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Theories for design and analysis of robust H∞/H− fault detectors

David Henrya

aIMS lab., Univ. Bordeaux, Bordeaux INP, CNRS (UMR 5218), 351 Cours de la libération, 33405, Talence,
France

Abstract

This paper deals with model-based fault detection and isolation problems, for linear time invariant
systems subject to a large class of uncertainties and disturbances. A new approach based on
non-smooth optimization techniques, is proposed to synthesize a state–space realization of the
fault detection filter, within the H∞/H− setting. A set of new criteria for robust fault detection
performance analysis is too proposed, using the generalized structured singular value theory. The
proposed theories are illustrated on a satellite example, under a large class of nonlinear dependent
uncertainties. Through a deep analysis of the example, it is shown how the H∞/H− design – µg
analysis tools can serve as a general theory, to solve fault detection problems.

Keywords: Robust fault detection and isolation, H∞/H− filters, generalized structured singular
value µg.

1. Introduction

Design and analysis of model–based Fault Detection and Isolation (FDI) solutions, becomes
more and more of interest in practical applications. Intensive attention has been drawn during last
decades, on the design of FDI schemes, see the surveys [12, 53]. The proposed techniques can be
brought down to two concepts: Fault estimation and residual generation.

Residual generation is different from fault estimation because it does only require disturbances
and model perturbations attenuation. The residuals have to remain sensitive to faults while guaran-
teeing robustness against model perturbations and unknown inputs. This means that, as opposed
to a fault estimation problem which is fundamentally a minimisation problem (we look for the
fault estimate to be minimal, in some criteria sense), a residual generation problem is a minimisa-
tion/maximisation problem.

One historically distinguishes three main categories of residual generation techniques, the parity
space technique, see the recent developments reported in [38, 50, 48], the observer–based approach
and the so-called direct filtering approaches.

The observer–based approach is probably the most studied technique. One of the most success-
ful robust observer techniques for fault diagnosis is the Unknown Input Observer (UIO) technique,
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see [30, 17, 40] to name a few recent results. Unfortunately, these observers are designed under
pure robustness constraints, and fault sensitivity performances are mainly checked a posteriori.
In many cases, this results in a rank condition. The mixed H∞/H− observer technique aims at
proposing a solution to this problem. The authors of the papers [24, 25, 46] were the precursors to
propose a well posed definition of the H− criteria for fault sensitivity measure, in the sense that
it does not require the full-rank column condition of the D-matrix. It seems now that this latest
definition is well admitted [44, 45, 47, 52], thanks to the generalized Kalman–Yakubovich–Popov
lemma [27] that gives an exact linear matrix inequality (LMI) characterization of the H− index in
a finite frequency domain.

The direct filtering approach looks for a state–space realization. In this sense, this approach
presents more degrees of freedom than an observer–based solution, since, first, the structure of the
residual generator is not a priori fixed, and, second, it can be of higher order than an observer,
which is a clear advantage from a performance point of vue. The theoretical foundations of the
direct filtering approach come mainly from the H∞/µ robust control community. That is why pure
H∞ solutions, as well as µ-synthesis solutions, have been proposed in the past, see [42, 41, 26, 31] to
name a few papers. With the aid of the recent developments in the H∞/µ robust control theory, re-
cent theories address mixed criteria such as H∞/H∞ [11], H2/H∞ [29], H∞/H− [11, 24, 26, 21, 23]
and H∞/H−/H2g with LMI regions constraints [34, 25].

The fault detector design problem addressed in this paper, obeys to the direct filtering approach.
More precisely, the theoretical developments are proposed within the H∞/H− setting that uses the
LFT paradigm. The contributions of the paper are twofold:

i) The paper proposes a new H∞/H− design theory that looks for a state–space realization of
the fault detection filter, under fixed structure and/or tunable parameters. The problem is
formulated as a non-smooth optimization problem. This is the first contribution of the paper.

ii) Following the µ-analysis philosophy of the H∞ robust control community, a set of new indica-
tors for robust fault detection performance analysis is proposed within theH∞/H− framework.
These indicators are developed within the generalized structured singular value µg framework.
The aim is to provide µg tools for worst-case performance analysis and margins of H∞/H−
robust fault detectors. These new tools are the second contribution of the paper.

The proposed theories are illustrated on a satellite’s example, that considers flexible modes of
the solar arrays and a large class of nonlinear dependent uncertainties, i.e. satellite and solar array
inertias, and frequencies and damping factors of the flexible modes. Through a deep analysis of
the example, it is shown how the H∞/H− design – µg analysis tools can serve as a general theory,
to assess and enhance the robust performances of any kind of LTI fault detection filter, in a very
efficient way.

The paper is organized as follows. Section 2 states the problem. Section 3 is dedicated to the
H∞/H− design theories. A slightly extended version of the full order design procedure proposed
in [24] is first establsihed in terms of a LMI optimization problem. Then, a new approach based
on non-smooth optimization techniques, is proposed. Section 4 is dedicated to the µg tools. The
µg analysis procedure proposed in [24] is briefly recalled as a necessary background for the new
µg–based analysis tools. Finally, section 5 is devoted to the satellite example.
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Notations

The notations are those used in the majority of H∞/µ literature. σ(A)/σ(A) denote the max-
imum/minimum singular values of the matrix A. ‖w‖2 is used to denote the L2-norm of the
signal w. A transfer P (s) where ”s” is the Laplace variable, denoted simply P , is assumed to
be in RH∞, real rational function with ||P ||∞ = supω σ(P (jω)) < ∞ (||P ||∞ is also the largest
gain of P ). For LTI systems, ||P ||∞ is accompanied by the non-zero smallest gain of P , that
is the H− index given in a finite frequency range, which is the restriction of infω σ(P (jω)) to a

finite frequency domain Ω, i.e., ||P ||− = infω∈Ω σ(P (jω)) 6= 0. The notation P =

[
A B
C D

]

is used to refer to the state-space model P :

{
ẋ = Ax+Bu
y = Cx+Du

. Linear Fractional Transforma-

tions (LFTs) are extensively used in the paper. For appropriately dimensioned matrices N and

M =

(
M11 M12

M21 M22

)
, the lower LFT is defined according to Fl(M,N) = M11 + M12N(I −

M22N)−1M21 and the upper LFT as Fu(M,N) = M22 + M21N(I − M11N)−1M12, under the
assumption that the involved matrix inverses exist. This assumption is discussed in the paper when
it is judged necessary. Otherwise, it is assumed to be satisfied. M ? N refers to the Redheffer

star product which is defined by M ? N =

[
Fl(M,N11) M12(I −N11M22)−1N12

N21(I −M22N11)−1M21 Fu(N,M22)

]
.

Consider a block structure ∆ = diag(∆J ,∆K) so that ∆J =
{

bloc diag(δr1Ik1
, ..., δrmrJ IkmrJ

, δc1IkmrJ+1
, ..., δcmcJ IkmrJ+mcJ

,∆C
J1, ...,∆

C
JmCJ

)
}

and ∆K =
{

bloc diag(∆C
K1, ...,∆

C
KmCK

)
}

with δr ∈

R, δc ∈ C,∆C ∈ C and consider a complex valued matrix M =

(
MJJ MJK

MKJ MKK

)
partitioned in

accordance with ∆, which define the closed-loop equations z = Mv, v = ∆z, z = (zTj zTk )T , v =

(vTj vTk )T where ∆J and ∆K satisfy respectively a maximum norm constraint and a minimum gain
constraint. Then, the µg-function is a positive real-valued function of the matrix M and the spec-

ified perturbation block ∆ defined by µg∆(M)
4
= max‖v‖=1

{
γ :
‖vj‖γ ≤ ‖zj‖,∀j ∈ J
‖vk‖ ≥ ‖zk‖γ,∀k ∈ K

}
and is

defined on a domain dom(µg) given by M ∈ dom(µg) iff MKKvK = 0⇒ vK = 0.

2. Problem statement

Consider the fault detection design problem given by Fig. 1.a. The system model consists of a
nominal LTI model G and a perturbation bloc ∆ ∈ B∆ with B∆ = {∆ ∈ ∆ : σ(∆) ≤ 1}, acting on
the nominal model, such that

∆ =
{

block diag(δr1Ik1
, ..., δrmrIkmr , δ

c
1Ikmr+1

, ..., δcmcIkmr+mc
,∆C

1 , ...,∆
C
mC )

}
(1)

where δr ∈ R, δc ∈ C,∆C ∈ C are referred as repeated real, repeated complex and complex lin-
ear time-invariant dynamic uncertainties [13, 51]. It is assumed that all model perturbations (e.g.
parametric uncertainties and neglected dynamics) are represented by ∆. d ∈ Rqd and f ∈ Rqf also
refer to disturbances and faults to be detected, respectively. K is a LTI controller, that is assumed
to be known. η ∈ Rqη and ζ ∈ Rqζ are internal signals.
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Figure 1: a): The H∞/H− synthesis problem (left) and b): its equivalent form (right).

