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ABSTRACT
During the recent years, many control charts have been developed for the simul-
taneous monitoring of the time interval T between successive occurrences of an
event E and its magnitude X. All these TBEA (Time Between Events and Ampli-
tude) control charts assume a known distribution for the random variables T and
X (like, for instance, the normal, lognormal, gamma or Weibull distributions). But,
in practice, as it is rather difficult to know the actual distribution of the time T or
the amplitude X, proposing a distribution-free approach could be a way to over-
come this “distribution choice” dilemma. For this reason, we propose in this paper
a distribution-free upper-sided EWMA (Exponentially Weighted Moving Average)
type control chart, for simultaneously monitoring the time interval T and the mag-
nitude X of an event. In order to investigate the performance of this control chart
and obtain its run length properties, we also develop a specific method called “con-
tinuousify” which, coupled with a classical Markov chain technique, allows to obtain
reliable and replicable results. A numerical comparison shows that our distribution-
free EWMA TBEA chart performs as the parametric Shewhart TBEA chart, but
without the need to pre-specify any distribution. An illustrative example obtained
from a French forest fire database is also provided to show the implementation of
the proposed distribution-free EWMA TBEA control chart.

KEYWORDS
Distribution-Free; Markov Chain; Statistical Process Monitoring; Time Between
Events and Amplitude

1. Introduction

Control charts are undeniably the most powerful tools in SPM (Statistical Process
Monitoring) for improving the quality and the productivity of productions. But,
during the recent years, several techniques based on control charts have also been de-
veloped to monitor processes in non-manufacturing sectors, such as in the health-care
sector (like diseases, see Woodall [30]), the meteorological sector (like extreme weather
or climate events, see Vučijak et al. [29]) or the geological sector (like earthquakes or
volcanic eruptions, see Santiago and Smith [25], Ho [18]). In general, when a particular
negative event E is of interest, two important characteristics should be recorded: the
time T between two consecutive occurrences of this event and its amplitude X. In
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most situations, a decrease in T and/or an increase in X will result in a negative,
hazardous or disastrous consequence and, therefore, it has to be monitored with
dedicated control charts called TBEA (Time Between Events and Amplitude) control
charts.

It is worth recalling that Calvin [9] firstly proposed to monitor the cumulative
number of conforming items between two nonconforming ones for improving the
performance of traditional attribute control charts for monitoring high-quality
processes. Lucas [19] and Vardeman and Ray [28] were at the origin of TBE (Time
Between Events) control charts, as they were the first to propose new control charts
with the idea of monitoring TBEs data for monitoring high-quality processes. Since
then, several TBE control charts (both for phases I and II) have been proposed in
the literature. For instance, the TBE exponential chart has been studied by Chan
et al. [14] and Xie et al. [34]. Bourke [7] developed a geometric CUSUM chart for
monitoring TBE data. Gan [17], Borror et al. [6] and Shafae et al. [26] investigated
an exponential TBE CUSUM (cumulative sum) control chart. A design procedure for
TBE control charts with runs rules has been proposed by Cheng and Chen [15]. Qu
et al. [22] studied some TBE control charts for sampling inspection. Readers can also
refer to Shamsuzzaman et al. [27], Zhang et al. [36], Zhang et al. [35], Fang et al. [16].

In some applications, it is clearly important to monitor the time between events
but also the amplitudes associated with these events. Recent enhancements to the
statistical monitoring of an event E, not only quantified by its time T between two con-
secutive events but also by its amplitude X, have been introduced in the literature and
they have been called TBEA (Time Between Events and Amplitude) control charts.
Wu et al. [31] were the first to propose a combined T/X control chart based on a T
chart to monitor the time interval and on a X chart to monitor the amplitude. From
that moment, several other TBEA control charts have been developed, see Wu et al.
[32], Wu et al. [33], Qu et al. [21], Qu et al. [23], Ali and Pievatolo [5], Rahali et al. [24].

All existing methods mentioned above for monitoring TBEA data are parametric,
i.e. they assume that the distributions of both T and X are perfectly known. However,
in many practical situations, the distributions of these random variables are unknown
or their parameters cannot be correctly estimated by means of a Phase I retrospective
study. This has been studied by Qiu [20], who has shown that using parametric control
charts is not a reliable solution when the validity of the distribution is in question.
In the specific case of monitoring TBEA data, Rahali et al. [24] investigated the use
of parametric approaches in order to monitor “fires in forests”. They experienced
difficulties in selecting the most suitable distribution for the time T and the amplitude
X due the limited number of Phase I data and the small differences in terms of
the statistic (Kolmogorov-Smirnov) measuring the quality of the fit (making several
distributions being a possible candidate, such as the gamma, lognormal, normal and
Weibull distributions). It is well known that a fitting error on the distribution of
observations can result in a poor in-control performance of the control chart. To
overcome this problem, distribution-free control charts have been investigated in the
literature. Among the most recent ones, we can cite Celano et al. [11] who investigated
the statistical performance of a Shewhart sign control chart in a process with a
finite production horizon, Abid et al. [1] who proposed a nonparametric EWMA
control chart based on the sign test using RSS (Ranked Set Sampling), Castagliola
et al. [10] who proposed a new Phase II EWMA-type chart for count data based on
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the sign statistic, Abid et al. [2] who introduced a nonparametric EWMA control
chart based on the Wilcoxon signed-rank statistic using ranked set sampling, Abid
et al. [3, 4] who suggested nonparametric CUSUM sign and Wilcoxon signed-rank
control charts for monitoring and detecting possible deviations from the process mean
using ranked set sampling. Interested readers can find a comprehensive discussion
in the very recent review of Chakraborti and Graham [13] who discuss many Phase
I and Phase II distribution-free control charts and give some suggestions for next
research directions. Practical guidelines for the distribution-free control charts im-
plementation can be found in the books of Qiu [20] and Chakraborti and Graham [12].

But, as far as we know, no research has been conducted so far on proposing a
distribution-free control chart for monitoring TBEA data. This will be the main and
first goal of this paper where a new upper-sided distribution-free EWMA control chart
for monitoring TBEA data will be introduced. As evaluating Run Length related
values (ARL, SDRL, ...) for an EWMA scheme based on discrete data is a challenging
problem, the second goal of this paper will consist in proposing a dedicated method,
called “continuousify”, which allows reliable and replicable results to be obtained.

The structure of this paper is as follows. In Section 2, the distribution-free statistic
to be monitored as well as the “continuousify” technique used for computing the
Run Length properties are both introduced. Then, in Section 3 the optimal design
of the proposed distribution-free chart is presented. In Section 4 a comparison with
parametric Shewhart TBEA charts proposed in Rahali et al. [24] is performed. A
real case example implementing the new upper-sided distribution-free EWMA TBEA
control chart is presented in Section 5 and conclusions and future researches are given
in Section 6.

