the secondary first diagonals, with a dip of N along them,
similarly to what is observed in the case of the SL-DQD
in parallel. Finally the color-scale plot of S displayed in
Fig. 10(b) shows that S changes sign several times in the
plane (ε1, ε2).

In the intermediate interdot regime, i.e., for |V12| of the
order of Γα,ij , the results for the different color-scale plots
of G, S, N and χc(0) are strongly reminiscent of the re-
sults reported in Fig. 7 obtained in the case of the SL-
DQD in parallel with the same choice of parameters. The
reported pattern corresponds to the duplication of the
pattern observed in the single-level case, in each cell of a
square lattice. Here again the presence of the elongated
tips are clearly visible in the charge stability diagram re-
vealed by the color-scale plot ofN displayed in Fig. 11(d).

In the strong interdot coupling regime, i.e., for |V12| �
Γα,ij , the square lattice structure visible in the previous
figures has disappeared, giving place to an oblique struc-
ture in the direction of the second diagonal as can be
seen in Figs. 10(e) and 10(f), and 11(e) and 11(f) for G,
S, N , and χc(0) respectively. In addition, the extremi-
ties of the lines of maxima for G, S, and χc(0) disappear
in the top-right part of the plane (ε1, ε2) compared to
the case of ML-DQD in series. The color-scale plot of N
shows the presence of a predominant tip along the first
diagonal.
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FIG. 10. Color-scale plots of G and S for a ML-DQD con-
nected in parallel as a function of ε1 and ε2 at µL,R = 0,
kBT = 0.01 for: (a), (b) weak interdot coupling (V12 = 0.01
and Γα,ij = 0.1); (c), (d) intermediate interdot coupling
(V12 = Γα,ij = 0.1); and (e), (f) strong interdot coupling
(V12 = 0.5, Γα,ij = 0.01).

V. CONCLUSION

We have studied a noninteracting DQD system regard-
less of its geometry, either in series or in parallel, and
analyzed its electrical and thermoelectrical properties.
In the case of single-level dots, the expressions for the
nonequilibrium Green functions and electrical current
are derived exactly. In the case of multilevel dots, an
analytical calculation is performed assuming that the
hopping integrals between the two dots and between
the dots and the leads are independent of energy. The
whole set of results apply to any temperatures, bias/gate
voltages, and coupling strengths. The numerical results
for the linear electrical conductance, the zero-frequency
charge susceptibility, the Seebeck coefficient, and the dot
occupancy are discussed in the light of previous works.
In particular, the obtained results for G and χc(0)
show that with increasing interdot coupling, the system
gradually changes from a regime where the two dots
are almost decoupled to a regime where pairs of triple

FIG. 11. Color-scale plots of N and χc(0) for a ML-DQD con-
nected in parallel as a function of ε1 and ε2. The parameters
are the same as in Fig. 10.

points have separated, until a regime where the two dots
merge into a single one, in qualitative agreement with
experiments, in particular in the case of a ML-DQD
system in series. One observes that for a SL-DQD in
series, the Seebeck coefficient undergoes three successive
sign changes with increasing dot gates, again in good
agreement with experiments. The cancellation of S
arises when the average energy of the charge carriers can-
cels, meaning that the system reaches an electron-hole
symmetry situation. A level anticrossing effect resulting
from finite interdot coupling manifests itself in the
charge stability diagram with boundary lines separating
the domains of different dot occupancies occurring when
the energy levels of the bonding and antibonding states
are aligned with the chemical potentials in the leads. In
a striking way, we find a considerable reduction of the
total dot occupancy in the case in parallel compared to
the case in series, when the energy levels in each of the
two dots are equal. We interpret this reduction as an
effect of interferences produced by the presence of two
transmission electronic paths in the parallel geometry
and by the fact that the bonding eigenstate becomes
disconnected from the leads. The approach developed in
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this paper can be directly used to study DQD systems
driven out-of-equilibrium by applying either a finite bias
voltage or a temperature gradient between the two leads,
and/or in the presence of asymmetric couplings. The
determination of the noise spectrum and finite-frequency
charge susceptibility in the noninteracting DQD system
is made in Ref. 88 following the theoretical approach
developed in Refs. 89 and 90. A direct and essential
extension of this work consists of taking into account the
spin degrees of freedom and the Coulomb interactions in
the dots.
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De Franceschi, V. Kashcheyevs, R. Maurand, C. Mora,
Y.-M. Niquet, S. Sahoo, M. Sanquer and R. Whit-
ney for valuable discussions. They acknowledge the
CEA-Programme Transverse Nanosciences and CEA-
Eurotalents for financial support.