The problem to be solved is formulated as follows: we look for a linear combination z ∈ Rq
of some system’s outputs w1 ∈ Rm1 , that is z = Mw1, and its estimate ẑ, by filtering through a
dynamic filter F , some system’s outputs w2 ∈ Rm2 that are not necessarily the same, i.e. w1 and
w2 may differ. Then, r = z − ẑ defines a residual vector, since it will be close to zero if ẑ tends to
z when f = 0 and whenever the presence of disturbances d and model perturbations ∆. However,
when f 6= 0, z must differ as much as possible from its estimate ẑ, if we want r to be a good
residual vector. The variables to be designed are then the state–space matrices AF ∈ RnF×nF ,

BF ∈ RnF×m2 , CF ∈ Rq×nF , DF ∈ Rq×m2 of F =

[
AF BF
CF DF

]
and the matrix M ∈ Rq×m1 .

The following assumption about fault detectability, is made.

Assumption 1. [39] There exist a positive scalar ν and a residual generator r = Ψ(d, f) such that,
for all ρ > 0 and all ∆ ∈ B∆, ||Ψ(d, 0)||2 ≤ ρ||d||2 ∀d and ||Ψ(d, f)||2 ≥ ν||f ||2 ∀d and ∀f .

Using LFT algebra manipulations, it can be verified that the diagram illustrated on Fig.1.a
admits the following expression, given in the Laplace domain, see Fig.1.b:

r(s) = Tvr(∆,M, s)v(s) Tvr(∆,M) = Fl (Fu (P (M),∆) , F ) v =
[
dT fT

]T
(2)

In this equation, Tvr(∆,M) denotes transfer associated to the channel v =
[
dT fT

]T → r, that
depends on the model perturbations ∆.

With r, z, ẑ defined as previously, the goal turns out to be the design of the (stable) filter real-
ization matrices AF , BF , CF , DF and the matrix M that solve the following H∞/H− optimization
problem

min
M,F

γ1
∀∆ ∈ B∆

s.t.||Tdr(∆,M)||∞ < γ1
(3)

max
M,F

γ2
∀ω ∈ Ω, ∀∆ ∈ B∆

s.t.||Tfr(∆,M)||− > γ2
(4)

where Tdr(∆,M) and Tfr(∆,M) are deduced from Tvr(∆,M) given by Eq. (2), by selecting
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the adequate channels. Tdr(∆,M) is then the (closed-loop) transfer associated to the channel
d→ r, and Tfr(∆,M) refers to the (closed-loop) transfer associated to the channel f → r. γ1 and
γ2 are positive scalars introduced to manage the robustness and the fault sensitivity constraints,
respectively. Ω denotes the frequency range where it is required to enforce fault sensitivity.

Remark 1. Note that the above problem formulation is a slightly extended version of the approach
presented in [24], since the problem considered in [24] corresponds to the particular case w1 = w2 =[
yT uT

]T
and M =

[
My Mu

]
.

Remark 2. In the proposed formulation, the fault detection problem is formulated considering a
controller K, which is thought an advantage since it is well known that the control actions can cover
the fault effects. This benefit has been already discussed in [24]. However, an open-loop formulation
may be required for some particular systems. For such cases, the fault detection problem can be
easily derived from the aforementioned problem formulation, by simply removing K. It follows that
the vector v entering in Eq. 2, will be augmented by the command input vector u. However, it
should be outlined that, i) the system under consideration has to be stable which is not a strong
limitation since an unstable system rarely operates in open loop, and ii) the signals w1, w2 must
contain u, to enforce u to enter F . Towards this end, we argue that the theories developed in this
paper, can be used without loss of generality.

3. The H∞/H− design theory

3.1. LMI solution

In the interest of brevity, throughout this section an earnest attempt will be made to avoid
duplicating material presented in [24]. Towards this end, the focus of this section will lie wholly
with the results summarized by theorem 1.

Following the method proposed in [24], the robustness and fault sensitivity requirements (3)
and (4) are expressed in terms of desired gain responses for the transfers Tdr(∆,M) and Tfr(∆,M)
. This is done through dynamical weights Wd and Wf , respectively. Then, a key ingredient in the
theory presented in [24], is lemma 2 that states that a sufficient condition for requirements (3) and
(4) to be satisfied is

||Tdr(∆,M)W−1
d ||∞ < 1 and ||Tfr̃(∆,M)||∞ < 1 (5)

where Wd and Wf have been scaled such that ||Wd||∞ ≤ γ1 and ||Wf ||− ≥ γ2. r̃ is a fictitious
signal defined such that r̃ = r −WF f with ||WF ||− = 1+γ2

γ2
||Wf ||−. Tfr̃(∆,M) also denotes the

transfer associated to the channel f → r̃.
Based on this property, the H∞/H− filter design problem can be re-casted in a fictitious H∞-

framework so that [
r(s)
r̃(s)

]
= Fl

(
Fu
(
P̃ (M, s),∆(s)

)
, F (s)

)[
d̃(s)
f(s)

]
(6)

in which d̃ is the fictitious signal generating d through W−1
d , see Fig. 2 that helps to follow the LFT

manipulations. Then, by virtue of the small gain theorem, a sufficient condition for (5) to hold is

∥∥∥Fl
(
P̃ (M), F

)∥∥∥
∞
< 1 (7)
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Figure 2: a:) The weighted H∞/H− synthesis problem (left) and b): its standard form (right).

Let us denote the state–space realizations of W−1
d ,WF and Fl(G,K) as follows

W−1
d =

[
Awd Bwd
Cwd Dwd

]
WF =

[
AwF BwF
CwF DwF

]
Fl(G,K) =




A Bη Bd Bf
Cζ Dζη Dζd Dζf

C1 D1η D1d D1f

C2 D2η D2d D2f




(8)
Then, it can be verified that the state–space realization of P̃ (M) is given by

P̃ (M) =




Ã B̃1 B̃2

C̃1 D̃11 D̃12

C̃2 D̃21 D̃22


 =




A BdCwd 0 Bη BdDwd Bf 0
0 Awd 0 0 Bwd 0 0
0 0 AwF 0 0 BwF 0
Cζ DζdCwd 0 Dζη DζdDwd Dζf 0
MC1 0 0 MD1η MD1d MD1f −Iq
MC1 0 −CwF MD1η MD1d MD1f −DF −Iq
C2 0 0 D2η D2d D2f 0




(9)
with Ã ∈ Rn×n, B̃1 ∈ Rn×(qη+qd+qf ), B̃2 ∈ Rn×q, C̃1 ∈ R(qζ+2q)×n and C̃2 ∈ Rm2×n. The dimen-
sions of D̃11, D̃12, D̃21 and D̃22 can be easily determined from those dimensions.

The following theorem solves the problem.

Theorem 1. Let W =
[
C̃2 D̃21

]⊥
. Then there exist M,AF , BF , CF and DF such that Eq. (7)

is satisfied if and only if there exist M , two symmetric matrices R,S ∈ Rn×n and a scalar γ < 1
such that the following system of LMIs is feasible:




ÃR+RÃT R
[
Cζ DζdCwd 0

]T
B̃1[

Cζ DζdCwd 0
]
R −γI

[
Dζη DζdDwd Dζf

]

B̃T1
[
Dζη DζdDwd Dζf

]T −γI


 < 0 (10)

[
W 0
0 I

]T


ÃTS + SÃ SB̃1 C̃T1 (M)

B̃T1 S −γI D̃T
11(M)

C̃1(M) D̃11(M) −γI



[
W 0
0 I

]
< 0 (11)
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[
R I
I S

]
> 0 (12)

Then, nF = n, i.e. F is a full order solution. Moreover, F is of order nr < nF if for some
M,R, S, γ, rank(I −RS) ≤ nr.

Proof: Direct application of proposition 4 in [24] to P̃ (M) given by Eq. (9). �

The matrices AF , BF , CF and DF of the fault detection filter can then be computed from
any solution M,R, S, γ. In particular, one can look for the minimal value of γ by solving the
optimisation problem ”min γ s.t. Eq. (10)-(12)”. Then, the approach proposed in [16] can be used
to derive AF , BF , CF and DF from the optimal solution M∗, R∗, S∗, γ∗.

3.2. Non smooth formulation

Let us now consider the following restrictions on ∆.

Assumption 2. The uncertainty block ∆ given by Eq. (1) has no complex terms δc i.e. ∆ =
block diag(δr1Ik1

, ..., δrmrIkmr ,∆
C
1 , ...,∆

C
mC ). Furthermore, the elements of the full complex block

∆C are assumed to be square ⇔ qηi = qζi , i = 1, ...,mC .

Assumption 2 is thought without loss of generality since ∆ covers both real uncertainties and
complex LTI dynamic uncertainties, and then covers all practical cases. Furthermore, it is always
possible to square down the model P̃ in (9) with respect to {block diag(∆C

i )}, i = 1, ...,mC .