2. A distribution-free EWMA TBEA control chart

Let D0 = 0, D1, D2, . . . be the dates of occurrence of a specific negative event E,
let T1 = D1 − D0, T2 = D2 − D1, . . . be the time intervals between two consecutive
occurrences of the event E and let X1, X2, . . . be the corresponding magnitudes of
this event occurring at times D1, D2, . . . and assumed to be independent of T1, T2, . . .
(see Figure 1). It must be noted that D0 = 0 is the date of a “virtual” event which
has no amplitude associated with.

Let FT (t|θT ) and FX(x|θX) be the unknown continuous c.d.f. (cumulative distri-
bution functions) of Ti and Xi, i = 1, 2, . . ., where θT and θX are known α-quantiles,
respectively. More precisely, when the process is in-control, we have θT = θT0

,
θX = θX0

and, when the process is out-of-control, we have θT = θT1
, θX = θX1

.
Without loss of generality, we will consider in this paper that θT and θX are the
median values (i.e. the 0.5-quantiles) of Ti and Xi, respectively. Other α-quantiles
can be considered based on the investigated event’s severity of consequences.

Let pT = P(Ti > θT0
|θT ) = 1 − FT (θT0

|θT ) and pX = P(Xi > θX0
|θX) =

1 − FX(θX0
|θX), i = 1, 2, . . ., be the probabilities that Ti and Xi are larger than

θT0
and θX0

assuming that the actual median values are θT and θX , respec-
tively. If the process is in-control, we have pT = pT0

= 1 − FT (θT0
|θT0

) = 0.5,
pX = pX0

= 1 − FX(θX0
|θX0

) = 0.5 and, when the process is out-of-control, we have
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D0 = 0 D1 D2 D3 · · ·

· · ·

· · ·

T1 T2 T3

X1 X2 X3

Figure 1. Times of occurrence Di, time intervals Ti and amplitudes Xi of a negative event E

pT = pT1
= 1− FT (θT0

|θT1
), pX = pX1

= 1− FX(θX0
|θX1

).

Let us define the statistics STi and SXi, for i = 1, 2, . . . as

STi = sign(Ti − θT0
),

SXi = sign(Xi − θX0
),

where sign(x) = −1 if x < 0 and sign(x) = +1 if x > 0. Because Ti and Xi

are assumed to be continuous random variables, the unlikely case x = 0 will not
be considered in the definition of the charting statistic. Nevertheless, as sometimes
ties may occur in practice (for example, as a consequence of the selected time unit
for Ti), we will explain in the “Illustrative example” section how this situation can
be handled by practitioners without significantly affecting the final result. In order
to simultaneously monitor, in a distribution-free way, the time interval Ti between
consecutive occurrences of the event E and its magnitude Xi, we suggest to define the
statistic Si, for i = 1, 2, . . . as

Si =
SXi − STi

2
.

By definition, we have Si ∈ {−1, 0,+1} and, more precisely, we have:

• Si = −1 when the process is in an acceptable situation, i.e. when Ti increases
(STi = +1) and, at the same time, Xi decreases (SXi = −1).
• Si = +1 when the process is in an unacceptable situation, i.e. when Ti decreases

(STi = −1) and, at the same time, Xi increases (SXi = +1).
• Si = 0 when the process is in an intermediate situation, i.e. when both Ti and
Xi increase or when both Ti and Xi decrease.

It is easy to prove that the p.m.f. (probability mass function) fSi
(s|pT , pX) = P(Si =

s|pT , pX) of Si is equal to

fSi
(s|pT , pX) =


pT qX if s = −1
pT pX + qT qX if s = 0
qT pX if s = +1
0 if s 6∈ {−1, 0, 1}

,
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where qT = 1 − pT , qX = 1 − pX and its c.d.f. FSi
(s|pT , pX) = P(Si ≤ s|pT , pX) is

equal to

FSi
(s|pT , pX) =


0 if s ∈ (−∞,−1)
pT qX if s ∈ [−1, 0)
pT + qT qX if s ∈ [0, 1)
1 if s ∈ [1,+∞)

.

In practice, it is actually always possible to define and implement an EWMA
TBEA type control chart directly monitoring the statistic Si using an equation like
Zi = λSi + (1 − λ)Zi−1, where λ ∈ [0, 1] is some smoothing parameter to be fixed
and Z0 = 0. The problem of this approach is that, because of the discrete nature of
the random variable Si, it is impossible to accurately compute (using Markov chain
or integral equation methods, for instance) the run length properties (average run
length ARL and standard deviation of the run length SDRL) of such a control chart
and, therefore, it is impossible to tune the chart parameters in order to obtain a
predefined in-control performance. If, for instance, the Markov chain approach, (as
detailed hereafter), is used in order to compute the ARL or the SDRL, the results will
i) heavily fluctuate depending on the value of the selected number m of subintervals
and ii) not exhibit any monotonic convergence when m increases, making useless
such an approach. This point will be highlighted at the end of this section. Of course,
it is always possible to obtain these values using simulations but, even in this case,
if it is quite easy to compute small ARL or SDRL values with some precision, it
becomes just impossible to obtain reliable results when these values become very large.

Since the Markov chain and integral equation methods give good results in the
case of continuous random variables, (and more particularly in the case of the nor-
mal distribution, which is an unbounded one), we therefore suggest to transform the
discrete random variable Si into a new continuous one, denoted as S∗i , (say that we
“continuousify” the random variable Si), and to monitor it using a traditional EWMA
scheme. We suggest to define the statistic S∗i as a mixture of 3 normal random vari-
ables Yi,−1 ∼ Nor(−1, σ), Yi,0 ∼ Nor(0, σ) and Yi,+1 ∼ Nor(+1, σ), with weights
w−1 = pT qX , w0 = pT pX + qT qX and w+1 = qT pX (corresponding to the probabilities
fSi

(s|pT , pX), s ∈ {−1, 0,+1}), respectively, i.e.

S∗i =

 Yi,−1 if Si = −1,
Yi,0 if Si = 0,
Yi,+1 if Si = +1.