Appendix A: Electrical current in a DQD

1. Equations of motion

The Green functions in the dots are obtained by using
the equation of motion approach. We adopt the Zubarev
notation91 along which the retarded Green function in

energy Gr
Â,B̂

(ε) associated with operators Â and B̂ is de-

noted by 〈〈Â; B̂〉〉, with Gr
Â,B̂

(ε) the Fourier transform

of the retarded Green function in time, Gr
Â,B̂

(t, t′) =

−Θ(t − t′)〈{Â, B̂}〉, Θ being the Heaviside step func-
tion. By using this notation, the equation of motion for

〈〈Â; B̂〉〉 writes

ε〈〈Â; B̂〉〉 = 〈{Â, B̂}〉+ 〈〈[Â, Ĥ]; B̂〉〉 (A1)

where [Â, Ĥ] is the commutator between the operator Â

and the hamiltonian Ĥ of the DQD system, and {Â, B̂}
is the anticommutator between the operators Â and B̂.
Applying Eq. (A1) to the various operators in the dots
and the leads, one gets

ε〈〈d̂in; d̂ †jm〉〉 = δijδnm + 〈〈
[
d̂in, Ĥ

]
; d̂ †jm〉〉 (A2)

ε〈〈ĉαk; d̂ †jm〉〉 = 〈〈
[
ĉαk, Ĥ

]
; d̂ †jm〉〉 (A3)

since {d̂in, d̂ †jm} = δijδnm and {ĉαk, d̂ †jm}=0. The cal-
culation of the nonvanishing commutators between the

operators d̂in and ĉαk and the various terms of Ĥ leads

to [
d̂in, Ĥdots

]
= εind̂in +

∑
n′∈i

V∗
in,in′ d̂in′ (A4)

[
d̂in, Ĥhop

]
=

∑
α=L,R
k∈α

V ∗in,αk ĉαk (A5)

[
ĉαk, Ĥleads

]
= εαk ĉαk (A6)[

ĉαk, Ĥhop

]
=
∑
i=1,2
n∈i

Vin,αkd̂in (A7)

where i = 2 when i = 1 and i = 1 when i = 2.
By collecting these contributions together and defining
the retarded Green functions in the dots Grin,jm(ε) =

〈〈d̂in; d̂ †jm〉〉, one gets the set of coupled equations

Grin,jm(ε) = δijδnmg
r
in(ε) + grin(ε)

∑
n′∈i

V∗
in,in′G

r
in′,jm

(ε)

+grin(ε)
∑

α=L,R
k∈α

V ∗in,αkG
r
αk,jm(ε) (A8)

Grαk,jm(ε) = grαk(ε)
∑
i′=1,2
n′∈i′

Vi′n′,αkG
r
i′n′,jm(ε) (A9)

where grin(ε) = (ε − εin + i0+)−1 and grαk(ε) = (ε −
εαk + i0+)−1 are the retarded Green functions in the
disconnected dot i and lead α, respectively. By inserting
Eq. (A9) into Eq. (A8), one finally obtains a Dyson-like
equation

Grin,jm(ε) = δijδnmg
r
in(ε) +

∑
n′∈i

grin(ε)V∗
in,in′G

r
in′,jm

(ε)