With the help of Fig. 2.b, it can be seen that, by definition (from now on the dependence of M
is omitted for clarity):

Fl
(
Fu
(
P̃ ,∆

)
, F
)

=

[
Td̃r(∆) Tfr(∆)
Td̃r̃(∆) Tfr̃(∆)

]
(13)

where Tio(∆) : o(s) = Tio(∆, s)i(s) denotes the transfer from the input ”i” to the output ”o”. It
follows that the solution derived from theorem 1 may be conservative, since:

• first, it is based on the small gain theorem to remove ∆ from the problem, i.e. Eq. (7) is

a sufficient condition for
∥∥∥Fl

(
Fu
(
P̃ ,∆

)
, F
)∥∥∥
∞
< 1, ∀∆ ∈ B∆. In other words, the LMIs

(10)-(12) do neither consider the block-diagonal structure of ∆ nor its nature (real,complex
or mixed real-complex).

• second, it implicitly considers the off-diagonal terms Tfr(∆) and Td̃r̃(∆) of Eq. (13).

The second problem can be managed adequately, by introducing judiciously chosen weighting func-
tions on Tfr(∆) and Td̃r̃(∆) as it has been done in e.g. [24, 25, 26, 19, 21]. However, the first
problem remains. This is the price to pay to have a convex formulation in terms of LMIs.

To overcome these problems, it is proposed in the following, to use the nonsmooth theory pro-
posed in [10]. This technique enables to consider the nature of ∆ and its block-diagonal structure
under assumption 2, and to vanish the influence of the off-diagonal terms Tfr(∆) and Td̃r̃(∆) oc-
curring in the transfer described by Eq. (13). This is in fact, the problem as it is stated in section
3.1. Another benefit is the possibility to structure the filter F , i.e. we can choose for F , a fixed
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structure and/or a fixed order and/or fixed parameters.

To proceed, let us first outline that the transfer Tdr(∆)W−1
d that appears in the developments

presented in section 3.1, is nothing else than the top left transfer Td̃r(∆) in Eq. (13). Then, the
requirement ||Tdr(∆)W−1

d ||∞ = ||Td̃r(∆)||∞ < 1 can be rewritten according to

∥∥∥Fl
(
Fu
(
P̃1,∆

)
, F
)∥∥∥
∞
< 1 with P̃1 =




A BdCwd Bη BdDwd 0
0 Awd 0 Bwd 0
Cζ DζdCwd Dζη DζdDwd 0
MC1 0 MD1η MD1d −Iq
C2 0 D2η D2d 0




(14)

Similarly, noticing that the transfer Tfr̃(∆) is located at the bottom right position in Eq. (13), it
follows that the requirement ||Tfr̃(∆)|| < 1 can be rewritten according to

∥∥∥Fl
(
Fu
(
P̃2,∆

)
, F
)∥∥∥
∞
< 1 with P̃2 =




A 0 Bη Bf 0
0 AwF 0 BwF 0
Cζ 0 Dζη Dζf 0
MC1 −CwF MD1η MD1f −DF −Iq
C2 0 D2η D2f 0




(15)

So the goal we pursue is to derive M and a (stable) filter F so that (14) and (15) are satisfied, with
some a priori chosen constraints on F . Especially, we would like to consider for F , some a priori
fixed structure and/or tunable parameters.

To proceed, Fl
(
Fu
(
P̃1,∆

)
, F
)

and Fl
(
Fu
(
P̃2,∆

)
, F
)

are merged into a unique LFT, which

leads to a new LFT Fl
(
Fu
(
P̂ , ∆̂

)
, diag(F, F )

)
, where ∆̂ = diag(δr1I2.k1 , ..., δ

r
mrI2.kmr ,∆

C
1 I2, ...,∆

C
mC I2)

is deduced from diag(∆,∆) by reorganising its elements. Then the problem turns out to be the
design of (F,M), such that:

∥∥∥Fl
(
Fu
(
P̂ , ∆̂

)
, F̂
)∥∥∥
∞
< 1 (16)

s.t. F̂ = diag(F, F ), F is stable ∀∆̂ : σ(∆̂) ≤ 1, and F has fixed structure and/or tunable parameters

The solution to this problem is given by the following theorem, whose foundations are mainly
inspired by the D −G scaling matrices technique, of the µ theory [13, 51]:

Theorem 2. Consider assumption 2. With the real uncertain blocks δri I2.ki entering in ∆̂, let us
associate stable dynamic multipliers M ∈ M where M := {M(s) = diag(Mi(s)) : ||Mi||∞ < 1}
where M(s) commutes with diag(δri I2.ki), i = 1, ...,mr. With the complex block ∆C entering in ∆̂,
let us associate the set D of D-scalings so that D :=

{
D(s) = diag(Di(s)Iki) : Di(s),D−1

i (s) stable
}

that commutes with diag(∆C
i ), i = 1, ..., 2.mC . If there exist M ∈ M, D ∈ D, (M,F ), 0 < γ < 1
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and a small α > 0 that solve

min γ

s.t.
∥∥∥Fl

(
Fu
(
P̂γ ,Γ(M,D)

)
, F̂
)∥∥∥
∞
≤ 1− α (17)

Fl
(
Fu
(
P̂γ ,Γ(M,D)

)
, F̂
)

internally stable

||M||∞ ≤ 1− α
F has fixed structure and/or tunable parameters

then (M,F ) solves (16). In (17), Γ(M,D) =




M 0 I −M 0
0 0 0 D−1

I +M 0 −M 0
0 D 0 0


 and P̂γ corresponds to

P̂ whose channel [d̃T fT ]T → [rT r̃T ]T has been scaled by 1/γ.

Proof: Direct application of theorem 1 and corollary 1 in [10], to Fl
(
Fu
(
P̂ , ∆̂

)
, F̂
)

. �

In this theorem, the free parameters are the components of the matrices M,AF , BF , CF , DF ,
and the components of the state space matrices associated to M(s),D(s). Let us gather them
into a vector x ∈ Rqx . Then, if we omit the constraint about the structure of F and the tunable
parameters, the optimization problem (17) can be rewritten according to the following program

min
x∈Rqx

f∞(x)
4
= max
ω∈[0,+∞]

f(ω,x) (18)

This optimisation problem is the composition of the H∞ norm, which is convex but a nonsmooth
function, with the LFTs x → Fl (•(jω),x) and x → Fu (•(jω),x), which define a non-convex but
differentiable mapping. Such a problem can be solved using the technique proposed in [2]. The key
property is that the functions Fl (•(jω),x) and Fu (•(jω),x) are Clarke regular which means that a
complete description of the Clarke subdifferential ∂f(x) can be calculated [7]. This property allows
to distinguish between critical points including local minima x, that is points x so that 0 ∈ ∂f(x),
from points x that must be discarded, i.e. 0 6∈ ∂f(x) As explained in [2], solving (18) relies on the
construction of a tangent model around the current iterate x that constitutes a quadratic first-order
local approximation of the original problem. An adequate descent direction h in the x-space is then
computed by solving a convex quadratic program of the form

min
h∈Rqx

f̂∞(x + h,x)
4
= max

(φ,Φ)∈Ξ
φ− f∞(x) + ΦTh+

1

2
hTQh (19)

where, for a point x, the set Ξ collects functions values φ
4
= f(x, ω) and subgradients Φ ∈ ∂f(x, ω)

over an extended set of frequencies Ω. Following [2], a sufficient requirement for the algorithm to
converge, is that Ω contains frequencies ω that achieve the peak value in (18), i.e. f∞(x) = f(ω,x).
This property ensures that the solution h in (19) is a descent direction of f∞(•) at the point x.
If h = 0, then 0 ∈ ∂f∞(x)) and we are done. So, a stopping test can be formulated based on the
solution to (19). A key fact about (19) is that the direction h can be used in an Armijo or Wolfe
line search [5] which terminates after finitely many steps.
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Note that in order to accelerate convergence, it is proposed in [1] to use a frequencies bracketing
global maxima strategy, jointly with including frequencies corresponding to secondary peaks. Ac-
tive and secondary peaks can easily be estimated using a method for the H∞-norm computation,
whereas bracketing frequencies can be computed using the Hamiltonian method [6].

Adding the constraints about the structure of F or its tunable parameters is handled through
the introduction of a so-called progress function [3] which preserves both Clarke properties and the
max structure in (18).

The resulting algorithm is guaranteed to converge to a critical point which is, unfortunately, a
local minimum in practice, simply because the function f∞(.) is non convex and thus, there is
no guarantee to reach the global optimum. Furthermore, numerical difficulties may occur when
∆ has a large numbers of repetitions ki in parametric uncertainites δri Iki , since the number of
variables in the multipliers Mi increases. To overcome this problem, it is proposed in [10], two
different algorithms. The first one is based on an inner relaxation technique, and the second one is
based on a hybrid approach that treats real parametric δri and complex dynamic uncertainties ∆C

i ,
individually. The interested reader can refer to [10] for more details.

