On gesture and speech production in the child aged 3 to 11 years

Jean-Marc Colletta¹, Catherine Pellenq², Ali Hadian Cefidekhanie¹

(1) LIDILEM, Stendhal university, Grenoble, France
(2) ESPE, Joseph Fourier university, Grenoble, France
email : jean-marc.colletta@u-grenoble3.fr

IASCL 2014 - 13th International Congress for the Study of Child Language

Focus on gesture + speech production in children

Studies on language development deeply investigated the acquisision of phonemics, lexicon, syntax and pragmatics...

However : how does the child processes bimodal (speech & gesture) Language Production ?

Why studying LP processes ? Because it helps tracking changes in the conceptualization & planification of speech & gesture.

>>> 2 contrasted language performance >>>

... These representations do not model language development in production !

4 entries into the study of speech processing in children :

Measure the increase in speech rate during childhood

(Adams & Gathercole, 1995; Koopmans-van-Beinum, 1993; Kowal et al., 1975; Legendre et al., 2012; Pavao Martins et al. 2007; Ryan, 2000; Walker & Archibald, 2006...)

Study silent pauses and voiced hesitations

Mainly adult data ; children's voiced hesitations appear during 4th year of age (Campione & Véronis, 2004 ; Candea, 2000 ; Duez, 1982; Kowal & al., 1975)

Study Phonic Groups

An explanatory study showed an effect of age on the length and content of PGs (Colletta, Pellenq & Rousset, 2008)

Study co-speech gestures

Effect of age on various aspects of gesture production (rate, type of gesture, relation to speech, morphology... (Colletta & Guidetti, 2010, 2012; Iverson & Volterra, 2008; Mayberry & Nicoladis, 2000;...)

Our study aims at tracking age-related changes in spontaneous talk shaped as a narrative.

Why a narrative task?

- Narration is a monolog language performance (Fayol, 1985; 2000 ; Hickmann, 2003 ; Karlmiloff-Smith, 1979 ; Tolchinsky, 2004)

- The narrator has to plan speech at 2 levels:

- clause content (information packaging);

text content (macrostructure, dynamics between new & given information, text cohesion).

Hypotheses

Young child does not lack conceptualization abilities, but lacks lexicon, access to lemmas & varied grammatical formats, and has a limited memory span to encode phonemic strings.

Hyp 1: older child talks faster & processes more linguistic information than younger child

Assuming linguistic knowledge is being intimately tied to mental imagery through mimism (Jousse, 1974; Barsalou, 1999; Paivio, 2006...)

Hyp 2 : older child gestures more than younger child

Data and population :

77 oral narratives produced by children aged 3¹/₂ yrs to 11¹/₂ yrs attending preschool and primary school (data collected on a French ANR funding)

Full population : 122 children.

Exclusion criteria: children with atypical language abilities ; children who did not verbalize the story on their own; children who did not gesture during narration; children with atypical gesture production.

6 age classes were built out of the data in order to get a better representation of age differences than the 8 classroom levels

	G1	G2	G3	G4	G5	G6
Mean age (days)	1607 (182.39)	2199 (111.79)	2586 (108.73)	3054 (179.02)	3583 (96.41)	3981 (89.82)
Mean age (mnths)	4.4	6	7	8.3	9.8	10.9
Age range (mnths)	43-60	66-78	80-92	94-109	113-123	125-136
Inter-class gap (mnths)	_	20	12	15	18	11
Ν	15	15	12	13	16	16
F/M	5/10	8/7	5/7	4/9	9/7	10/6

Age groups

Extract from the video clip (W&G « A close shave »)

Method :

Task : at school, in a separate room, the child was asked to narrate from an extract of an animated film (Nick Park « Wallace & Gromit – A close shave », the first 3 mn)

Each child was filmed using a camescope and an external microphone. Child sitting on a chair next to the interviewer

Each narrative was later transcribed and annotated on ELAN. Orthographic speech transcrition aligned on Phonic Groups (PG). Gesture annotation aligned on the video

Measures :

- **Phonic Group (PG)** (# & sec.) = a continuous speech string between 2 inspiration breaths or silent pauses (silent pause => 200ms);

- **Length of narrative** (sec.) = total duration of PGs (exluding pauses) = total time of verbalizing ;

- Narrative performance : #syllables ; #words ; #clauses ; #PGs; #gest. strokes

- **Speech rate** (#syll per sec.) + **gesture rate** (#strokes per clause)

- **PG length & information content** : #syll per PG, #words per PG, #clauses per PG, #strokes per PG.