Concretely speaking, this means that if, at i = 1, 2, . . ., we have Si = s ∈ {−1, 0,+1}
then, in order to obtain S∗i , we just have to generate a Nor(s, σ) random number
to “continuousify” the random variable Si. The fact that random numbers have to
be generated does not imply that the Run Length properties (ARL, SDRL, ...) are
obtained using simulations. As shown below, the Run Length properties of the upper-
sided distribution-free EWMA TBEA control chart are obtained with an exact Markov
chain based method. But, in order to use this approach, it is necessary to assume that
the discrete random variables Si have been transformed into continuous ones. This is
why random numbers are generated. The parameter σ > 0 has to be fixed and, as
it will be shown later, its value does not significantly affect the performance of the
control chart as long it is neither too small nor too large. Since S∗i is defined as a
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mixture of normal distributions, its c.d.f. FS∗
i
(s|pT , pX) = P(S∗i ≤ s|pT , pX) is equal

to

FS∗
i
(s|pT , pX) =pT qXFNor(s| − 1, σ)

+ (pT pX + qT qX)FNor(s|0, σ) + qT pXFNor(s|+ 1, σ)
(1)

where FNor(s|µ, σ) is the c.d.f. of the normal Nor(µ, σ) distribution. As an example,
we plotted in Figure 2 the p.d.f. of S∗i when the process is in-control, (i.e. the weights
are w−1 = 0.25, w0 = 0.5 and w+1 = 0.25), for σ ∈ {0.1, 0.125, 0.15, 0.2}. We suggest
to only investigate this range of values as it seems that when σ < 0.1 the “peaks”
around {−1, 0,+1} become too sharp and when σ > 0.2 these “peaks” become too
smooth. It is not difficult to demonstrate that the expectance E(S∗i ) and variance
V(S∗i ) of S∗i are equal to

E(S∗i ) = pX − pT ,
V(S∗i ) = σ2 + pT qT + pXqX .

σ = 0.1 σ = 0.125

0

0.5

1

1.5

2

-1 0 1

0

0.5

1

1.5

2

-1 0 1

σ = 0.15 σ = 0.2

0

0.5

1

1.5

2

-1 0 1

0

0.5

1

1.5

2

-1 0 1

Figure 2. p.d.f. of S∗
i when the process is in-control for σ ∈ {0.1, 0.125, 0.15, 0.2}

The in- and out-of-control c.d.f., expectance and variance of S∗i can be simply
obtained by replacing, in the previous equations, pT and pX by either pT0

and
pX0

or pT1
and pX1

, respectively. In particular, if the process is in-control, we have
pT0

= qT0
= 0.5, pX0

= qX0
= 0.5 and the expectance and variance of S∗i simplify to

E(S∗i ) = 0 and V(S∗i ) = σ2 + 0.5.
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As it is more important to detect an increase in Si or S∗i (in order to avoid more
damages or injuries/costs, for instance) rather than a decrease, we suggest to define
the following upper-sided EWMA TBEA control chart based on the statistic

Z∗i = max(0, λS∗i + (1− λ)Z∗i−1), (2)

with the following upper asymptotic control limit UCL defined as

UCL = E(S∗i )︸ ︷︷ ︸
=0

+K

√
λ

2− λ ×
√

V(S∗i )︸ ︷︷ ︸
=
√
σ2+0.5

= K

√
λ(σ2 + 0.5)

2− λ , (3)

where λ ∈ [0, 1] and K > 0 are the control chart parameters to be fixed and the
initial value Z∗0 = 0.

In order to obtain the zero-state ARL and SDRL of the proposed distribution-free
upper-sided EWMA TBEA control chart, we suggest to use the standard approach
proposed by Brook and Evans [8], which assumes that the behavior of this control
chart can be well represented by a discrete-time Markov chain with m + 2 states,
where states i = 0, 1, . . . ,m are transient and state m + 1 is an absorbing one. The
transition probability matrix P of this discrete-time Markov chain is

P =

 Q r

0ᵀ 1

 =


Q0,0 Q0,1 · · · Q0,m r0

Q1,0 Q1,1 · · · Q1,m r1
...

...
...

...
Qm,0 Qm,1 · · · Qm,m rm

0 0 · · · 0 1

 ,

where Q is the (m + 1,m + 1) matrix of transient probabilities, where 0 =
(0, 0, . . . , 0)ᵀ and where the (m + 1, 1) vector r satisfies r = 1 − Q1 (i.e. row prob-
abilities must sum to 1) with 1 = (1, 1, . . . , 1)ᵀ. The transient states i = 1, . . . ,m
are obtained by dividing the interval [0,UCL] into m subintervals of width 2∆, where
∆ = UCL

2m . By definition, the midpoint of the i−th subinterval (representing state i)
is equal to Hi = (2i − 1)∆. The transient state i = 0 corresponds to the “restart
state” feature of our chart (due to the presence of the max(. . . ) in (2)). This state is
represented by the value H0 = 0. Concerning the proposed upper-sided EWMA TBEA
control chart, it can be easily proven that the generic element Qi,j , i = 0, 1, . . . ,m, of
the matrix Q is equal to

• if j = 0,

Qi,0 = FS∗
i

(
−(1− λ)Hi

λ

∣∣∣∣ pT , pX) , (4)

• if j = 1, 2, . . . ,m,

Qi,j = FS∗
i

(
Hj + ∆− (1− λ)Hi

λ

∣∣∣∣ pT , pX)− FS∗
i

(
Hj −∆− (1− λ)Hi

λ

∣∣∣∣ pT , pX) (5)

Let q = (q0, q1, . . . , qm)ᵀ be the (m + 1, 1) vector of initial probabilities associated
with the m + 1 transient states. In our case, we assume q = (1, 0, . . . , 0)ᵀ, i.e. the
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initial state corresponds to the “restart state”. When the number m of subintervals is
sufficiently large (say m = 300), this finite approach provides an effective method that
allows the ARL and SDRL to be accurately evaluated using the following classical
formulas

ARL(pX , pT ) = qᵀ(I−Q)−11, (6)

SDRL(pX , pT ) =
√

2qᵀ(I−Q)−2Q1 + ARL(1−ARL). (7)

In order to clearly illustrate, for the proposed upper-sided EWMA TBEA control
chart, the difference between using or not the suggested “continuousify” technique, we
present in Table 1 the ARL values obtained for several combinations of (pX , pT ), m ∈
{100, 120, . . . , 400} and σ = 0.125. In Table 1, we also provide ARL values obtained
by simulations (last row of Table 1). Based on Table 1, the following conclusions can
be drawn:

• when the “continuousify” technique is not used, (see the left side of Table 1, de-
noted as “without continuousify”), the ARL values obtained using the Markov
chain method have a large variability with m; furthermore, they do not show
any visible monotonic convergence when m increases. The worst case is for
(pX = 0.7, pT = 0.4) for which some ARL values are even negative! This phe-
nomenon is known to happen even in the case of continuous random variables
when the smoothing parameter λ is too small. In this case, the Markov chain
approach does not converge and provide meaningless (i.e. either negative or too
large) ARL values. The fact that the random variables are discrete makes this
phenomenon even stronger due to the fact that the probabilities in (4) and (5) are
not necessarily continuous / smooth. For the remaining combinations (pX , pT )
the fluctuation is noticeable with a particularity for m = 260 which gives (for
some unclear reason) larger ARL values, if compared to the others.
• when the “continuousify” technique is used, (see the right side of Table 1, de-

noted as “with continuousify”), the ARL values obtained using the Markov chain
method are very stable, even for small values of m ∈ {100, . . . , 150}. The ARL
values obtained with this technique are a bit larger than those obtained by sim-
ulation “without continuousify” (for instance compare the values 87.24, 26.08,
12.23, 27.88 with the results 84.46, 24.71, 11.66, 26.46 obtained for m = 400).
This is logical as the control limits “with continuousify” are a bit larger than
those “without continuousify” due to the extra term σ > 0 in (3).