+
∑

α=L,R
k∈α

∑
i′=1,2
n′∈i′

grin(ε)V ∗in,αkg
r
αk(ε)Vi′n′,αkG

r
i′n′,jm(ε)(A10)

leading to a set of 4(Nε ×Mε) coupled linear equations.
We want to underline that the presence of the term∑
n′∈i g

r
in(ε)V∗

in,in′G
r
in′,jm

(ε) in this equation is directly

related to the fact that one has here two coupled dots.
In the next two sections, a distinction is made between
the SL-DQD case for which an exact solution of Eq. (A10)
can be derived and the ML-DQD case for which an ap-
proximate solution is given. This latter solution is ob-
tained by making the assumption that the hopping inte-
grals entering in the hamiltonian is independent both of
the energy levels εin in the dots and of the k-state in the
leads.

2. Exact result for a SL-DQD

When each of the two dots contains a single energy level,
denoted as ε1 and ε2, the indices n, n′ and m are absent
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and then Eq. (A10) reduces to

Grij(ε) = δijg
r
i (ε) + gri (ε)V∗iiG

r
ij

(ε)

+
∑
i′=1,2

gri (ε)�
r
hop,ii′(ε)G

r
i′j(ε) (A11)

where gri (ε) = (ε−εi+i0+)−1 is the retarded Green func-
tion of the disconnected single-level dot i, and �rhop,ii′(ε)
are the elements of the 2× 2 hopping self-energy matrix
�r

hop
(ε) in the {|1〉, |2〉}-basis

�r
hop

(ε) =
∑

α=L,R

∑
k∈α

grαk(ε)

(
|V1,αk|2 V ∗1,αkV2,αk

V1,αkV
∗
2,αk |V2,αk|2

)
(A12)

In a matrix notation, the Dyson equation for Gr(ε) writes

Gr(ε) = gr(ε) + gr(ε)�r(ε)Gr(ε) (A13)

where gr(ε) is the retarded Green function matrix of the

disconnected dots

gr(ε) =

(
gr1(ε) 0

0 gr2(ε)

)
(A14)

and �r(ε) is the retarded self-energy matrix given by

�r(ε) =

(
�rhop,11(ε) �rhop,12(ε) + V∗12

�rhop,21(ε) + V∗21 �rhop,22(ε)

)
(A15)

Equation (A13) can be solved exactly. The calculation
presented hereafter applies to the case of a SL-DQD but
can be generalized to the case of a ML-DQD within the
limit of the approximations made in this paper. The
explicit dependences with energy ε of the Green functions
and of the self-energies are omitted in the next equations
in order to lighten the notations. Starting from Eq. (A11)
one writes the four equations of motion followed by the
elements of the matrix Gr

Gr11 = gr1 + gr1V∗12G
r
21 + gr1(�rhop,11G

r
11 + �rhop,12G

r
21)

Gr12 = gr1V∗12G
r
22 + gr1(�rhop,11G

r
12 + �rhop,12G

r
22)

Gr21 = gr2V∗21G
r
11 + gr2(�rhop,21G

r
11 + �rhop,22G

r
21)

Gr22 = gr2 + gr2V∗21G
r
12 + gr2(�rhop,21G

r
12 + �rhop,22G

r
22)

This set of linear equations can be rewritten in the fol-
lowing matrix form Mr(ε)Gr(ε) = gr(ε), where

Mr =

(
1− gr1�r11 −gr1�r12

−gr2�r21 1− gr2�r22

)
(A16)

with �rii(ε) = �rhop,ii(ε), �
r
ii

(ε) = �r
hop,ii

(ε) + V∗
ii

and,

Gr(ε) =

(
Gr11(ε) Gr12(ε)
Gr21(ε) Gr22(ε)

)
(A17)

gr(ε) =

(
gr1(ε) 0

0 gr2(ε)

)
(A18)

The solution of this matrix equation is given by Gr(ε) =

(Mr(ε))−1gr(ε), one obtains the following expression for

the 2× 2 Green function matrix Gr(ε)

Gr(ε) =
1

Dr(ε)