3.3. A practical (expected) optimal approach

Theorem 1 is a convex formulation of the H∞/H− problem but may lead to a conservative
solution as explained previously, whereas the nonsmooth technique converges to local optimal so-
lutions, but it has the advantage to allow to fix extra constraints on F and to consider the nature
and structure of the ∆ block. Thus, and in order to take the benefit of the two techniques, the
following practical procedure is proposed:

1) Solve the optimisation problem ”min γ s.t. Eq. (10)-(12)” in order to obtain the global opti-
mal solution M∗, F ∗;

2) Performs a reduction of F ∗ using an adequate procedure, until a chosen order. It is pre-
ferred there a Grammian-based reduction approach, whose goal is to remove from F ∗, small
controllable and observable modes. Let us denote Fr the resulting reduced filter;

3) Inject M∗, Fr as the initial condition for the optimisation problem (18) and compute the
(local) optimal solution M,F by solving (18).

By using this procedure, a reduced order fault detector F that fulfils all required performance can
be obtained, expected to be close to the optimal performance provided by the full order solution
M∗, F ∗. Furthermore, since it solves the constraints (14) and (15) in spite of (7) and considers the
nature and structure of ∆, a less conservative solution than M∗, F ∗ is obtained.

4. The µg analysis theory

The shortcomings of the theory developed in the previous section, are the formulation of the H−
constraint as a fictitious H∞ requirement which involves a sufficient condition, and the non-smooth
formulation which guarantees only a local optimal solution. To overcome these drawbacks, the
so–called generalized structured singular value µg can be used as proposed in [24], see the notation
section for the definition of µg.
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The central result is theorem 6 in [24], which states that a necessary and sufficient condition
for (3) and (4) to hold, is

µg∆ (N(s)) < 1, ∀s = jω, ω ∈ Ω (20)

with ∆ = diag(∆,∆d,∆f ), where ∆d ∈ Cqd×q and ∆f ∈ Cqf×q are fictitious uncertainty blocks,
referred as performance blocks. N is derived from G,K,Wd,Wf ,M and F as illustrated on Fig. 3.

In other words, condition (20) provides a necessary and sufficient condition for the following
design objectives, to hold:

σ (Tdr(∆, jω)) ≤ σ (Wd(jω)) ω ∈ R ∪ {∞}, ∆ ∈ B∆ (21)

and σ (Tfr(∆, jω)) ≥ σ (Wf (jω)) ω ∈ Ω, ∆ ∈ B∆ (22)

F

−

+

Md

∆

∆

W−1

d

f̃

f̃
W−1

f

Fl(G,K)

d̃

d̃

r

r

r

r

f

w1

w2 ẑ

z

η

η

ζ

ζ

N

∆

∆d

∆f

Figure 3: The µg formulation of the fault detection performance analysis problem

The goal of this section is to present recent developments within the µg-theory based on the
aforementioned fundamental results, as a set of tools for robust performance assessment of the solu-
tion M,F derived from theorems 1 and 2, and more generally for any fault detector scheme whose
performance within the H∞/H− framework, is under interest. Towards this end, we assume that
the reader is familiar with the above results and we invite the reader, to look at the developments
presented in [24, 25] for theoretical backgrounds, and [26, 21] for a good practice of this theory (to
name a few papers).

The focus of the following sections is then as follows:

• First, we focus on the derivation of a sensitivity measure of µg against each component of
its associated perturbation block, namely ∆ = diag(∆,∆d,∆f ). We also call this measure
the µg-sensitivity functions. With the definition of ∆, it is easy to see that the µg-sensitivity
functions can quantify which uncertainty ∆i, component of d and component of f , is the most
responsible of the robust performance degradation of the fault detection scheme. Since µg is a
frequency indicator, such an information will be given frequency by frequency (at frequencies
for which µg will be evaluated, to be more precise).

• Second, the focus is on the derivation of performance indicators for worst-case performance
analysis and margins. The idea is to identify, i) the combination of the uncertainties ∆i

that leads to fault detection performance loss and the frequencies at which it occurs, and ii),
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the combination of the uncertainties ∆i for which the performance margins are the biggest,
and the frequencies at which it happens. Since elements of ∆ are relative to e.g. physical
parameters, time delays, etc. such measures can be used to determine the highest value of
the parameter shift or time delay that can be inserted in the fault detection scheme, without
losing the robust fault detection performance.

4.1. µg-sensitivity functions

It is well known that the sensitivity of a function with respect to a variable can be approached
by the partial derivative of this function about the variable. Thus, it seems natural to use the
following definition for the µg-sensitivity functions.

Definition 1. Consider the structure N−∆ defined according to Fig. 3 (right). The µg sensitivity
function Sµig(ωj) with respect to the ith element of ∆, is defined at a frequency ωj according to:

Sµig(ωj) =
∂µg∆i

(N(s))

∂∆i
s = jωj (23)

Except for special cases, µg is intractable and it is replaced by computable upper and lower
bounds γub, γlb. The lower bound γlb is computed using a similar algorithm to the power algorithm
for µ [49]. The difference results in the ∆f block (see Fig. 3) since it infers the σ function in spite
of the σ function. For this block, a set of implicit equations are solved at each step of the standard
power algorithm. With regards to the upper bound γub, a LMI formulation is proposed in [33] by
using the D − G scaling matrices technique from the µ theory. The difference with the µ case,
results in the real components of the D scaling matrices associated to ∆f , since they are negative
definite, highlighting the effect of the σ function (the H− index). It follows that Sµig(ωj) is not

computable in general. Then, Sµig(ωj) is approached by replacing µg in definition 1, by its upper
and lower bounds γub and γlb, i.e.

∂γlb(∆i, ωj)

∂∆i
≤ Sµig(ωj) ≤

∂γub(∆i, ωj)

∂∆i
(24)

The problem then turns out to be the computation of the partial derivative of the real valued
univariate functions γlb(∆i, ωj) and γub(∆i, ωj). This problem is solved here using the finite dif-
ferences technique, and more precisely using the centered difference approach. This leads to the
following proposition:

Proposition 1. Consider the left and right terms in Eq. (24). Given a small value of h > 0 and
an order of error p ∈ Z+,

∂g(∆i)

∂∆i
=

1

h

kM∑

k=km

Ckg(∆i + kh) + E(hp) (25)

with

kM∑

k=km

knCk =

{
0 for n = 0, .., p, n 6= 1
1 if n = 1

, kM = −km =
p

2
, k, n ∈ Z (26)
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for g(∆i) = {γlb(∆i, ωj), γub(∆i, ωj)}. E(hp) refers to an error term, so that Eq. (25) becomes an
approximation when omitting the term E(hp).

Proof: Direct application of the finite differences theory [36], considering the first order derivative
problem and the centered difference approach. �

Note that Eq. (26) in proposition 1 defines a set of p+ 1 linear equations about p+ 1 unknown
coefficients Ck, k = km, ..., kM . Thus, a unique solution for all Ck can be easily computed using
linear algebra, leading proposition 1 to be constructive to approximate numerically the µg-sensitivity
functions Sµig(ωj).

Remark 3. In almost all our studied applications, h = 1e−3 and p = 4 has been revealed to be
a suitable choice. This leads to the following definition for the parameters Ck, k = km, ..., kM :
C−2 = 1

12 , C−1 = −2
3 , C0 = 0, C1 = 2

3 , C2 = −1
12 .

4.2. Worst-case performance analysis

The goal we pursue, is now to identify the combination of the elements of ∆ that leads to fault
detection performance loss, and the frequency at which it occurs. In this sense, such a couple
(∆, ω) corresponds to the worst-case for the fault detection scheme, so we refer this analysis to
the worst-case performance analysis. Let us denote (∆wc, ωwc) this couple. From (20), we know
that such a situation occurs when µg ≥ 1, over diag(∆d,∆f ). So µg = 1 over diag(∆d,∆f ), is the
frontier of interest. This suggests the following definition for (∆wc, ωwc).

Definition 2. Consider the structure N −∆ illustrated on Fig. 3 (right). The worst uncertainty
∆wc that takes its values in B∆ at the frequency ωwc that belongs to a finite frequency range EΩ, is
defined according to:

(ωwc,∆wc) =
{

(ω,∆) : µg∆̆ (Fu(N(jω),∆)) = 1, ∆ ∈ B∆, ω ∈ EΩ

}
∆wc ∈ B∆, ωwc ∈ EΩ (27)

where ∆̆ = {diag(∆d,∆f )}.

From definition 2, it follows that finding (∆wc, ωwc) can be formulated according to the following
optimisation problem

(∆wc, ωwc) =argmin
∣∣∣µg∆̆ (Fu(N(jω),∆))− 1

∣∣∣
s.t. ∆ ∈ B∆, ω ∈ EΩ (28)

Remark 4. Note that as stated by definition 2, the couple (ωwc,∆wc) is not necessarily unique,
so that it is required to find all solutions (ωwc,∆wc). This problem can be solved by running the
optimisation problem (28) as many time as necessary, on a priori chosen frequency ranges EΩ. In
other words, when the solution (ωwc,∆wc) is not unique and thus global, local solutions can be found
by tuning the lower and upper bounds of the constraint about ω, in the optimisation problem (28).
The frequency plot of µg∆ (N(jω)) can help to select judiciously these bounds, see section 5 that
presents an illustration.