3. Numerical analysis

The goal of this section is twofold:

(1) obtaining optimal values (λ∗,K∗) for the upper-sided EWMA TBEA control
chart parameters (λ,K) as to minimize the out-of-control ARL(λ∗,K∗, σ, pT , pX)
for pT 6= 0.5 and pX 6= 0.5 under the constraint ARL(λ∗,K∗, σ, 0.5, 0.5) = ARL0,
where ARL0 is a predefined value for the in-control ARL;

(2) demonstrating that the choice of the parameter σ does not significantly impact
the out-of-control performance of this chart as long as this value is not too small
nor too large.

The optimal values for (λ∗,K∗) are listed in Table 2 with the corresponding out-of-
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Table 1. ARL for the distribution-free EWMA TBEA chart computed with and without the “continuousify”

technique.

“without continuousify” “with continuousify” (σ = 0.125)

m
pT = 0.4 pT = 0.3 pT = 0.2 pT = 0.1 pT = 0.4 pT = 0.3 pT = 0.2 pT = 0.1
pX = 0.7 pX = 0.8 pX = 0.9 pX = 0.6 pX = 0.7 pX = 0.8 pX = 0.9 pX = 0.6

100 -10629.23 32.96 12.18 40.16 87.22 26.08 12.23 27.87
120 35.68 18.57 10.89 18.55 87.23 26.08 12.23 27.87
140 579.56 28.88 11.91 31.56 87.23 26.08 12.23 27.87
160 42.43 20.31 11.08 20.81 87.23 26.08 12.23 27.87
180 286.68 28.36 11.82 31.36 87.24 26.08 12.23 27.87
200 77.24 24.47 11.55 26.42 87.24 26.08 12.23 27.87
220 33.76 17.97 10.05 18.39 87.24 26.08 12.23 27.87
240 108.67 27.98 11.88 31.36 87.24 26.08 12.23 27.87
260 -174.46 57.68 16.41 77.81 87.24 26.08 12.23 27.87
280 53.94 21.17 11.41 21.75 87.24 26.08 12.23 27.87
300 122.35 26.75 11.75 29.94 87.24 26.08 12.23 27.88
320 45.08 21.69 11.43 22.43 87.24 26.08 12.23 27.88
340 179.06 26.07 11.93 27.39 87.24 26.08 12.23 27.88
360 29.81 16.68 10.43 16.5 87.24 26.08 12.23 27.88
380 1630.32 29.2 13.09 29.83 87.24 26.08 12.23 27.88
400 53.38 20.33 11.02 20.7 87.24 26.08 12.23 27.88

Simu 84.46 24.71 11.66 26.46 87.23 26.09 12.23 27.87

control values of (ARL,SDRL) for pT ∈ {0.1, 0.2, . . . , 0.4} (as we are only interested
in a decrease in T ), pX ∈ {0.5, 0.6, . . . , 0.9} (as we are only interested in an increase in
X), for four possible choices for σ ∈ {0.1, 0.125, 0.15, 0.2} and assuming ARL0 = 370.4.
For instance, in Table 2, when σ = 0.125, pT = 0.4 and pX = 0.6 the optimal chart
parameters are (λ∗,K∗) = (0.025, 2.174) and the corresponding values for the out-of-
control (ARL,SDRL) are ARL = 51.11 and SDRL = 32.63. From Table 2 we can draw
the following conclusions:

• No matter the value of σ, when pT = pX = 0.5 we exactly obtain ARL =
ARL0 = 370.4 (as expected). In this case, it exists an infinite number of couples
(λ∗,K∗) exactly satisfying the constraint ARL = ARL0 = 370.4. These couples
are denoted with “(–,–)”. It has to be noted that without the “continuousify”
technique used in this paper, it would have been impossible to exactly obtain
ARL = ARL0 = 370.4 due to the discrete nature of the random variable Si.
• No matter the value of σ, the out-of-control ARL values monotonically decrease

when the values of pT decrease and/or the values of pX increase. Due to the
symmetry of STi and SXi in the definition of the random variable Si, the perfor-
mance of the distribution-free upper-sided EWMA TBEA chart is the same for
any combination of (pT = αT , pX = αX) or (pT = 1−αX , pX = 1−αT ) where αT
and αT are two probabilities in [0, 1]. For this reason, only the lower side of each
table is presented, being the upper side immediately be derived by symmetry.
For example, if σ = 0.125, the optimal parameters (λ∗,K∗) and corresponding
out-of-control ARL and SDRL for pT = 0.4 and pX = 0.7 are the same as the
ones for pT = 0.3 and pX = 0.6, i.e. (λ∗ = 0.045,K∗ = 2.387), ARL = 30.79 and
SDRL = 18.25.
• As long as σ ∈ {0.1, 0.125, 0.15, 0.2}, the optimal design parameters (λ∗,K∗)

and the out-of-control ARL and SDRL values are almost the same. For instance,
if pT = 0.3 and pX = 0.6, then the optimal parameters are (λ∗ = 0.045,K∗ =
2.387) (irrespective of the value of σ) and the out-of-control ARL and SDRL
values are (ARL = 30.55,SDRL = 18.04), (ARL = 30.79,SDRL = 18.25),
(ARL = 31.08, SDRL = 18.51) and (ARL = 31.81,SDRL = 19.15) when
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Table 2. Optimal values for (λ∗,K∗) with the corresponding out-of-control val-

ues of (ARL,SDRL) for pT ∈ {0.1, 0.2, . . . , 0.4}, pX ∈ {0.5, 0.6, . . . , 0.9} and σ ∈
{0.1, 0.125, 0.15, 0.2}

σ = 0.1

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.773) (0.025,2.174)
(105.66,74.04) (50.77,32.32)

0.3 (0.025,2.174) (0.045,2.387) (0.070,2.515)
(51.54,32.55) (30.55,18.04) (20.50,11.38)

0.2 (0.040,2.348) (0.070,2.515) (0.100,2.591) (0.145,2.639)
(31.30,17.51) (20.74,11.40) (14.85,7.67) (11.19,5.55)

0.1 (0.060,2.474) (0.090,2.571) (0.135,2.634) (0.180,2.645) (0.240,2.627)
(21.40,10.76) (15.16,7.37) (11.32,5.40) (8.76,3.84) (6.99,2.74)