(
g̃ r1 (ε) g̃ r1 (ε)�r12(ε)g̃ r2 (ε)

g̃ r2 (ε)�r21(ε)g̃ r1 (ε) g̃ r2 (ε)

)
(A19)

where g̃ ri (ε) is defined by g̃ ri (ε) = gri (ε)/(1 −
�rhop,ii(ε)g

r
i (ε)), Dr(ε) is given by Dr(ε) = 1 −

g̃ r1 (ε)�r12(ε)g̃ r2 (ε)�r21(ε). Equation (A19) gives the ex-
act expression of the retarded Green function Gr(ε) in a
SL-DQD. It holds as well as for serial as for parallel ge-
ometries of the DQD system. We want to underline that
for a DQD connected in series, the self-energy �r

hop
(ε) de-

fined in Eq. (A12) becomes a diagonal matrix since the
product V ∗1,αkV2,αk is equal to zero whatever the index α
is. Therefore, the off-diagonal elements of the total self-
energy matrix �r defined in Eq. (A15) reduces to V∗12 and
V∗21 in that case.

3. Generalization to a ML-DQD

In realistic systems, the dots constituting the DQD sys-
tem contain several energy levels, as for example in Ge/Si
heterostructure nanowire-based DQDs81 or in graphene-
based DQDs92. In that situation one would have to per-
form a numerical calculation to determine the solutions of
Eq. (A10). However, when the hopping integrals Vin,im
and Vin,αk do not depend on the indices n and m and on
the state k (and in that case, we use the notations Vii
and Viα), the calculation remains analytical. Within this
assumption and by performing a double sum over the n
and m indices, Eq. (A10) becomes

Gr
ij(ε) = δijg

r
i (ε) + gri (ε)V∗iiG

r
ij

(ε)

+
∑
i′=1,2

gri (ε)�
r
hop,ii′(ε)G

r
i′j(ε) (A20)

where

Gr
ij(ε) =

∑
n∈i,m∈j

Grin,jm(ε) (A21)

gri (ε) =
∑
n∈i

grin(ε) (A22)

�rhop,ij(ε) =
∑

α=L,R

∑
k∈α

V ∗iαg
r
αk(ε)Vjα (A23)

In a matrix form, Eq. (A20) reads as

Gr(ε) = gr(ε) + gr(ε)�r(ε)Gr(ε) (A24)

The solutions of Eq. (A24) can be obtained analytically
since it is a set of four linear equations. In matrix no-
tation we obtain a 2 × 2 matrix Gr(ε), the elements of
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which correspond to Gr
ij(ε),

Gr(ε) =
1

Dr(ε)

(
g̃r1(ε) g̃r1(ε)�r12(ε)g̃r2(ε)

g̃r2(ε)�r21(ε)g̃r1(ε) g̃r2(ε)

)
(A25)

with Dr(ε) = 1 − g̃r1(ε)�r12(ε)g̃r2(ε)�r21(ε), g̃ri (ε) =
gri (ε)/(1 − �rhop,ii(ε)g

r
i (ε)) and �rij(ε) = �rhop,ij(ε) +

δjiV∗ii. Equation (A25) provides the expression of the

retarded Green function Gr(ε) in a ML-DQD within
the assumption that the hopping integrals are indepen-
dent of the energy levels. We remark that this result is
similar to Eq. (A19) obtained for a SL-DQD, provided
that Gr(ε), g̃ r

i (ε) are changed into Gr(ε), g̃ri (ε). The
advanced Green function Ga(ε) is obtained straightfor-
wardly by replacing the superscript r by the superscript
a in Eq. (A25) with Da(ε) = 1− g̃a1(ε)�a12(ε)g̃a2(ε)�a21(ε)
where g̃ai (ε) = gai (ε)/(1 − �ahop,ii(ε)g

a
i (ε)) and �aij(ε) =

�ahop,ij(ε) + δjiVii.
To be able to describe the out-of-equilibrium properties
of the DQD such as the electrical current and the elec-
trical conductance, it is necessary to also determine the

lesser and greater Green functions G≶(ε) for the DQD
system as detailed in the next section.