>>> Statistica anlysis : One-way anovas (age group x dep variables) & correlations (Pearson's R)

	G1	G2	G3	G4	G5	G6
Length of Narrative (sec.)	41.66 (19.29)	61.04 (33.60)	100.39 (50.51)	87.33 (36.91)	101.76 (45.19)	88.43 (30.07)
# Syllab.	156,53	234,20	346,17	354,62	416,94	376,38
# Words	112,27	173,67	257,75	260,23	303,31	284,19
# Clauses	19.13 (7.17)	28.86 (15.88)	45.66 (22.94)	44.61 (21.85)	54.00 (28.31)	48.25 (17.34)
# Gest. strokes	6,00 (3.93)	7,20 (6.75)	10,00 (9.06)	14,15 (15.83)	18,87 (16.83)	16,62 (8.79)

Narrative performance

Age & length of narrative

The narrative significantly gains in length once the child enters primary school (G3). F(5, 81)=5,7428, p=.00014

All linguistic measures show a significant change between G2 and G3. Anova on clauses : F(5, 81)=6,1944, p=.00007

Age & # strokes

Use of gesture resources also grow with age F(5, 81)=3,0882, p=.01332 ; (G1 + G2 * G5 + G6)

	G1	G2	G3	G4	G5	G6
#syllabe	3.83	3.87	3.53	4.02	4.08	4.28
/sec	(0.41)	(0.38)	(0.48)	(0.40)	(0.46)	(0.46)
#stroke	0.32	0.28	0.22	0.30	0.35	0.37
/clause	(0.17)	(0.23)	(0.18)	(0.33)	(0.21)	(0.19)

Speech rate + Gesture rate

Increase in Speech rate (F(5,81)=4.3422, p=.0015)

But no significant increase in Gesture rate !!! (F(5,81)=66.313, p=.65244)

				1		
	G1	G2	G3	G4	G5	G6
# PG	33,13	37,47	63,00	55,62	59,31	48,38
PG length (sec)	1.25 (0.26)	1.65 (0.25)	1.66 (0.45)	1.62 (0.27)	1.74 (0.42)	1.87 (0.37)
# Syllab.	4,73	6,44	5,81	6,51	7,12	7,97
# Words	3,44	4,79	4,37	4,86	5,24	6,07
# Clauses	0.59 (0.12)	0.79 (0.22)	0.76 (0.24)	0.81 (0.18)	0.90 (0.25)	1.03 (0.27)
# Gest. strokes	0.18 (0.09)	0.21 (0.17)	0.14 (0.10)	0.22 (0.20)	0.31 (0.19)	0.37 (0.20)

PG length & information content

Age & length of PG

Age & # clauses per PG

Increase in the length of PGs

(F(5,81) = 5.0753, p < .00043) with signific. diff. between [G1] and other groups.

All linguistic measures show a significant change between G1 & G2, and an other one between G4 and G6. Anova on clauses : F(5,81)=5,9022, p00011.

Age & # strokes per PG

Increase in the number of strokes per PG ! (F(5,81) = 3.2650, p=.00078) with signific. diff. between [G6] and other age groups. (except G5)

Correlations

Pearson's R was calculated for all relevant variables. All correlations between age & PG content and PG length were high and significant :

- Age & # syllables per PG : R = 0,556
- Age & # words per PG : R = 0,503
- Age & # clauses per PG : R = 0,483
- Age & # PG length : R = 0,435
- Age & # strokes per PG : R = 0,343

Results

With age:

Child's narrative production gains in length and in linguistic & gestural content (as expected)

Child talks faster (as expected)

Child talks in longer speech strings and puts more linguistic and gestural information in GPs !!!

Discussion

2 contrasted series of results suggest 2 developmental pattens according to their respective timing :

DPN : a significant increase in length & information content of the narrative

Occurs **between 6 and 7 yrs of age** (in grade one children)

DPPG : a significant increase in length & information content of the bimodal PG

Occurs first between 4¹/₂ and 6 yrs (before the child enters primary school) and later between 9 and 11 yrs (grade 5 and grade 6 children).

DPPG1 at 4-6 yrs New planification abilities at the local GP level

DPN at 6-7 yrs : emergent abilities in text knowledge, text cohesion & acquisition of related linguistic devices

Effect of schooling ?

DPPG2 at 9-11 yrs New planification abilities at the global text level show in GP production !!!

Related to the emergence of new abilities :

- summarizing after a set of informations,
- selecting relevant information for interlocutor,
- linking and coupling several representations of events into a global representation

(Colletta, 2004; Fayol, 1985).

Beyond the « learning how to cycle » metaphor :

- **DPPG1** : Need to go for a detailed analysis of the syntactic and gestural content of PG's

- **DPPG2**: Need to collect additional data on naratives produced by teenagers and adults.

- Add an investigation of **silent pauses**, **voiced pauses and the bodily marking of mental states** for a better understanding of the underlying processes (planning speech *vs* searching for words)

MERCI !!!