σ = 0.125

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.774) (0.025,2.174)
(106.19,74.55) (51.11,32.63)

0.3 (0.025,2.174) (0.045,2.387) (0.070,2.515)
(51.88,32.87) (30.79,18.25) (20.68,11.53)

0.2 (0.040,2.348) (0.065,2.496) (0.100,2.592) (0.140,2.638)
(31.53,17.72) (20.91,11.27) (14.99,7.80) (11.32,5.57)

0.1 (0.060,2.474) (0.090,2.572) (0.135,2.634) (0.175,2.648) (0.225,2.639)
(21.57,10.92) (15.30,7.50) (11.44,5.49) (8.88,3.89) (7.10,2.75)

σ = 0.15

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.775) (0.025,2.175)
(106.83,75.16) (51.53,33.01)

0.3 (0.025,2.175) (0.045,2.387) (0.070,2.515)
(52.30,33.26) (31.08,18.51) (20.90,11.71)

0.2 (0.040,2.348) (0.065,2.496) (0.095,2.584) (0.135,2.636)
(31.82,17.97) (21.13,11.45) (15.17,7.81) (11.47,5.61)

0.1 (0.055,2.449) (0.090,2.573) (0.130,2.632) (0.170,2.651) (0.215,2.646)
(21.79,10.76) (15.47,7.64) (11.59,5.53) (9.02,3.96) (7.23,2.80)

σ = 0.2

pX
pT 0.5 0.6 0.7 0.8 0.9

0.5 (–,–)
(370.40,–)

0.4 (0.010,1.777) (0.025,2.176)
(108.43,76.68) (52.57,33.96)

0.3 (0.020,2.085) (0.045,2.387) (0.065,2.496)
(53.33,32.51) (31.81,19.15) (21.44,11.90)

0.2 (0.040,2.348) (0.065,2.496) (0.090,2.574) (0.125,2.630)
(32.53,18.61) (21.66,11.92) (15.60,8.01) (11.84,5.74)

0.1 (0.055,2.449) (0.085,2.562) (0.120,2.624) (0.155,2.652) (0.195,2.658)
(22.31,11.21) (15.89,7.83) (11.95,5.64) (9.34,4.06) (7.53,2.91)
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σ ∈ {0.1, 0.125, 0.15, 0.2}, respectively.

4. Comparative studies

The goal of this section is to compare the proposed upper-sided distribution-free
EWMA TBEA chart with the three parametric Shewhart type control charts intro-
duced in Rahali et al. [24] based on statistics Z1, Z2 and Z3. It is important to note
that these statistics depend on standardized versions X ′ = X

µX0

and T ′ = T
µT0

of X

and T , respectively, where µX0
and µT0

are the in-control mean values for X and T .
The 2-parameters distributions considered in Rahali et al. [24] were i) the gamma,
lognormal, normal and Weibull distributions for the amplitude X and ii) the gamma,
lognormal and Weibull distributions for the time between events T , leading to a com-
bination of 11 scenarios. For more details concerning the definition of statistics Z1, Z2

and Z3 and the parametrization of these distributions, do refer to Rahali et al. [24].
In this paper, we will only investigate two scenarios:

• Scenario #1: a Normal distribution for X with in-control mean µX0
= 10 and

standard-deviation σX0
= 1 and a gamma distribution for T with in-control

mean µT0
= 10 and standard-deviation σT0

= 2, i.e. X ∼ Nor(10, 1) and T ∼
Gam(25, 0.4).
• Scenario #2: a Normal distribution for X with in-control mean µX0

= 10 and
standard-deviation σX0

= 2 and a Weibull distribution for T with in-control
mean µT0

= 10 and standard-deviation σT0
= 1, i.e. X ∼ Nor(10, 2) and T ∼

Wei(12.1534, 10.4304).

In this parametric framework, when an upper shift is occurring, it can be due to:
i) either a mean shift in the amplitude X from µX0

to µX1
= δXµX0

where δX ≥ 1 is
the parameter quantifying the change in the amplitude, ii) or a mean shift in the time
T from µT0

to µT1
= δTµT0

where δT ≤ 1 is the parameter quantifying the change in
the time, ii) or also a change in both the amplitude X from µX0

to µX1
= δXµX0

and
the time T from µT0

to µT1
= δTµT0

.

As it is usually very difficult to know the actual values of δX and δT , we will use
the Expected Average Run Length (EARL) criterion and, more particularly:

• the EARLX for X (assuming δT = 1) defined as:

EARLX =
∑

δX∈ΩX

fδX (δX)ARL(δX , 1)

• the EARLT for T (assuming δX = 1) defined as:

EARLT =
∑
δT∈ΩT

fδT (δT )ARL(1, δT )

• the EARLXT for both of X and T defined as:

EARLXT =
∑

δX∈ΩX

∑
δT∈ΩT

fδX (δX)fδT (δT )ARL(δX , δT )
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where ΩX and ΩT are the “range of possible shifts” for δX and δT , respec-
tively, fδX (δX) and fδT (δT ) are the p.m.f. (probability mass functions) of the
shifts δX and δT over ΩX and ΩT , respectively. Since the goal of a TBEA control
chart is to detect an increase in the amplitude X and/or a decrease in the time
between events T , we suggest to define ΩX = {1.05, 1.1, 1.15, 1.2, 1.25, 1.3} and
ΩT = {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. As the distributions of δX and δT are unknown,
we assume that fδX (δX) and fδT (δT ) are the p.m.f. of discrete uniform distributions
on ΩX and ΩT , respectively.

In the parametric framework, the values EARLX , EARLT and EARLXT depend
on the values ARL(δX , 1), ARL(1, δT ) and ARL(δX , δT ) that can be computed using
formulas presented in Rahali et al. [24]. Concerning the distribution-free upper-sided
EWMA TBEA chart, the same formulas for EARLX , EARLT and EARLXT can
be used with the difference that, for each parametric scenario, the values of δX and
δT have to be transformed into equivalent probabilities pX and pT and the values
ARL(δX , 1), ARL(1, δT ) and ARL(δX , δT ) have to be replaced by ARL(pX , 0.5),
ARL(0.5, pT ) and ARL(pX , pT ), that can be computed using (6). This allows a direct
comparison between the parametric methods proposed in Rahali et al. [24] and the
distribution-free method proposed in this paper.

The results of EARLX , EARLT and EARLXT for the distribution-free upper-sided
EWMA TBEA control chart are in Table 3 (see the values in bold) for both scenarios
#1 and #2, i.e.

• EARLX = 24.91, EARLT = 45.08 and EARLXT = 10.49 for scenario #1,
• EARLX = 44.30, EARLT = 23.54 and EARLXT = 9.93 for scenario #2.