To solve the optimization problem (28), the recent particle swarm optimization (PSO) algo-
rithm proposed in [43], is considered. PSO technique is useful since it does not require any gradient
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information and is suitable for discontinuous optimization problems [28, 32, 35]. The principle of
the PSO technique consists in finding optimal regions of search spaces through random movements
of individuals in a population (swarm) composed of particles. Each particle is characterized by its
position and its velocity, the position of a particle representing a solution of the search space and
thus, a possible solution of the optimization problem. The central ingredient of a PSO algorithm is
the equations that update the velocity and the position of each particle. Due to weak exploration
ability of basic versions of PSO algorithms [28, 32, 35], local solutions may be found. To overcome
this shortcoming, it is proposed in [43] a velocity update equation with a location abandoned mech-
anism based on an exponential function.

Here, we use the same principle. The difference between the proposed PSO algorithm and the
one given in [43], consists of a particular choice of the so–called inertia weight involved in the ve-
locity update equations, that shares the same structure than the location abandonned mechanism.
More precisely, it is based on a rationnal polynomial function in spite of an exponential one. This
has been revealed to be numerically more suitable for our problem. Towards this end, the following
developments focus on the main steps of the proposed PSO algorithm and we invite the interested
reader to refer to [43] for necessary backgrounds.

To proceed, consider the optimisation problem (28) and let us gather ∆ and ω into a unique
vector x ∈ Ex = [x,x] ⊂ Rqx , where x and x refers to lower and upper bounds of constraints, and
qx the dimension of the search space. Then, the optimisation problem (28) can be reformulated
according to the general form

min f(x)

s.t. x ∈ Ex = [x,x] ⊂ Rqx (29)

where f(x) =
∣∣∣µg∆̆ (Fu(N(jω),∆))− 1

∣∣∣ : Ex → R+, is a real-valued function. Let us denote the

position and the velocity of the particle i at the iteration k as xi(k) =
(
x1
i (k), ..., xqxi (k)

)
and

vi(k) =
(
v1
i (k), ..., vqxi (k)

)
, respectively. Following the developments presented in [43], the position

of each particle is updated by using the following equations

V1 = χ(k)vi(k) + c1r1(p∗i (k)− xi(k))

V2 = χ(k)vi(k) + c2r2(g∗i (k)− xi(k))

V3 = χ(k)vi(k) + c1r1(p∗i (k)− xi(k)) + c2r2(g∗i (k)− xi(k))

vi(k + 1) = {Vj = argmin {f(xi(k) + Vj)} , j = 1, 2, 3}
xi(k + 1) = xi(k) + vi(k + 1) (30)

where r1 and r2 are random number in [0, 1]. c1 and c2 are the so–called cognitive and social
coefficients, respectively. p∗i and g∗i are the historical optimal position of the particle i and the best
position among all particles, respectively. χ(k) is the inertia weight, that must be selected to be a
decreasing function in k. Here, the following expression is retained for the inertia weight χ(k)

χ(k) = χ+
(
χ− χ

) 1

1 + kqχ
(31)
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where χ, χ denote the minimum and maximum inertia weight. The parameter qχ > 1 enables to
fix the decreasing speed of χ(k). Now, assume that a particle stays at a given position during
a certain number of movements qL, which is understood in the optimisation process as a local
optimal position. Then, by virtue of the following equation, a new position of the particle with a
small probability, is generated in the search space

xinew =

{
(1− χ(k))g∗(k) + ρ1

1
1+kqχ (g∗(k)− xi(k)) if r < 0.99

xi + ρ2.(xi − xi) else
(32)

where r and ρi, i = 1, 2 are random numbers in [0, 1] and [−1, 1], respectively. The pseudo code of
the proposed PSO algorithm is the one given by Algorithm 1 in [43] by considering Eqs. (30)-(32).
It is recalled in the appendix for convenience, see Algorithm 2.

Remark 5. It can be seen from Eq. (30) to (32), that the parameters that control the PSO algo-
rithm, i.e. the parameters that have to be chosen by the user, are the population size ps and the
coefficients c1, c2, χ, χ, qχ, qL. Following our experience, ps = 30, c1 = 0.5, c2 = 1.25, χ = 0.9, χ =
1.3, qχ = qL = 3 has been revealed to be a suitable choice, to solve efficiently the optimisation
problem (28).

4.3. Performance margins

The last µg-based performance criteria that is proposed, consists in identifying the combination
of the elements of ∆ that leads the performance margins to be the biggest, and the frequency at
which it happens, so we refer this analysis to the performance margins. Let us denote (∆m, ωm)
this couple. From (20), we know that such a situation occurs when µg takes its minimal value, over

∆̆ = diag(∆d,∆f ). So minµg over ∆̆ is the case of interest. This suggests the following definition
for (∆m, ωm).

Definition 3. Consider the structure N −∆ illustrated on Fig. 3 (right). The uncertainty ∆m

that takes its values in B∆ at the frequency ωm that belongs to a finite frequency range EΩ, is defined
according to:

(ωm,∆m) =argmin µg∆̆ (Fu(N(jω),∆))

s.t. ∆ ∈ B∆, ω ∈ EΩ (33)

Definition 3 is clearly an optimisation problem over ∆ ∈ B∆ and ω ∈ EΩ, that can be solved
using the PSO algorithm 2, proposed previously. For that purpose, ∆ and ω are gathered into
x ∈ Ex = [x,x] ⊂ Rqx , where x and x refers to lower and upper bounds of constraints, and the
optimisation problem (33) is formulated according to the general form given by Eq. (29) with
f(x) = µg∆̆ (Fu(N(jω),∆)) : Ex → R+.

Remark 6. Note that as opposed to the worst-case performance analysis problem, the solution
(ωm,∆m) is unique, since we look for the minimal value of µg∆̆ (Fu(N(jω),∆)) over EΩ.

16



5. Application to a satellite mission

The H∞/H−/µg theory developed in the above sections, is now considered to address the
problem of fault diagnosis in the thruster–based propulsion unit of a satellite. For easy reference,
we recall that the methodology results in the main steps described by algorithm 1.

Algorithm 1 Main steps of the H∞/H−/µg design/analysis methodology

1: Establish the satellite’s dynamics together with the fault models, the uncertainties and the control
architecture

2: Define the performance objective functions Wd(s) and Wf (s)
3: Solve the LMI optimization problem defined by equations (10),(11),(12). This leads to the global

solution (M∗, F ∗).
4: Perform an order reduction of F ∗ to the desired order. This leads to a reduced solution (M∗, Fr).
5: Use (M∗, Fr) as the initial condition of the non-convex optimization problem (18) and compute the

(local) optimal solution (M,F ).
6: Analyse the so-derived solution using the set of µg tools, i.e. the frequency dependent µg function (20),

the µg-sensitivities (23), the worst-case performance criteria (27) and the performance margins (33), to
go deeper insight into the obtained solution.

7: If the µg analysis leads to unsatisfactory performance, go to step 2 and refine Wd(s) and Wf (s) until an
optimal solution is found. Find a trade-off between Wd(s) and Wf (s) following the Paretto principle,
if necessary.

The satelite’s reference scenario is inspired by the one considered in [37]. It consists of a satellite
that performs a so-called orbit restitution manoeuvre around Earth, i.e. the satellite performs a
translation from a given position to a reference orbit, while maintaining its attitude constant. It is
assumed that the satellite is equipped by a large solar array, that causes flexible motions.

Recent studies demonstrate that the problem of thruster fault diagnosis in satellites, can be
completely solved considering the satellite’s attitude [15, 37, 9]. Thus, the following restricts the
discussion to the satellite’s attitude, even if the full mission, and thus the simulator used to derive
the results presented in this paper, also considers both the translational and rotational motions.

+
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[
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Figure 4: Diagram of the satellite attitude control loop

Fig. 4 illustrates the attitude’s loop. In terms of avionics, a star tracker and an inertial
measurement unit equip the satellite, so that both the attitude angles Θ = [φ θ ψ]T and the angular
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rates $ = [p q r]T given in the so-called body frame, are assumed to be estimated by the navigation
unit. Decorrelated band-limited normally distributed white noises passing through high pass filters
with cutting frequency equal to 1rd/s, are assumed to model the estimation errors, denoted nΘ

and n$ in Fig 4. In terms of actuators, a set of four thrusters of 1N also equips the satellite. The
attitude’s control unit consists of a multivariable PID–like controller and a feedforward loop, that
computes the torque command signal τ cu ∈ R3 so that:

τ cu(s) = KΘ(s)
[
εΘ(s)T ε$(s)T

]T − τ̂g(s) (34)

In this equation, εΘ and ε$ refer to the attitude and angular rates tracking errors. τ̂g ∈ R3 refers
to the feedforward loop, that consists of an estimation of environmental disturbances torque caused
by gravity gradient, Earth magnetic field, atmospheric drag and solar pressure (denoted τg on Fig.
4). τ cu is then converted to the unidirectional thruster control signals u, by means of a control
allocation algorithm, see Fig. 4 that indicates the location of the control allocation unit (denoted
CA). Finally, in terms of reference trajectory, since it is required to maintain the attitude to zero,
Θref = 0 and $ref = 0.