4. Lesser and greater Green functions

The lesser Green function matrix G<(ε) can be obtained

by using the Langreth analytic continuation rules93 on
the Dyson equation for the contour ordered Keldysh
Green functions obtained from Eq. (A24). One gets

G<(ε) = g<(ε) + gr(ε)�r(ε)G<(ε)

+gr(ε)�<(ε)Ga(ε) + g<(ε)�a(ε)Ga(ε) (A26)

By performing successive iterations on G<(ε) in the r.h.s.
of Eq. (A26), one obtains

G<(ε) = Gr(ε)�<(ε)Ga(ε)

+
[
1 + Gr(ε)�r(ε)

]
g<(ε)

[
1 + �a(ε)Ga(ε)

]
(A27)

The second term in the r.h.s of Eq. (A27) vanishes since
it can be put in the form[

1 + Gr(ε)�r(ε)
]
g<(ε)

[
1 + �a(ε)Ga(ε)

]
= Gr(ε)(gr(ε))−1g<(ε)(ga(ε))−1Ga(ε) (A28)

with (gr(ε))−1g<(ε)(ga(ε))−1 = 0, stemming from the

fact that g(ε) is the Green function for the disconnected

noninteracting DQD system80. Therefore, and generaliz-
ing it to the greater Green functions G>(ε), one has

G≶(ε) = Gr(ε)�≶(ε)Ga(ε) (A29)

where the lesser and greater self-energies �≶(ε) are given
by

�≶(ε) =
∑

α=L,R

∑
k∈α

g
≶
αk(ε)

(
|V1α|2 V ∗1αV2α

V1αV
∗
2α |V2α|2

)
(A30)

Whereas �r,a(ε) differs from �r,a
hop

(ε) by the off-diagonal

terms V∗12 and V∗21, �≶(ε) coincides with �≶
hop

(ε); thus

one can indifferently use one or the other in any expres-
sion where these quantities appear.
The result expressed in Eq. (A29) is remarkably sim-
ple. It indicates that the information about the inner
details of the DQD system is entirely coded in the re-
tarded/advanced Green functions Gr,a(ε). We underline

that the calculation of G≶(ε) is made here for a ML-DQD
system. However one can immediately deduce the lesser

and greater Green functions G≶(ε) for the SL-DQD sys-
tem by simply changing Gr,a(ε) intoGr,a(ε) in Eq. (A29).
This also applies to the next section.

5. Explicit expression for the electrical current

The current operator from the lead α is defined as

Îα(t) = −edN̂α(t)/dt with N̂α(t) =
∑
k∈α ĉ

†
αk(t)ĉαk(t).

In the steady state the derivative with respect to the

time variable is given by dN̂α(t)/dt = [N̂α(t), Ĥ]/i~78.
Thus the average current writes

Iα = 〈Îα〉 = − e

i~
∑
k∈α

〈[ĉ †αk(t)ĉαk(t), Ĥ]〉 (A31)

The only term in Ĥ leading to a nonvanishing commu-

tator with the product of operators ĉ †αk(t)ĉαk(t) is Ĥhop.
One gets

Iα =
e

~
∑
k∈α

∑
i=1,2
n∈i

(
ViαG

<
in,αk(t, t)− V ∗iαG<αk,in(t, t)

)
(A32)

where one has defined the lesser and greater Green func-

tions G<in,αk(t, t′) = i〈ĉ †αk(t′)d̂in(t)〉 and G<αk,in(t, t′) =

i〈d̂ †in(t′)ĉαk(t)〉. Performing a Fourier transform, one gets

Iα =
e

h

∑
k∈α

∑
i=1,2
n∈i

∫ ∞
−∞

(
ViαG

<
in,αk(ε)− V ∗iαG<αk,in(ε)

)
dε

(A33)

In order to calculate the lesser and greater Green func-
tions G<in,αk(ε) and G<αk,in(ε), one applies the Langreth

analytic continuation rules93. From Eq. (A9), one ob-
tains

G<αk,in(ε) =
∑
j=1,2
m∈j

Vjα

(
grαk(ε)G<jm,in(ε)