In Table 3, we also have the value of pX and pT (which depend on the sce-
nario) corresponding to the values δX ∈ ΩX = {1.05, 1.1, 1.15, 1.2, 1.25, 1.3} and
δT ∈ ΩT = {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, respectively. For each of these combi-
nations (δX , δT ) or (pX , pT ) we have the optimal parameters (λ∗,K∗) with the
corresponding values for (ARL,SDRL). For example, in scenario #1, the combination
(δX = 1.2, δT = 0.9) corresponds to (pX = 0.9773, pT = 0.3105) and the optimal
parameters for the distribution-free upper-sided EWMA TBEA control chart are
(λ∗ = 0.15,K∗ = 2.643) with (ARL = 9.78, SDRL = 4.23).

The values of EARLX , EARLT and EARLXT for the 3 parametric Shewhart control
charts proposed in Rahali et al. [24] (based on statistics Z1, Z2 and Z3) are presented
in Table 4 for scenarios #1 and #2. The upper control limits used for each case have
also been recorded in this table. A comparison between Tables 3 and 4 immediately
shows that, no matter the scenario or the statistic considered, the values of EARLX ,
EARLT and EARLXT for the distribution-free upper-sided EWMA TBEA control
chart are always smaller than the ones obtained for the parametric Shewhart control
charts proposed in Rahali et al. [24], thus showing the advantage of using the proposed
distribution-free control chart in situations where the distributions for T and X are
unknown.
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Table 3. Values EARLX , EARLT and EARLXT of the distribution-free upper-sided EWMA TBEA control chart for
scenarios #1 and #2

Scenario #1

δX 1 1.05 1.1 1.15 1.2 1.25 1.3
pX 0.5 0.6918 0.8416 0.9333 0.9773 0.9938 0.9987

(λ,K) (λ,K) (λ,K) (λ,K) (λ,K) (λ,K) (λ,K)

δT pT (ARL, SDRL) (ARL,SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) EARLX

1 0.5 (—, —) (0.020, 2.084) (0.045, 2.387) (0.065, 2.496) (0.075, 2.532) (0.075, 2.532) (0.080, 2.547)
(370.40, —) (54.45, 33.49) (26.63, 14.05) (19.35, 9.30) (16.93, 7.71) (16.15, 7.04) (15.93, 7.05) 24.91

0.95 0.4007 (0.010, 1.774) (0.045, 2.387) (0.075, 2.532) (0.100, 2.592) (0.110, 2.608) (0.115, 2.615) (0.115, 2.615)
(106.86, 75.17) (32.03, 19.35) (18.27, 9.50) (13.99, 6.65) (12.48, 5.58) (11.98, 5.25) (11.84, 5.13) 16.77

0.90 0.3105 (0.020, 2.084) (0.065, 2.496) (0.110, 2.608) (0.140, 2.638) (0.150, 2.643) (0.155, 2.644) (0.160, 2.646)
(55.20, 34.16) (22.13, 12.48) (13.74, 6.97) (10.84, 5.02) (9.78, 4.23) (9.42, 3.97) (9.32, 3.94) 12.53

0.85 0.2333 (0.035, 2.301) (0.085, 2.560) (0.140, 2.638) (0.175, 2.648) (0.190, 2.648) (0.195, 2.647) (0.200, 2.647)
(36.62, 21.45) (17.01, 9.04) (11.10, 5.36) (8.92, 3.89) (8.11, 3.30) (7.83, 3.09) (7.75, 3.06) 10.12

0.80 0.1706 (0.045, 2.387) (0.105, 2.601) (0.165, 2.647) (0.205, 2.645) (0.225, 2.639) (0.235, 2.634) (0.235, 2.634)
(27.93, 15.17) (14.12, 7.18) (9.48, 4.32) (7.72, 3.14) (7.04, 2.66) (6.81, 2.51) (6.75, 2.45) 8.65

0.75 0.1220 (0.055, 2.449) (0.120, 2.621) (0.185, 2.648) (0.235, 2.634) (0.255, 2.622) (0.260, 2.618) (0.265, 2.614)
(23.28, 12.04) (12.38, 6.02) (8.47, 3.65) (6.94, 2.66) (6.35, 2.22) (6.15, 2.05) (6.09, 2.01) 7.73

0.70 0.0858 (0.060, 2.474) (0.135, 2.634) (0.205, 2.645) (0.250, 2.625) (0.275, 2.606) (0.280, 2.602) (0.280, 2.602)
(20.58, 10.06) (11.29, 5.35) (7.82, 3.24) (6.44, 2.29) (5.90, 1.88) (5.72, 1.72) (5.66, 1.66) 7.14

EARLT 45.08 18.16 11.48 9.14 8.28 7.99 7.90 10.49

Scenario #2

δX 1 1.05 1.1 1.15 1.2 1.25 1.3
pX 0.5 0.5985 0.6913 0.7732 0.8412 0.8943 0.9331

(λ,K) (λ,K) (λ,K) (λ,K) (λ,K) (λ,K) (λ,K)

δT pT (ARL, SDRL) (ARL,SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) (ARL, SDRL) EARLX

1 0.5 (—, —) (0.010, 1.774) (0.020, 2.084) (0.035, 2.301) (0.045, 2.387) (0.055, 2.449) (0.065, 2.496)
(370.40, —) (107.63, 75.90) (54.62, 33.64) (35.52, 20.48) (26.68, 14.09) (22.00, 10.94) (19.36, 9.31) 44.30

0.95 0.300027 (0.025, 2.174) (0.045, 2.387) (0.070, 2.515) (0.090, 2.572) (0.115, 2.615) (0.130, 2.631) (0.145, 2.640)
(51.89, 32.88) (31.00, 18.43) (21.34, 12.09) (16.25, 8.57) (13.35, 6.76) (11.61, 5.55) (10.55, 4.87) 17.35

0.90 0.129897 (0.050, 2.420) (0.085, 2.560) (0.120, 2.621) (0.155, 2.644) (0.180, 2.648) (0.210, 2.644) (0.230, 2.636)
(23.95, 12.21) (16.78, 8.60) (12.66, 6.26) (10.17, 4.77) (8.63, 3.74) (7.67, 3.15) (7.06, 2.74) 10.50

0.85 0.034429 (0.070, 2.515) (0.105, 2.601) (0.150, 2.643) (0.190, 2.648) (0.230, 2.636) (0.255, 2.622) (0.275, 2.606)
(17.53, 8.00) (12.89, 5.81) (10.00, 4.43) (8.19, 3.38) (7.03, 2.69) (6.28, 2.16) (5.81, 1.80) 8.37

0.80 0.004493 (0.080, 2.547) (0.115, 2.615) (0.160, 2.646) (0.200, 2.647) (0.240, 2.631) (0.270, 2.610) (0.290, 2.593)
(16.08, 7.17) (11.96, 5.23) (9.35, 3.96) (7.69, 3.01) (6.62, 2.37) (5.93, 1.88) (5.49, 1.53) 7.84