5.1. Modelling issues

The rotational motion of the satellite can be derived from the Euler’s second law in the body
frame, i.e.:

$̇ = J−1

(∑

k

τk −$ × J$
)

(35)

Here, J ∈ R3×3 is the inertia matrix of the satllite without considering the solar array. In (35),∑
k τk ∈ R3 = τu + τg + τsa describes the sum of torques about the satellite’s CoM, in the body

frame. The (endogenous) torque τsa ∈ R3 is caused by the solar array dynamics, that are given by
the following vector-based equations

¨̄q + 2ξω0 ˙̄q + ω2
0 q̄ = −LT $̇ q̄ ∈ Rns.np (36)

τsa = −k (L¨̄q + Jsa$̇) (37)

L = R(β)BR ∈ R3×(ns·np) (38)

In these equations, np = 1 is the number of solar arrays and ns = 2 is the number of flexible
modes per solar array. ξ, ω0, BR refer to damping factors, frequencies and participation matrices of
flexible modes. Jsa refers to the inertia matrix of the solar array, and R(β) is a rotation matrix in
charge to transform BR given in the solar array frame, into the satellite’s body frame. In this work,
β is considered constant since the solar array is considered to be immobile. k is a dimensionless
paramter that enables to scale τsa. The numerical values of the parameters are given in appendix,
see table B.4.
Finally, using the individual rotation matrices from Euler (3,2,1) rotation, the relationship between
$ and the rate of the Euler angles Θ is given by:

Θ̇ =
1

cos(θ)




cos(θ) sin(φ) sin(θ) cos(φ) sin(θ)
0 cos(φ) cos(θ) − sin(φ) cos(θ)
0 sin(φ) cos(φ)


$ (39)
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Now, let R ∈ R3×4 be the thruster configuration matrix, see the appendix for numerical values.
Then, τu = Ru. Combining Eq. (35)-(39) leads to a nonlinear state space model of satellite’s
attitude, so that

ẋ = f(x) +BτRu+Bττg

= f(x) +Bu+Bττg (40)

y =
[
I6 06×4

]
x+ [nTΘ nT$]T (41)

with the state vector x = [ΘT $T q̄T ˙̄qT ]T ∈ R10, the (noisy) measurements y = [yTΘ yT$]T =
[(Θ + nΘ)T ($ + n$)T ]T ∈ R6 being provided by the navigation unit, as explained previously.

With regards to the faults, the mathematical model proposed in [19] is retained, i.e. the real sta-
tus of the thrusters at the time t, which is of course unknown, is modelled as uf (t) = (I4 −Ψ(t))u(t),
with Ψ(t) = diag (ψ1(t), ..., ψ4(t)), where 0 ≤ ψi(t) ≤ 1, i = 1, 4 are unknown. The index ”f” refers
to a faulty status. By using such a formulation, ψi(t) = 0,∀i indicates that all thrusters have a
normal functioning, whereas ψi(t) = 1 − φi(t)/ui(t) with a suitable expression for φi(t), indicates
that the ith thruster is faulty, with some time profile. Typically, φi(t) = max{ui(t), 1} corresponds
to the ith thruster being fully opened (stuck-open fault case), whereas φi(t) = 0 corresponds to the
ith thruster being closed (stuck-closed fault case).

Then, performing a first order Taylor approximation of the nonlinear function f(x) around
x = 0, and applying the fault modelling approach proposed in [19], the satellite attitude dynamic
is described by

ẋ = Ax+Bu+Bττg +
4∑

i=1

Hifi (42)

y =
[
I6 06×4

]
x+ [nTΘ nT$]T (43)

where the ith column of the matrix H is the ith fault signature associated to the ith fault mode fi.
The indices i = 1, 4 also coincide with the numbering of thrusters, and thus with the columns of
the matrix R.

Of course, some parameters of this model are partially known, namely the satellite inertia matrix
J , the solar array inertia matrix Jsa, the damping factors ξ and frequencies ω0 of the flexible modes
characterizing the solar array, see table B.4. So Eq. (42)-(43) defines an uncertain state space
model. Thus, it is put into a LFT form, which leads to:

y(s) = Fu(Pu(s),∆)



τg(s)
f(s)
u(s)


+

[
nΘ(s)
n$(s)

]
(44)

∆ = diag
(
δJxxI8, δJsaxx I8, δJyyI18, δJsayy I18, δJzzI18, δJsazz I18, δξ1I2, δξ2I3, δω01

I2, δω02
I3

)
, ∆ ∈ R98×98

(45)
In other words, all uncertain parameters entering in (42) are ”pulled out” so that the model appears
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as a LTI nominal model Pu subject to an artificial block diagonal ∆ specifying how each uncertainty
enters Pu, see [8, 18] for instance. In this formalism, the uncertainties entering in (44) have been
scaled, so that |δ•| ≤ 1⇔ ∆ ∈ B∆.

5.2. Direct application of the theory

The goal we pursue now, is to design a H∞/H− residual generator, able to robustly detect stuck-
open and stuck-closed faults, that may occur in a thruster. Following the developments stated in
section 2, let us define w1, w2 and q according to

w1 =

[
yΘ

u

]
w2 =

[
y$
u

]
q = 1 (46)

Note that with the choice q = 1, we seek for a residual r of dimension ”1”. This choice is moti-
vated by the fact that, here, only the fault detection problem is considered. In other words, a fault
indicating signal r of dimension ”1” is expected to be enough to robustly detect any kind of faults
occurring in any thruster.

Then, the LFT model Fu(G,∆) illustrated on Fig. 1 is derived from the setup illustrated on Fig.

4 and from Fu(Pu,∆), by means of state-space algebra. ∆ is defined by Eq. (45), d =
[
nTΘ n

T
$

]T
,

and the controller K is defined according to K = R+KΘ, R+ : RR+ = I being any inverse of the
thruster configuration matrix R, which models the control allocation unit, see [14] for a discussion
on modelling a control allocation unit. The problem dimensions are thus

qη = qζ = 98, qd = 6, qf = 4, m1 = m2 = 7, q = 1

Next and as explained in section 3, the robustness requirements against d and fault sensitivity
objectives against f must be specified through the adequate choice of Wd and Wf . Here, d refers
to attitude and angular rates measurement errors, that are modelled as decorrelated white noise
passing trough former filters having cutting frequency at 1rd/s. Thus, it seems natural to choose
Wd as a diagonal transfer of six low pass filters with cutting frequency ωd = 1rd/s, that is

Wd(s) = diag

(
γΘ

1 + s/ωhf
1 + s/ωd

I3, γ$
1 + s/ωhf
1 + s/ωd

I3

)
ωd = 1rd/s, ωhf >> ωd (47)

with γΘ and γ$ the smallest as possible. By such a choice, it is required to attenuate the attitude
and angular rates measurement errors on the residual r, the most possible, with a particular atten-
tion in the frequency range [1rd/s,+∞[. ωhf is a frequency introduced to make Wd invertible.

With regards to the fault sensitivity objective, it is required for r to be as sensitive as possible to
all faults fi, i = 1, ..., 4, from 0rd/s up to the highest possible frequency, with the highest magnitude
possible. Then, Wf is chosen as a diagonal transfer of four low pass filters with cutting frequency
ωf , that is

Wf (s) = diag

(
γf1

1 + s/ωhf
1 + s/ωf

, ..., γf4

1 + s/ωhf
1 + s/ωf

)
ωhf >> ωf (48)

with γfi , i = 1, .., 4 and ωf as large as possible. The gains γfi , i = 1, .., 4 of the elements of Wf are
introduced to manage the sensitivity to faults fi, i = 1, ..., 4 separately, and ωhf is introduced to
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make Wf invertible.

The full order global optimal solution (M∗, F ∗) is then computed following the theory explained
in section 3.1. The parameters γΘ, γ$, γfi , i = 1, ..., 4, ωf are determined through an iterative
refinement, such that the µg-analysis procedure (i.e. condition (20)) leads a µg value close to ”1”
per lower value, for the highest frequency range as possible. This indicates that the best robustness
and fault sensitivity performance have been achieved. This boils down the following optimal values
for γΘ, γ$, γfi , i = 1, ..., 4, ωf , with a filter F ∗ of order nF = 16.

γΘ = 0.1, γ$ = 1, γf1 ≈ 0.0105, γf2 ≈ 0.0711, γf3 ≈ 0.003, γf4 ≈ 0.082, ωf = 0.1rd/s

Next, and as explained in section 3.3, a Grammian-based reduction procedure is applied to F ∗,
in order to obtain a reduced order filter Fr of order 7. M∗ and Fr are then passed as an initial
condition, to the non smooth design approach presented in section 3.2, and the final solution (M,F )
is then deduced from theorem 2. Fig. 5 and Fig. 6 illustrate the sigma plots of TnΘr(jω), Tn$r(jω)
and Tfir(jω), i = 1, ..., 4 for some a priori fixed values of ∆ given by (45), for the two solutions
(M∗, F ∗) and (M,F ). From these figures, we argue that the local solution (M,F ) derived from
the non smooth formulation (17), is close to the global optimal solution (M∗, F ∗) derived from the
LMIs (10)-(12). However, the benefit is that F is of reduced order (F is of order 7), as opposed to
F ∗ which is of order 16.