+g<αk(ε)Gajm,in(ε)
)

(A34)

Similarly,

G<in,αk(ε) =
∑
j=1,2
m∈j

V ∗jα

(
G<in,jm(ε)gaαk(ε)

+Grin,jm(ε)g<αk(ε)
)

(A35)
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By inserting these expressions into Eq. (A32), one gets

Iα =
e

h

∑
k∈α

∑
i=1,2

∑
j=1,2

∫ ∞
−∞

ViαV
∗
jα

×
((
gaαk(ε)− grαk(ε)

)
G<
ij(ε)

+g<αk(ε)
(
Gr
ij(ε)−Ga

ij(ε)
))
dε (A36)

where Gr
ij(ε) is the Green function summed over the in-

dices n and m as defined in Eq. (A21). By using the gen-
eral relationship Gr(ε) − Ga(ε) = G>(ε) − G<(ε) which
holds for any Green function G, one obtains

Iα =
e

h

∑
k∈α

∑
i=1,2

∑
j=1,2

∫ ∞
−∞

ViαV
∗
jα

×
(
g<αk(ε)G>

ij(ε)− g>αk(ε)G<
ij(ε)

)
dε (A37)

Physically, this expression is interpreted as follows: the
first contribution in Iα represents the current flowing
from the α lead to the DQD since it is the product of the
out-tunneling rate of the occupied state in the α lead,∑
k∈α ViαV

∗
jαg

<
αk which corresponds to the self-energy,

and of the number of unoccupied states in the DQD,
G>
ij(ε), whereas the second contribution with the minus

sign corresponds to the current flowing from the DQD
to the lead α. Equation (A37) can be written thanks to
Eq. (A29) under the following form

Iα =
e

h

∫ ∞
−∞

Tr
[
�<
α

(ε)Gr(ε)�>(ε)Ga(ε)

−�>
α

(ε)Gr(ε)�<(ε)Ga(ε)
]
dε (A38)

where the matrix elements of the self-energy �≶
α

(ε) are

defined as Σ
≶
α,ij(ε) =

∑
k∈α V

∗
iαg

≶
αk(ε)Vjα and where Tr[ ]

denotes the trace of the matrix. In the limit of wide flat
band for elecrons in the leads and energy-independent
hopping integrals, one has

�<
α

(ε) = ifα(ε)Γ
α

(A39)

�>
α

(ε) = −i(1− fα(ε))Γ
α

(A40)

where the elements Γα,ij of the matrix Γ
α

are defined as
Γα,ij = 2πραV

∗
iαVjα with ρα, the density of states in the

lead α. We also have �r,a
α

(ε) = ∓iΓ
α
/2. By inserting

Eqs. (A39) and (A40) into Eq. (A38), one obtains

Iα =
e

h

∫ ∞
−∞
Tαα(ε)

(
fα(ε)− fα(ε)

)
dε (A41)

which corresponds to Eq. (4), where Tαα(ε) is the trans-
mission coefficient equal to

Tαα(ε) = Tr
[
Γ
α
Gr(ε) Γ

α
Ga(ε)

]
(A42)

with α = R for α = L and α = L for α = R, and where
Γ
α

is the dot-lead coupling matrix defined as

Γ
α

= 2πρα

(
|V1α|2 V ∗1αV2α

V1αV
∗
2α |V2α|2

)
(A43)

FIG. 12. Eigenenergies E+
dots (red curve) and E−

dots (black
curve) at V12 = 0.1 as a function of the angle θ with ε1 =
cos(θ) and ε2 = sin(θ). Level anticrossing effect arises at
θ = π/4 or θ = 5π/4, i.e. at ε1 = ε2, with a distance between
the red and black curves equal to ∆E = 2|V12| = 0.2.

Appendix B: Ĥdots eigenvalues

In this appendix, we determine the eigenenergies and

eigenvectors of the hamiltonian Ĥdots of Eq. (1) describ-
ing the DQD disconnected from the leads firstly for a
SL-DQD and secondly for a ML-DQD with three levels
of energy.