0.75 0.000222 (0.080, 2.547) (0.115, 2.615) (0.160, 2.646) (0.205, 2.645) (0.245, 2.628) (0.275, 2.606) (0.290, 2.593)
(15.89, 7.01) (11.83, 5.12) (9.26, 3.89) (7.62, 2.99) (6.56, 2.34) (5.88, 1.86) (5.45, 1.48) 7.77

0.70 0.000003 (0.060, 2.474) (0.135, 2.634) (0.205, 2.645) (0.250, 2.625) (0.275, 2.606) (0.280, 2.602) (0.280, 2.602)
(15.88, 7.00) (11.83, 5.12) (9.25, 3.88) (7.62, 2.99) (6.56, 2.34) (5.88, 1.85) (5.44, 1.48) 7.76

EARLT 23.54 16.05 11.98 9.59 8.13 7.21 6.63 9.93

Table 4. Values EARLX , EARLT and EARLXT of the 3 parametric Shewhart control
charts proposed in Rahali et al. [24] for scenarios #1 and #2

Scenario #1 Scenario #2
Z1 Z2 Z3 Z1 Z2 Z3

UCL 0.5550 1.9692 2.9115 0.5470 1.6742 2.6171

EARLX 52.4749 93.1968 134.3478 85.9319 121.0851 110.8255
EARLT 55.3093 44.5776 41.6612 69.5180 57.4231 57.5436
EARLXT 10.9375 14.8817 18.9865 18.8108 20.8753 20.5259
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5. Illustrative example

We consider the same illustrative example as in Rahali et al. [24], which is based on
a real data set concerning the time Ti (in days) between fires in forests of the french
region “Provence - Alpes - Côte D’Azur” and their amplitudes Xi (burned surface in
ha = 10000m2, where only surfaces larger than 1ha have been included). This data
set reports a total of 92 fires that have been divided into two subsets:

• 47 fires, from October 2016 to approximately mid-June 2017. This subset, cor-
responding to the “low season” for fires, is used here as a Phase I data set.
• 45 fires, from approximately mid-June 2017 to the end of September 2017. This

subset, corresponding to the “high season” for fires, is used here as a Phase II
data set.

The dates Di (from October 1st 2016, in days), the times between fires Ti as well
as their amplitudes Xi have been recorded in Table 5. The values of Ti and Xi are
also plotted in Figure 3 (top and middle): it is evident that the Phase II values of
Ti(Xi) are shorter(larger) than those observed during Phase I.

In order to compute the upper control-limit UCL of the distribution-free EWMA
TBEA chart, the following values have been fixed: pT = 0.3, pX = 0.7, σ = 0.125 and
ARL0 = 370.4. Using the results in Table 2 we have λ∗ = 0.07 and K∗ = 2.515 and
we get

UCL = 2.515×
√

0.07× (0.1252 + 0.5)

2− 0.07
= 0.344.

From the Phase I data set, the following in-control median values have been
estimated θT0

= 3 and θX0
= 5.3. These values are used to compute the values STi,

SXi, Si and S∗i in Table 5. As it can be noticed, for some dates we have Ti = θT0
= 3:

for these values, we have Ti − θT0
= 0. This is not supposed to happen as Ti is

supposed to be a continuous random variable but, due to the measurement scale
(days), this situation actually may occur. In this case, we have decided to keep the
corresponding values and to assign STi = 0 (instead of −1 or +1). For this reason,
some values of Si = s = ±0.5 and the corresponding values for S∗i are obtained
by randomly generating a Nor(s, σ) random variable, as it is already the case for
values s ∈ {−1, 0,+1}. For instance, in Table 5, when Di = 70 we have Si = 0.5 and
the corresponding value for S∗i has been randomly generated from a Nor(0.5, 0.125)
distribution (S∗i = 0.552). When Di = 140 we have Si = −0.5 and he corresponding
value for S∗i has been randomly generated from a Nor(−0.5, 0.125) distribution
(S∗i = −0.507).

The values Z∗i have been computed using (2) for both Phase I and II data sets. They
are recorded in Table 5 and plotted in Figure 3 (bottom) along with the distribution-
free EWMA TBEA upper control limit UCL = 0.344:

• For the Phase I data set, all the values Z∗i are below the upper control limit
UCL = 0.344; therefore, this data set is in-control and the estimated median
values θT0

= 3 and θX0
= 5.3 can be used for the Phase II monitoring.

• For the Phase II data set, the distribution-free EWMA TBEA detects several
out-of-control situations during the period mid-June 2017 – end of September
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2017, (see also the bold values in Table 5), confirming that a decrease in the
time between fires occurred with a concurrent increase in the amplitude of these
fires. Similar conclusions have been obtained using the parametric approaches in
Rahali et al. [24] and assuming a lognormal distribution for both Ti and Xi.
• It is interesting to investigate the robustness of the Z∗i after the generation of

new normal random values for S∗i . In this case, are the new Z∗i totally different
from the others? Is it possible to detect the same out-of-control situations? How
robust is the “continuousify” method if it is replicated several times? In order
to answer these questions, we plotted, in Figure 4, 10 replicated sequences of Z∗i
corresponding to the same Phase I and II fires example. The Di, Ti, Xi, STi,
SXi and Si are exactly the same as in Table 5: only the S∗i have been randomly
generated and the Z∗i recomputed. As it can be seen, the 10 trajectories are
quite similar and none of them significantly diverges from the others. During
the Phase I they are all below the UCL (confirming that the process is actually
in-control) and during the Phase II, they all exhibit out-of-control situations
more or less at the same moments (the “peaks” occur almost at the same time).
Therefore, we can conclude that the “continuousify” method is robust vs. the
random generation of the S∗i values.

6. Conclusions

In this paper we have investigated a distribution-free EWMA control chart based on
sign statistics for monitoring time between events and amplitude data. Implementing
a distribution-free control chart allows the problem of estimating the in-control
distributions of time between events and amplitudes to be overcome. Only a couple
of selected quantiles from the in-control distributions need to be estimated to
start the implementation of the EWMA TBEA control chart. Using the proposed
distribution-free EWMA TBEA control chart allows to efficiently monitor TBEA
data with an out-of-control performance significantly better than any parametric
Shewhart TBEA control charts currently available in literature. Being the EWMA
TBEA control chart based on a discrete sample statistic, we have defined a technique,
called “continuousify”, which allows to compute the ARL values for the EWMA
scheme by using Markov chains in a reliable and replicable way.