The µg tools presented in section 4, are next used to assess and quantify the robust performance
of the solution (M,F ). The µg function µg∆ (N(jω)) is first computed with respect to fi, i = 1, ..., 4,
see Fig. 7. The µg-sensitivities Sµig(ω) are next evaluated, following the theory presented in section
4.1, see Fig. 8. The worst-case performance and the performance margins analyses presented in
sections 4.2 and 4.3, are presented in tables 1 and 2.

As it can be seen, µg∆ (N(jω)) < 1 in the frequency range Ω ≈ [0; 0.1]rad/s, which definitively
demonstrates by virtue of Eqs. (21)-(22), that both the robustness requirement against the mea-
surement errors nΘ and n$ specified by Wd and the fault sensitivity objectives imposed by Wf , are
achieved for all uncertainties listed in table B.4. From the µg-sensitivities plots, it can be concluded
that the residual r is most sensitive to disturbances and faults, than the rest of the uncertainties.
Furthermore, and not surprisingly, it can be seen how r is sensitive to the two flexible modes of
the solar array. There is however an interesting phenomenon that can be noticed for the case of
faults in thruster n. 3: the sensitivity of r against the components Jyy and Jzz of the satellite
inertia matrix, is similar to those of the measurement errors and the fault, see Fig. 8 left bottom.
From tables 1 and 2, we can see that, for all faults, the worst case combination of uncertainties that
leads to performance loss, occurs at ωwc ≈ [0.1; 0.4]rd/s and that the highest performance margins
occur for ωm → 0rd/s except for f3 where ωm ≈ 0.0387rd/s, which is coherent with the µg plot
illustrated on Fig. 7.

The fault detector (M,F ) is finally implemented within the nonlinear simulator of the satellite’s
mission. In order to have a well numerically conditioning fault detector, the balanced input/output
realization of (M,F ) is computed and the resulting state-space realization is next converted into
its discrete time form, by means of the Tustin transformation. This allows to have a solution
ready to be implemented in a real processing unit, with some prior validation certificates obtained
through a simulation environment. Fig. 9 illustrates the results for stuck-open faults (Fig.9.left)
and stuck-closed faults (Fig.9.right), all occurring at t = 100s. Clearly, it can be seen that all faults
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Figure 5: Sigma plots of TnΘr(jω) (left) and Tn$r(jω) (right)

can be detected successfully, using e.g. a simple threshold-based decision making rule or a more
sophisticated test like the mean/variance Generalized Likelihood Ratio tests [4].

5.3. H∞/H−/µg as a general theory

In this last section, we would like to demonstrate, how generic are the H∞/H− and the µg
theories presented in this paper. Thus, we consider three different fault detection schemes and
demonstrate how the tools presented in this paper, can be used to analyse, improve and complete,
existing solutions in the FDI literature. It should be outlined that, even if all tools are applicable
to all presented examples, we do not consider all of them, for brevity reasons. Here, the objective
is to give a short, but exhaustive, panorama of the potential of the theories presented in this paper.
Towards this end, section 5.3.1 considers the worst case performance and margins analysis with
an unknown input observer fault diagnosis scheme. Section 5.3.2 is devoted to the µg-sensitivity
analysis for a Kalman–based fault estimator scheme and section 5.3.3 demonstrates how the non-
smooth H∞/H− design methodology can be used to enhance fault detection performance of an
existing FDI scheme.
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∆wc︷ ︸︸ ︷
ωwcJxx Jyy Jzz Jsaxx Jsayy Jsazz ξ1 ξ2 ω01

ω02

f1 14.9383 10.6216 12.4573 0.9718 19.4946 10.1206 0.0026 0.0031 1.0107 4.4993 0.3370
f2 14.1055 9.4456 12.5261 0.9678 20.2635 10.9298 0.0033 0.0028 1.1511 5.3454 0.1401
f3 14.4899 9.4555 13.7859 1.0288 19.3980 10.4281 0.0030 0.0031 1.0369 4.6080 0.4536
f4 14.9466 9.6188 13.2621 1.0410 19.7267 9.2001 0.0031 0.0027 0.9746 5.3467 0.1529

Table 1: Worst case performance analysis

∆m︷ ︸︸ ︷
ωmJxx Jyy Jzz Jsaxx Jsayy Jsazz ξ1 ξ2 ω01 ω02

f1 13.5396 10.7687 14.0973 1.0189 17.5283 9.9630 0.0032 0.0030 1.0441 4.8029 0.0000
f2 13.5949 10.1398 12.5485 1.0178 18.5988 10.1517 0.0031 0.0028 1.1619 4.8634 0.0000
f3 12.6000 10.0392 14.3000 0.9513 17.1000 9.8528 0.0033 0.0028 0.9342 4.7772 0.0387
f4 14.7663 9.3549 13.6642 0.9371 18.6778 9.6417 0.0033 0.0027 1.1769 4.7582 0.0000

Table 2: Performance margin analysis

5.3.1. Unknown Input Observer–based scheme

Assume that a set of four LTI unknown input observers (UIOs) has been designed for fault
isolation, such that a given estimation error, say the ith estimation error ei ∈ R3 defined by
ei = $ − $̂, is decoupled from fi, while remaining sensitive to the three others. Thus, fault
isolation is performed at each time t, by seeking which ||ei(t)||2 is minimal at each t. We assume
that the UIOs have been designed, e.g. using the method presented in [23], so that the total FDI
solution results of the four signals ei, i = 1, ..., 4 for fault isolation, and a say, a ”robustified” residual
r = We = W [...eTi ...]

T , i = 1, ..., 4 : e ∈ R12, where W ∈ R1×12 is calculated as the solution of the

minimisation problem min ||Tdr(0)||2
||Tfr(0)||2 .

The goal we pursue is to evaluate the robust performance of r against the uncertainties listed in
table B.4, in the H∞/H− criteria sense. We argue that µg-tools can be used for that purpose. To
proceed, consider the scheme illustrated on Fig. 10, which is deduced from Fig. 4 by inserting the
four UIOs and the matrix W . With Fu(Pu(s),∆) given by (44)-(45) as the model of the satellite
dynamics and the additive fault model of the thruster faults, N is constructed as illustrated on
Fig.3.right. With regards to the objective functions Wd and Wf , we obtained:

γΘ = 0.1, γ$ = 10, γf1 ≈ 0.0015, γf2 ≈ 0.0123, γf3 ≈ 0.01, γf4 ≈ 0.0108, ωf = 0.1rd/s

The µg-based criteria are presented in Table 3. From these results, we argue that the UIO-based
scheme has smaller performance than those of the H∞/H− fault detector calculated in the previous
section, since:

• the gain γ$ that enters in Wd is ten times bigger than in the case of the H∞/H− fault
detector. This means that the navigation errors n$(t) related to angular velocities will be
amplified on r(t), ten times more than in the case of the H∞/H− filter;

• except for γf3
, the gains γfi , i = 1, 2, 4 that enter in Wf are much more smaller than in the
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case of the H∞/H− fault detector. This means that r(t) will have a less sensitivity level
against faults in thrusters 1, 2, 4 than in the case of the H∞/H− fault detection unit.

∆wc︷ ︸︸ ︷
ωwcJxx Jyy Jzz Jsaxx Jsayy Jsazz ξ1 ξ2 ω01

ω02

f1 12.9924 9.9767 12.4585 1.0631 20.8263 10.1629 0.0027 0.0033 0.9092 5.7054 0.2601
f2 14.7577 10.2887 12.5945 0.9977 18.9860 10.5152 0.0030 0.0029 0.8473 5.2208 0.2810
f3 14.3157 10.5102 12.9891 1.0172 20.6165 9.6196 0.0032 0.0034 1.0389 5.0198 0.2126
f4 13.8822 10.5749 12.2182 0.9709 17.7627 9.4148 0.0035 0.0032 0.8171 5.6733 0.4517

∆m︷ ︸︸ ︷
ωmJxx Jyy Jzz Jsaxx Jsayy Jsazz ξ1 ξ2 ω01

ω02

f1 15.4000 10.9964 14.3000 1.0069 17.1000 9.6683 0.0034 0.0029 0.8508 4.4863 0.0850
f2 12.6000 9.4735 11.7000 1.0632 17.1000 9.0001 0.0032 0.0029 1.1090 4.9972 0.0753
f3 12.6000 9.0000 14.3000 0.9516 17.1000 9.2069 0.0034 0.0025 1.0026 4.5007 0.0786
f4 15.4000 9.9349 11.7000 0.9004 17.1000 9.0008 0.0033 0.0029 1.0107 5.6394 0.0790

Table 3: Performance criteria for the UIOs-based scheme

This analysis is confirmed by nonlinear simulations, see Fig.13.left. Comparing with Fig. 9,
it is interesting to note that, i) first, the UIO-based residual r is approximatively ten times of
less magnitude than the H∞/H−-based residual as predicted by the µg analysis, ii) second, the
UIO-based residual is more sensitive to the flexible modes than the H∞/H−-based residual, as it
is predicted by the µg tools. Finally, note that the performance of the UIOs are enough to solve
the FDI problem. We recall that our goal is not to condemn a given fault detection solution with
respect to another one. Rather, the goal is to illustrate how the µg theory can be applied to any
LTI FDI scheme.