1. SL-DQD

For a SL-DQD, the hamiltonian Ĥdots writes as a 2 × 2
matrix in the basis {|1〉, |2〉} of the states in the two dots
1 and 2

Ĥdots =

(
ε1 V∗12

V∗21 ε2

)
(B1)

It can be diagonalized leading to the following eigenen-
ergies E+

dots and E−dots

E±dots =
ε1 + ε2 ±

√
(ε1 − ε2)2 + 4|V12|2

2
(B2)

and eigenvectors |+〉 and |−〉 which correspond to the
antibonding and bonding eigenstates of the SL-DQD

|+〉 = u∗|1〉+ v∗|2〉 (B3)

|−〉 = −v|1〉+ u|2〉 (B4)

with

|u|2 =
1

2

(
1 +

ε1 − ε2

E+
dots − E

−
dots

)
(B5)

|v|2 =
1

2

(
1− ε1 − ε2

E+
dots − E

−
dots

)
(B6)

and therefore |uv|2 = |V12|2/(E+
dots − E−dots)

2. It gives
rise to a level anticrossing effect as soon as the inter-
dot coupling V12 is finite. The anticrossing of the two
levels ε1 and ε2 occurs in the vicinity of the first di-
agonal as shown in Fig. 12. Indeed, from Eq. (B2),
the difference between the two eigenenergies reads as
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∆E = E+
dots − E

−
dots =

√
(ε1 − ε2)2 + 4|V12|2, which is

minimal along the first diagonal (i.e., when ε1 = ε2)
equaling ∆E = 2|V12| then. Resulting from Eqs. (B3)-
(B6), the spectral density A11(ε) in dot 1, respectively,
A22(ε) in dot 2, is a linear combination of Dirac delta
functions within a multiplicative factor 2π, centered at
the values of eigenenergies E+

dots and E−dots, with weight-
ing factors equal to |u|2 and |v|2, respectively, |v|2 and
|u|2 in dot 2. It has to be noted that as soon as the inter-
dot coupling V12 becomes finite, a mixed spectral density
A12(ε) arises, resulting from interdot transitions.
The charge stability diagram of the system can easily
be derived from the latter results. At equilibrium the
boundary lines between the domains of different occupa-
tions are obtained when any of the two levels of energies,
E+

dots and E−dots is aligned with the chemical potential of
the leads µL = µR = µ. The equations of the bound-
ary lines B+ and B−, hence given by E+

dots = µ and

E−dots = µ, are (ε1 − µ)(ε2 − µ) = V2
12. They correspond

to two branches of an hyperbol in the plane (ε1, ε2).The
distance between the two branches B+ and B− is minimal
along the first diagonal taking the value of 2|V12|. The
boundary lines are drawn in Figs. 13(a), 13(c), and 13(e)
at µ = 0 for different values of the interdot coupling V12.
One can check that the minimal distance between the two
boundary lines B− and B+ increases with increasing V12.

2. ML-DQD

For the three energy level ML-DQD considered in

Sec. III B, the hamiltonian Ĥdots writes as a 6×6 matrix
in the basis of the states {|1n〉, |2m〉} with integer indices
n,m ∈ [0, 2] in the two dots given by

Ĥdots =


ε10 0 0 V∗12 V∗12 V∗12

0 ε11 0 V∗12 V∗12 V∗12

0 0 ε12 V∗12 V∗12 V∗12

V∗21 V∗21 V∗21 ε20 0 0
V∗21 V∗21 V∗21 0 ε21 0
V∗21 V∗21 V∗21 0 0 ε22

 (B7)

where εin = εi + n∆εi and V12 is the interdot coupling
of equal value regardless of the levels considered in each

dot. Ĥdots can be diagonalized leading to six eigenener-
gies Eλdots, with the integer index λ ∈ [1, 6], whose values
can be numerically calculated. It is useful for the discus-
sion in Sec. III B to determine the equienergetic curves
at equilibrium: Eλdots = µ. The results obtained numer-
ically are displayed in Figs. 13(b), 13(d), and 13(f) at
µ = 0 for different values of the interdot coupling V12.