Future research in the same area will consider the case of possible ties in the data,
i.e. situations where STi = 0 or SXi = 0 (like it happens in the Illustrative example).
In this case, the distribution of Si and S∗i are no longer the same and this new situation
is worth to be investigated. Furthermore, this technique can be extended to any kind
of discrete distribution like the Poisson or the binomial distribution and zero-inflated
versions of these distributions, for instance. It could also be adapted to work with
the multivariate version of the EWMA for multivariate discrete data like multivariate
Poisson data.
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Table 5. Phase I and II values of Di, Ti, Xi, STi, SXi, Si, S
∗
i and Z∗

i for the forest fires example.

Phase 1 Phase 2
Di Ti Xi STi SXi Si S∗

i Z∗
i Di Ti Xi STi SXi Si S∗

i Z∗
i

9 9 3.68 1 -1 -1.0 -0.917 0.000 258 1 1.00 -1 -1 0.0 -0.078 0.000
26 17 1.99 1 -1 -1.0 -0.802 0.000 260 2 3.70 -1 -1 0.0 0.119 0.008
60 34 6.00 1 1 0.0 -0.081 0.000 262 2 3.17 -1 -1 0.0 -0.063 0.003
67 7 1.19 1 -1 -1.0 -0.901 0.000 265 3 18.40 0 1 0.5 0.333 0.026
70 3 135.80 0 1 0.5 0.552 0.039 268 3 1.00 0 -1 -0.5 -0.145 0.014
72 2 14.37 -1 1 1.0 1.113 0.114 269 1 2.22 -1 -1 0.0 0.208 0.028
86 14 8.10 1 1 0.0 -0.104 0.099 271 2 19.09 -1 1 1.0 1.001 0.096
88 2 32.31 -1 1 1.0 0.892 0.154 272 1 2.00 -1 -1 0.0 0.027 0.091
94 6 3.07 1 -1 -1.0 -1.056 0.069 274 2 34.28 -1 1 1.0 1.086 0.161
95 1 10.03 -1 1 1.0 0.867 0.125 276 2 3.00 -1 -1 0.0 0.070 0.154
96 1 7.93 -1 1 1.0 1.033 0.189 277 1 6.63 -1 1 1.0 0.955 0.210
97 1 1.50 -1 -1 0.0 0.409 0.204 278 1 4.47 -1 -1 0.0 -0.097 0.189
103 6 23.30 1 1 0.0 -0.116 0.182 285 7 8.24 1 1 0.0 0.160 0.187
106 3 3.73 0 -1 -0.5 -0.708 0.120 286 1 769.45 -1 1 1.0 1.024 0.246
109 3 4.73 0 -1 -0.5 -0.677 0.064 287 1 4.37 -1 -1 0.0 -0.144 0.218
111 2 3.19 -1 -1 0.0 0.179 0.072 288 1 90.70 -1 1 1.0 0.961 0.270
113 2 6.25 -1 1 1.0 1.032 0.139 289 1 11.49 -1 1 1.0 1.044 0.324
114 1 3.60 -1 -1 0.0 -0.155 0.118 295 6 3590.78 1 1 0.0 0.033 0.304
115 1 6.12 -1 1 1.0 1.112 0.188 296 1 1427.92 -1 1 1.0 0.949 0.349
118 3 1.50 0 -1 -0.5 -0.740 0.123 297 1 255.96 -1 1 1.0 1.054 0.399
122 4 1.33 1 -1 -1.0 -1.009 0.044 298 1 1.00 -1 -1 0.0 -0.051 0.367
134 12 1.42 1 -1 -1.0 -1.037 0.000 302 4 13.88 1 1 0.0 -0.074 0.336
137 3 5.75 0 1 0.5 0.629 0.044 303 1 138.28 -1 1 1.0 1.117 0.391
140 3 3.47 0 -1 -0.5 -0.507 0.005 305 2 8.90 -1 1 1.0 1.153 0.444
142 2 13.31 -1 1 1.0 1.217 0.090 308 3 1.50 0 -1 -0.5 -0.342 0.389
143 1 26.31 -1 1 1.0 1.041 0.157 312 4 34.63 1 1 0.0 -0.217 0.347
144 1 18.54 -1 1 1.0 0.923 0.210 313 1 82.56 -1 1 1.0 0.811 0.379
146 2 66.17 -1 1 1.0 1.124 0.274 314 1 2.00 -1 -1 0.0 -0.019 0.351
147 1 9.90 -1 1 1.0 0.916 0.319 315 1 162.08 -1 1 1.0 1.071 0.402
150 3 4.22 0 -1 -0.5 -0.534 0.260 319 4 3.26 1 -1 -1.0 -1.056 0.300
157 7 34.28 1 1 0.0 -0.110 0.234 321 2 285.91 -1 1 1.0 0.729 0.330
161 4 2.23 1 -1 -1.0 -1.102 0.140 322 1 2.00 -1 -1 0.0 -0.283 0.287
162 1 1.84 -1 -1 0.0 0.152 0.141 325 3 11.57 0 1 0.5 0.347 0.291
163 1 2.88 -1 -1 0.0 -0.018 0.130 334 9 34.70 1 1 0.0 0.068 0.275
164 1 21.46 -1 1 1.0 1.087 0.197 335 1 431.00 -1 1 1.0 1.150 0.337
165 1 4.46 -1 -1 0.0 -0.001 0.183 336 1 10.89 -1 1 1.0 1.003 0.383
166 1 58.27 -1 1 1.0 1.034 0.243 340 4 1.00 1 -1 -1.0 -1.004 0.286
167 1 8.84 -1 1 1.0 0.863 0.286 346 6 1.50 1 -1 -1.0 -0.921 0.202
180 13 1.03 1 -1 -1.0 -0.905 0.203 347 1 1.17 -1 -1 0.0 0.100 0.195
187 7 16.57 1 1 0.0 0.156 0.199 349 2 1.27 -1 -1 0.0 0.129 0.190
201 14 4.96 1 -1 -1.0 -1.084 0.110 350 1 26.25 -1 1 1.0 1.098 0.254
202 1 1.37 -1 -1 0.0 -0.087 0.096 353 3 11.66 0 1 0.5 0.332 0.259
205 3 23.39 0 1 0.5 0.498 0.124 354 1 3.03 -1 -1 0.0 0.127 0.250
225 20 1.70 1 -1 -1.0 -1.032 0.043 355 1 12.00 -1 1 1.0 1.130 0.311
247 22 5.30 1 0 -0.5 -0.727 0.000 356 1 1.00 -1 -1 0.0 -0.206 0.275
248 1 15.64 -1 1 1.0 1.161 0.081
257 9 5.14 1 -1 -1.0 -0.921 0.011
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Figure 3. Time Ti in days between fires (top), amplitudes Xi as the burned surface in ha (middle) and the
distribution-free EWMA TBEA chart with statistic Z∗

i (bottom) corresponding to the data set in Table 5
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Figure 4. 10 new trajectories for the Z∗
i based on randomly regenerated S∗

i values corresponding to the data

set in Table 5
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