5.3.2. Kalman estimator–based scheme

Let us now consider the design of a linear and stationary Kalman fault estimator. To proceed,
the state equation (42) is considered with the assumption of parametric uncertainties and flexible
modes, modelled as state disturbances w(t). For the observation’s equation (43), it is retained only
the attitude angles Θ(t). For the fault model, we consider a signal h(t) distributed through a matrix

H̄, so that H̄h(t) : h ∈ R approximates the term
∑4
i=1Hifi(t) in (42). Typically, H̄ is defined as

the mean value of the absolute value of H = [H1...H4] over the columns. With the dynamics of
the fault model ḣ = Ahh + wh, it can be verified that the fault detector design problem can be
formulated as the design of a Kalman estimator for the following continuous-time plant (with the
classical notations used in the Kalman theory):





ẋe =

[
A H̄
0 Ah

]
xe +

[
B
0

]
u+

[
w(t)
wh(t)

]

y =
[
C 0

]
x+ v

with E







w(t)
wh(t)
v(t)


 [wT (τ) wTh (τ) vT (τ)

]


 =

[
Q 0
0 R

]
δ(t−τ)

(49)
In this equation, A,B,C refers to the state-space matrices of the model (42) under the modelling
assumptions explained previously, and δ(t) refers to the Dirac impulse. Then, the last component
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of the estimate x̂e is nothing else than ĥ, the estimate of h, which provides the fault indicating
signal r. The goal we pursue is to evaluate the performance of r = ĥ against the uncertainties listed
in table B.4, in the H∞/H− criteria sense.

To proceed, the fault estimator is inserted in the closed-loop model of the satellite, in a very
similar manner than those illustrated on Fig. 10. Then, the model N is formed as illustrated on
Fig.3.right, and µg, as-well-as the µg-sensitivities, are evaluated, see Fig.11 and 12. With regards
to the objective functions Wd and Wf , the following result has been obtained:

γΘ = 10, γ$ = 10, γf1 ≈ 0.1482, γf2 ≈ 0.0445, γf3 ≈ 0.0773, γf4 ≈ 0.0356, ωf = 0.1rd/s

From the obtained results, it is interesting to note that:

• This solution has better fault sensitivity level than the pure H∞/H− fault detector and the
UIO–based scheme, since parameters γfi , i = 1, ..., 4 are bigger. The price to pay is, first, a less
immunity against the measurement noise, especially against the star tracker noises since γΘ is
a hundred times higher than for the case of the pure H∞/H− filter and ten times higher than
for the case of the UIO scheme. Second, the magnitude of µg at the frequencies of the flexible
modes, reveals a fault indicating signal very sensitive to the flexible mode effects compared to
the pure H∞/H− solution, see Fig.11. This is confirmed by nonlinear simulations, see Fig.13.

• Compared to the case of the pure H∞/H− solution (see Fig. 8, the µg-sensitivities reveal

that, for each faulty cases, the fault estimate ĥ is particularly sensitive to uncertainties in the
y and z components of the satellite’s inertia matrix for frequencies lower than 0.01rd/s.

Finally note that even if the performance of the Kalman estimator differ from the ones of the
H∞/H− filter or the UIOs, they are enough to solve the fault detection problem, as it can be noted
on Fig. 13. Again, our objective is not to condemn a given fault detection solution with respect to
another one, but to demonstrate that the theories developed in this paper, provide useful tools to
analyse the performance of any LTI fault detection scheme.

Remark 7. It should be outlined that, even if we demonstrated that the µg theory can be applied
successfully to a Kalman fault estimator, we cannot roughly speak about optimal performance in this
particular case, since the µg theory is developed over H∞/H− criteria, whereas the Kalman solution
is developed over a covariance criteria. The only conclusions we can draw are about the ability of
the proposed Kalman scheme to be robust against uncertainties/disturbances in the H∞-norm sense,
and to be sensitive to the considered faults, in the H− criteria sense.

5.3.3. H∞/H− theory for performance enhancement

Let us come back to the UIO-based fault diagnosis solution addressed in section 5.3.1. In order
to overcome the lack of performance of the UIO scheme, it is decided to post-filter the four UIOs
by fusing all components of ei, i = 1, ..., 4 by means of a H∞/H− filter. For that purpose, it suffices
to define w1 and w2 as w1 = w2 = e = [...eTi ...]

T , i = 1, ..., 4 : e ∈ R12. Then, by applying the
theory presented in sections 3 and 4, we obtain a more robust and sensitive fault indicating signal
r than those obtained my merging ei, i = 1, ..., 4 through W , as it is revealed by Fig. 13.bottom.
Details of this design are omitted here, but it is guaranteed that the synthesis technique follows the
method presented in sections 3 and 4, with the characteristics for Wd and Wf that correspond to
those fixed for the pure H∞/H− filter, see section 5.2.
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6. Conclusion

The goal of the paper was to propose a set of tools for designing and analyse, robust H∞/H−
fault detection and isolation solutions, for systems subject to many uncertainties, as well as dis-
turbances. The design theory is approached using the non-smooth optimization techniques. A
procedure that combines the benefit of the LMI-based optimization technique with the non-smooth
theory, is discussed. A set of criteria for robust performance analysis within the H∞/H− framework,
is proposed. The proposed measures are based on the generalized structured singular value µg. The
proposed criteria enable to quantify the sensitivity of the residual vector against each uncertainties,
to determine the combination of uncertainties that leads to fault detection performance loss and
the frequency at which it occurs, and the combination of uncertainties that leads the performance
margins to be the biggest, with the frequency at which it happens. A satellite’s example is used
to, first, illustrate how the presented theories can be applied, and second to demonstrate that the
proposed theories are able to be applied to any LTI FDI scheme. An extension of the presented
theories to the class of Linear Parameter Varying (LPV) systems, is under current research, thanks
to the so-called L2/L−-gains performance measures [20, 22] that generalize the H∞/H− criteria.
The Integral Quadratic Constraint (IQC) formalism is expected to be a viable technique for that
purpose.

Appendix A. PSO Algorithm

Algorithm 2 Pseudo code of the PSO algorithm

1: Initialize ps, c1, c2, χ, χ, qχ, qL,xi,vi, the maximum function evaluations FE;
2: Set p∗i = xi and find g∗, set FE = ps, the counter kL = 0 and the iteration counter k = 0;
3: while FE < FE do
4: By (31), update the inertia weight χ;
5: for k = 1 to ps do
6: By (30), update the velocity and position of each particle;
7: FE = FE + 3;
8: if f(xi) < f(p∗i ) then
9: p∗i = xi and set kL = 0;

10: else
11: kL = kL + 1;
12: end if
13: if f(xi) < f(g∗) then
14: g∗ = xi;
15: end if
16: end for
17: for k = 1 to ps do
18: if kL = qL then
19: By (32), generate a new position and replace xi;
20: FE = FE + 1;
21: end if
22: end for
23: k = k + 1;
24: end while
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Appendix B. Characteristics of the satellite

Symbols Numerical values

Satellite’s inertia J = diag(Jxx, Jyy, Jzz)
Jxx = 14± 10% kg.m2

Jyy = 13± 10% kg.m2

Jzz = 19± 10% kg.m2

Solar array’s inertia Jsa = diag(Jsaxx , Jsayy , Jsazz )
Jsaxx = 10± 10% kg.m2

Jsayy = 1± 10% kg.m2

Jsazz = 10± 10% kg.m2

flexible mode’s damping factors ξ = diag(ξ1, ξ2) ξ1 = ξ2 = 3.10−3 ± 20%

flexible mode’s frequencies ω0 = diag(ω01
, ω02

)
ω01

= 1± 20%rd/s
ω02

= 5± 20% rd/s

solar array modal participation matrix BR BR =




36.6400 0
0 0.0600
0 −37.0100




Table B.4: Characteristics of the satellite
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Figure 6: Sigma plots of Tfir(jω), i = 1, ..., 4 (from top left to bottom right)
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Figure 7: The µg function µg∆ (N(s)) , s = jω
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Figure 8: The µg-sensitivities Sµig(ω) for fault i = 1, ..., 4 (from top left to bottom right)
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Figure 9: r(t) for stuck-open faults (left) and stuck-closed faults (right)
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Figure 10: The UIO-based FDI unit
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Figure 12: The µg-sensitivities Sµig(ω) for fault i = 1, ..., 4 (from top left to bottom right) - Kalman fault estimator
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