When V12 = 0, the eigenenergies are simply equal to ε1,
ε1 + ∆ε1, ε1 + 2∆ε1, ε2, ε2 + ∆ε2 and ε2 + 2∆ε2, and the
equienergetic curves at Eλdots = 0 are the three horizon-
tal and three vertical lines of a square lattice as found in
Fig. 13(b). As soon as the interdot coupling V12 gets fi-
nite, a level anticrossing effect takes place in the vicinity
of the nodes of the square lattice, as shown in Figs. 13(d)
and 13(f). At V12 = 0.1, the equienergetic curves become

FIG. 13. Equienergetic curves of equations E±
dots = µL,R (left

column) and Eλdots = µL,R with λ ∈ [1, 6] (right column)
at µL,R = 0 in the plane (ε1, ε2) for (a)-(b) V12 = 0, (c)-(d)
V12 = 0.1 and (e)-(f) V12 = 0.5. The purple lines are obtained
for a SL-DQD and the black lines for a ML-DQD with three
levels of energy in each dot.

sinuous, as a result of this level anticrossing effect. At
V12 = 0.5, the distance between two adjoining equiener-
getic curves increases, leaving room for wide interstitial
areas in the direction parallel to the second diagonal.
These various elements brought by the above discussion
are crucial to physically interpret the results obtained
for the conductance, Seebeck coefficient, total dot oc-
cupancy, and zero-frequency charge susceptibility in the
DQD system as discussed in Secs. III A and III B.
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53 D. Sztenkiel and R. Świrkowicz, Acta Physica Polonica A
111, 361 (2007).

54 T. J. Levy and E. Rabani, Journal of Chemical Physics
138, 164125 (2013).

55 M. Y. Kagan and S. V. Aksenov, JETP Letters 107, 493
(2018).

56 A. Dey, D. S. Bhakuni, B. K. Agarwalla, and A. Sharma,
Journal of Physics: Condensed Matter 32, 075603 (2020).

57 I. Ahmed, J. A. Haigh, S. Schaal, S. Barraud, Y. Zhu, C.-
m. Lee, M. Amado, J. W. A. Robinson, A. Rossi, J. J. L.
Morton, and M. F. Gonzalez-Zalba, Physical Review Ap-
plied 10, 014018 (2018).

58 H. Thierschmann, M. Henke, J. Knorr, L. Maier, C. Heyn,
W. Hansen, H. Buhmann, and L. W. Molenkamp, New
Journal of Physics 15, 123010 (2013).

59 H. Thierschmann, R. Sánchez, B. Sothmann, F. Arnold,
C. Heyn, W. Hansen, H. Buhmann, and L. W.
Molenkamp, Nature Nanotechnology 10, 854 (2015).

60 H. Thierschmann, F. Arnold, M. Mittermüller, L. Maier,
C. Heyn, W. Hansen, H. Buhmann, and L. W.
Molenkamp, New Journal of Physics 17, 113003 (2015).

61 H. Thierschmann, F. Arnold, M. Mittermüller, L. Maier,
C. Heyn, W. Hansen, H. Buhmann, and L. W.
Molenkamp, Physica Status Solidi (A) Applications and
Materials Science 213, 582 (2016).

62 H. Thierschmann, R. Sánchez, B. Sothmann, H. Buhmann,
and L. W. Molenkamp, Comptes Rendus Physique 17,
1109 (2016).

63 A. Cottet, C. Mora, and T. Kontos, Physical Review B
- Condensed Matter and Materials Physics 83, 121311(R)
(2011).

64 R. Mizuta, R. M. Otxoa, A. C. Betz, and M. F. Gonzalez-
Zalba, Physical Review B 95, 045414 (2017).

65 V. Talbo, M. Lavagna, T. Q. Duong, and A. Crépieux,
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